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Non-linear Marangoni waves, which are generated by the long-wave oscillatory instability
of the conductive state in a thin liquid film heated from below in the case of a deformable
free surface and a substrate of very low conductivity, are considered. Previously, the
investigation of traveling Marangoni waves was restricted to the analysis of the bifurcation
and stability with respect to disturbances with strongly different wave vectors. In the
present article, for the first time, the modulational instability of traveling waves is
investigated. We derive the amplitude equation for the modulated traveling wave,
which describes non-linear interaction of the main convective pattern with the
perturbations with slightly different wavenumbers. The amplitude equation differs from
the conventional complex Ginzburg–Landau equation as it contains an additional term of
the local liquid level rise. Linear stability analysis reveals twomodulational instability modes:
the amplitude modulational and the phase modulational (Benjamin–Feir) ones. It is shown
that traveling rolls are stable against the longitudinal modulation for the uncontrolled
convection.We also investigate the influence of the non-linear feedback control, which was
applied previously to eliminate subcritical excitation of traveling rolls. Computations reveal
both the modulational modes under the non-linear feedback control. The obtained results
show that the modulational instabilities significantly influence the region of parameters
where the non-linear feedback control is efficient for stabilization of waves.
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INTRODUCTION

Marangoni instability arises at the interface due to the dependence of the surface tension on
temperature (the Marangoni effect). This instability results in spatially periodic convective motion
that can be either steady or oscillatory. In the latter case, the Marangoni wave patterns emerge, of
which the most widespread kind is the traveling rolls.

The pattern selection analysis is based on the investigation of the non-linear interaction of
perturbations with a specific wavelength (critical perturbations) that forms the stable spatially
periodic patterns. However, above the instability threshold, there is a continuum of unstable
perturbations with wavelengths slightly different from the critical one. Non-linear interaction
with those perturbations can distort periodic patterns, whereas the modulated patterns may
undergo the modulational (sideband) instabilities.

Modulational instabilities of convective patterns are crucial for the pattern selection and the
development of the spatiotemporal chaos. The investigations of those instabilities are presented in
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many article (see [1]) as a review. However, only few of them are
devoted to the modulations of non-stationary patterns (see [2–5]
for review).

Here, we explore the modulational instability of traveling rolls
that are formed due to the novel mode of the oscillatory
Marangoni instability.6 This instability arises in a thin liquid
film rested at the heated substrate of small heat conductivity in
comparison with that of the liquid. Non-stationary patterns can
be observed in this system, when the heat transfer from the
interface is small and the surface tension of the liquid is large.

The article is organized as follows. In Thin Film Dynamics
Under Feedback Control, the reader is introduced to the results of
the previous research of the thin film dynamics under feedback
control. The system of partial differential equations is presented
that governs large-scale evolution of film thickness and the liquid
temperature. The multiple scale expansion is applied to this
system in Longitudinal Modulation. Here, the partial
differential equation for the envelope function is derived. The
stability analysis of traveling rolls is provided within the envelope
equation. The results are summarized in Discussions.

THIN FILM DYNAMICS UNDER FEEDBACK
CONTROL

Long-wave Marangoni instability in a thin liquid film heated
from below is governed by the following system of partial
differential equations (see [6, 7], a derivation can be found in
Supplementary Appendix SA):
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� ∇ · (h3

3
∇P +Ma
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2
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h3
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(2)

This system describes the joint large-scale evolution of the film
thickness h(x, y, t) and the liquid temperatureΘ(x, y, t) (in fact, it
is the temperature deviation from the conductive
value T � Θ − z + Bi−1).

The function 8(f) � 8l + 8qf describes non-linear feedback
control based on the measurement of the temperature
perturbation on the free surface and imposing a corresponding
local change of heat flux on the solid substrate [7, 8]. Applying a
feedback control, one can govern the instabilities in this system.
The linear control law affects the linear stability; thus, one can
shift the instability threshold by varying 8l [8]. The non-linear
control term affects non-linear dynamics; therefore, we
concentrate on the influence of 8q in this study.

Here, P � Gah − C∇2h, ∇ � (z/zx, z/zy, 0), f � Θ − h.
Dimensionless parameters are as follows: Ma � σTQH2/ρ]χ is

the Marangoni number, and Ga � gH3/]χ is the Galileo number.
The capillary number S and the Biot number β are rescaled as
Ca � ε−2C and Bi � ε2β, where Ca � σ0H/ρ]χ and Bi � qH/m.

The small parameter ε is the ratio of film thickness to a typical
horizontal length scale, or dimensionless wavenumber of
perturbations. Here, H is the mean liquid layer thickness, Q is
the temperature gradient across the layer, g is the gravitational
acceleration, and q is the heat transfer coefficient; ρ, m, χ, and ]
are the density, thermal conductivity, thermal diffusivity, and
kinematic viscosity of the liquid, respectively. σ0 is the surface
tension at the reference temperature, and σT � dσ/dT is the
temperature coefficient of surface tension. Let us recall the key
assumptions that were used in the derivation of Eqs 1, 2. [6]. First,
a thin film is assumed to be placed on the solid substrate of a very
low thermal conductivity in comparison with the one of the
liquids. In this case, a long-wave Marangoni instability
emerges with a critical wavenumber determined by a small
Biot number, that is, weak heat flux from the free surface. For
a water layer, a Plexiglas wall is an appropriate “insulated for
perturbations” substrate [9, 10]; meanwhile, the air above the
water layer provides a weak heat transfer from the free
surface.

Note that instability under consideration was previously
studied in the full two-layer case. In the study in ref [11], the
authors replaced the empirical law for the heat transfer from the
free surface by the solution of adjoint problem in the ambient gas
layer. In that case, the expression for the effective scaled Biot
number is Bieff � (mgasH)/(mHgas), where mgas and Hgas are
thermal conductivity and thickness of a gas layer, respectively.

Another key assumption is that a moderately large capillary
number Ca and a finite Galileo number Ga allow deformational
Marangoni instability due to the free surface deflections. For a
water layer, scalings Ca � ε−2C and Ga � O(1) are valid for
ultrathin films (thinner than 0.1 mm).

Linear Stability Analysis
Eqs 1, 2 have the base state solution h0 � Θ0 � 1, which
corresponds to the flat surface of motionless liquid with the
linear temperature distribution across the layer. For uncontrolled
convection, the stability analysis of small perturbations
proportional to exp(ikxx + ikyy + λt) provides the quadratic
equation for the growth rate λ [6].

λ2 + λ[β + k2(1 + G −Ma
3

)] + Gk2

3
(β + k2) − Mak4(72 + G)

144

� 0,

(3)

where k2 � k2x + k2y is the wavenumber, G ≡ Ga + Ck2. This
equation has complex roots, which correspond to the
oscillatory instability. At the stability border (Reλ � 0), the
neutral curve, critical wavenumber, and the frequency of
the neutral perturbations are as follows:

Ma0 � 3 + 3
β

k2
+ G, k2c �

��
3β
C

√
, (4)
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The instability threshold can be changed by the linear feedback
control [8] as it varies the heat transfer from the free surface,
β→ β − 8l.

Pattern Selection
In the study mentioned in ref [6], stable oscillatory Marangoni
patterns were revealed within systems (1)–(2). Depending on the
values of parameters Ga, S, β, and 8q, either subcritical
bifurcation or stable traveling rolls occur. Subcritical
bifurcation means that the base state is unstable with respect
to the growth of finite-amplitude disturbances, resulting in the
film rupture even below the convection threshold. Such a
behavior is beyond our scopes. Critical perturbations in the
form of a single traveling wave near the instability threshold
evolve according to the following differential equation (see
Supplementary Appendix SB):

zA

zt2
� cA −K0

∣∣∣∣A∣∣∣∣2A, (6)

where coefficients c and K0, which determine the stability of
traveling rolls, depend on problem parameters Ga, S, β, and 8q.
The linear instability takes place as cr � Rec> 0, and stable
traveling waves are developed as K0r � ReK0 > 0.

LONGITUDINAL MODULATION

Amplitude Equation
Let us consider the oscillatory mode of instability near the
convection threshold Mac with the wavenumber kc and
frequency ωc � ω0(kc). The small parameter δ denotes the
small deviation of actual Ma from its critical value:

Ma � Mac + δ2Ma2. (7)

It is known that the periodic solution of (1)–(2) emerges due to
the Hopf bifurcation. In this case, the solution amplitude is
proportional to the square root of the bifurcation parameter in
the vicinity of the bifurcation point. Besides, near the threshold,
the solution evolves slowly in time compared to the period of
oscillations 2π/ω0. Consequently, the film thickness, the liquid
temperature, and time derivative near the convection threshold
can be presented as a series in powers of small δ [12].

h � 1 + δh1 + δ2h2 + ..., Θ � 1 + δθ1 + δ2θ2 + ...,
z

zt
� z

zt0
+ δ

z

zt1
+ δ2

z

zt2
... (8)

As we aimed at investigating spatially periodic solution
stability with respect to disturbances with slightly different
wavenumbers, the spatial derivative should be expanded in a
power series as well:

z

zx
� z

zx0
+ δ

z

zx1
+ ... (9)

Next, we substitute expansions (7)–(9) into the non-linear
system (1)–(2) and obtain the linear system in each order of a

small parameter δ. At the first order, we arrive at the linear
stability problem.
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We consider the solution of this system in the form of the
modulated traveling wave as follows:

h1 � A(x1, t1, t2)ei(kcx0+ωct0) + c.c.,
f1 � αA(x1, t1, t2)ei(kcx0+ωct0) + c.c. (12)

Here, α � −2(Gak2 + Ck4 + 3iω0)/3Mack2, and “c.c.” denotes
complex conjugate terms.

Dynamics of the envelope functionA(x1, t1, t2) can be revealed
from the solvability condition of the inhomogeneous system of
equations at higher orders of δ.

(iωc + 1
6
Mac k

2
c + k2c + β)Fsec

1 � 1
2
Mack

2
cF

sec
2 , (13)

where Fsec
1 and Fsec

2 are secular inhomogeneities in Eqs 1, 2,
respectively.

At the second order in small δ, the solvability condition (13)
results in a wave equation for the envelope function:

zA

zt1
� ω1

zA

zx1
, (14)

ω1 � (zω0

zk
)

c

� k3c
144ω0

[Ck2c(26Ck2c + 9Ga − 153) − 2Ga2 − 54Ga − 432]
(15)

where the subscript cmeans k � kc and Ma � Mac. Obviously,
one can eliminate the first slow time t1 by going over to the frame
of reference F′ that moves along x1 with the group velocity ω1:

A � A(X1, t2, ...), X1 � x1 + ω1t1. (16)

Within the moving frame of reference F′, the solution at the
second order of small δ can be presented as follows:

h2 � a22A
2e2i(kx0+ω0t0) + h20(X1, t2) + c.c. (17)

f2 � b21
zA

zX1
ei(kx0+ω0t0) + b22A

2e2i(kx0+ω0t0) + b20
∣∣∣∣A∣∣∣∣2 + c.c. (18)

The coefficients a22, b22, and b20 are known from the
bifurcation analysis for a single traveling wave [7]; they can be
found in Supplementary Appendix SC. However, new terms
with b21 and h20 appear in the case of a modulated wave. The
coefficient b21 comes from dependence α(k) in the first-order
solution:

b21 � −i(zα
zk

)
c

� 2(2iCk4c + 6ω0 − 3ω1kc)
3Mac k3c
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The term h20 emerges due to the interaction of the slowly
growing oscillatory modes with wavenumbers kc with the slowly
decaying modes with wavenumbers k<< 1 corresponding to long-
wave modulation of the layer thickness, which leads to a
significant change of the expression for h2 in the case where
the envelope A depends not only on t2 but also on X1.

The solvability condition of the equations at the third order in
δ yields the one-dimensional amplitude equation, which governs
a slow change in time and space of envelope function A(X1, t2):

zA

zt2
� cA −K0

∣∣∣∣A∣∣∣∣2A + λ2
z2A

zX2
1

+ K̃h20A. (19)

Here, c � (zλ/zMa)∣∣∣c, λ2 � −1/2(z2λ/zk2)∣∣∣c,K0 is the Landau
coefficient, and K̃ is defined below. For the sake of brevity, these
coefficients are not given here; they can be found in the
Supplementary Appendix SC.

The coefficient K̃ can be revealed from the investigation of
dependence of λ on h20. Assume that the dimensional thickness of
the film is changed, and it is equal toHh0, instead ofH. This leads
to the change of non-dimensional parameters Ga→Gah30 and
Ma→Mah20, according to their definitions. Note that the capillary
number C and the Biot number β change as C→Ch30 and
β→ β/h0 because of the rescaling of the wavenumber itself.
Consequently, the growth rate changes as follows:

λ(C, β,Ga,Ma)→ λ(Ch30, β/h0,Gah30,Mah20)
Taking h0 � 1 + δ2h20, we find

dλ

dh20
� δ2(zλ

zC
3Ch20 −

zλ

zβ

β

h20
+ zλ

zGa
3Gah20 +

zλ

zMa
2Mah0)∣∣∣∣∣∣∣∣∣c

� δ2K̃.

(20)

To determine h20(X1, t2), let us consider the parts of Eq. 1 at
the third order in δ that do not depend on x0, t0 as follows:

zh20
zt1

� z

zx1
[ikMac(α − αp)∣∣∣∣A∣∣∣∣2] (21)

For a traveling wave A � A(X1, t1) � A(x1 + ω1t1), Eq. 21
gives

zh20
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z
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hence,

h20(X1, t2) � −4ω0

ω1k

∣∣∣∣A∣∣∣∣2(X1, t2) + c(t2). (22)

Because of the conservation of the liquid’s volume, the value of
h20 averaged over a whole region of X1 vanishes,
〈h20(X1, t2)〉X1

� 0; therefore,

c(t2) � 4w0

ω1k
〈
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∣∣∣∣A∣∣∣∣2(X1, t2)〉X1
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Thus, Eq. 19 reads as
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]A
(24)

where K1 � −4ω0K̃/ω1k.
As one can see, Eq. 24 is very much like the complex

Ginzburg–Landau equation (CGLE), which usually describes
modulational instabilities of patterns [13]. However, unlike
numerous physical problems leading to the CGLE, the
problem under consideration has an additional “soft” (stable
but slowly evolving) mode corresponding to the large-scale
modulation of the layer thickness. The existence of that mode
is the consequence of the conservation of the liquid volume. The
modulation of the wave amplitudeA, according to (23), generates
a corresponding modulation of the local layer thickness, which
creates an additional term in the evolution equation. For a non-
modulated wave, |A| � const; therefore, the additional term
disappears.

By rescaling

A � a

���
cr
K0r

√
eicit2 ,

z

zt2
� cr

z

zt
,

z

zX1
�

���
cr
λ2r

√
z

zx
(25)

Eq. 24 is transformed to the standard form as follows:
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2a

zx2
+ (cr + ici)[∣∣∣∣a∣∣∣∣2 − 〈
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(26)

Here,

v � K0i

K0r
, u � λ2i

λ2r
, cr � K1r

K0r
, ci � K1i

K0r
(27)

The rescaling (25) is justified because cr > 0 and λ2r > 0 (see
Supplementary Appendix), and we consider only supercritical
excitation of traveling rolls, that is, K0r > 0.

It can be convenient to present complex amplitude as
a � r exp(iϕ) and rewrite (26) as a system of two equations for real
amplitude r and phase ϕ as follows:

zr

zt
� r − r3 + z2r

zx2
− r(zϕ

zx
)2

− u(2 zr
zx

zϕ

zx
+ r

z2ϕ

zx2
)+

cr(r2 − 〈r2〉x)r (28)

r
zϕ

zt
� −vr3 + 2

zr

zx

zϕ

zx
+ r

z2ϕ

zx2
+ u[z2r

zx2
− r(zϕ

zx
)2]

+ci(r2 − 〈r2〉x)r (29)

Stability of Traveling Wave
Here, we investigate the stability of the particular solution of (26)
that corresponds to the traveling wave with k � kc:

r0 � 1, ϕ0 � −vt (30)
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Linearizing (28) and (29) around (30), we obtain the following
eigenvalue problem for small disturbances (r̃, ϕ̃):

σ̃r̃ � −2r̃ + z2r̃

zx2
− u

z2ϕ̃

zx2
+ 2cr(r̃ − 〈r̃〉x)

σ̃ϕ̃ � −2vr̃ + u
z2r̃

zx2
+ z2ϕ̃

zx2
+ 2ci(r̃ − 〈r̃〉x)

where σ̃ is the growth rate.
For the solution in the form

r̃ � Reiqx, ϕ̃ � Φeiqx, q≠ 0
one obtains the dispersion relation as follows:

σ̃2 + 2σ̃(1 − cr + q2) + 2q2[1 − cr + u(v − ci)] + (1 + u2)q4 � 0

(31)

For small q, the dispersion relation has two roots, that is, two
modes exist:

i) the amplitude mode with σ̃ � 2(cr − 1) + O(q2) and
ii) the phase mode with the asymptotic σ̃ ∼ q2

cr − 1 − u(v − ci)
cr − 1

.

In Figure 1, the growth rate σ̃(q) is presented for four different
cases: cr − 1> 0 and opposite, and cr − 1 − u(v − ci)> 0 and
opposite. As one can see, the traveling wave is unstable with
respect to amplitude modulation, if cr > 1. If cr < 1, a phase
modulation (Benjamin–Feir) instability is possible, if
cr − 1 − u(v − ci)> 0. Note that for a one-dimensional CGLE,
only phase modulation instability occurs, if 1 + uv< 0 [2, 3].
One can clearly see that we obtain this criterion if we drop
additional terms in (26) that occurs due to the modulation of the
local layer thickness.

Here, we present the results of calculation of coefficient
combinations that correspond to the modulational instabilities
(i), (ii) depending on the problem parameters—Galileo number,
Biot number, capillary number, and non-linear control gain.
Recall that the oscillatory Marangoni instability is critical
when Map >Ma0; otherwise, stationary instability occurs (see
Eqs 4, 5). Therefore, traveling rolls can emerge only within a
specific domain of parameters. For fixed C � 1000, this domain is
the closed area on the Ga − β plane bounded by the dashed line in
Figure 2. Consequently, in our calculations, we are restricted by
the values of the Galileo number Ga and rescaled Biot number β
lying within this area.

It is known that traveling rolls can be unstable due to the
subcritical excitation of instability, when disturbances grow
without saturation. The boundary between domains of
subcritical excitation and stability of traveling rolls is depicted
in Figure 2 as a solid black line. Our analysis is valid only outside
the domain of subcritical excitation that is marked “subTR” in
Figure 2.

In view of these restrictions, we have calculated coefficients
u v, cr, and ci within the domain of stability of traveling rolls, that
is, under the dashed line and the solid line in Figure 2A. We find
that traveling rolls are stable against both the amplitude
modulation instability and the phase modulation instability.

Influence of the Feedback Control
It was mentioned earlier that the influence of the linear part of
feedback control 8l is trivial amplification/suppression of the heat
transfer from the film surface as βeff � β − 8l. Thus, the linear
feedback control changes instability threshold Ma0 and shifts the
whole plot in Figure 2A along the β-axis.

The non-linear part of feedback control 8q changes non-
linear dynamics by varying the Landau coefficient K0 in the
amplitude, Eq. 24 (see Supplementary Appendix SC). Thus,
the non-linear feedback control influences the stability of
traveling rolls against both the subcritical excitation and the
longitudinal modulation.

Previously, it was shown that one can eliminate subcritical
instability by applying non-linear feedback control with negative
control gain [7]. For −0.24< 8q < − 0.07, the domain of
supercritical excitation of traveling rolls extends to the entire
area, where the oscillatory mode is critical (within dashed lines in
Figure 2). However, the non-linear control also affects dynamics
of the modulated wave; thus, the stability of the traveling wave
can be interrupted. Indeed, one can see from Figure 2B that for
8q � −0.2, the area of Benjamin–Feir instability occurs. With the
increase in control gain, the domain of phase modulation
instability expands; also, the domain of subcritical instability
occurs (see Figure 2C).

If 8q > 0, one cannot eliminate subcritical instability within the
entire domain, where the oscillatory mode is critical [7]. It is seen
from Figure 2D that for 8q � 0.1, the subcritical instability on the
left side of the plot is stabilized by the feedback control. However,
a large domain of subcritical instability occurs at the bigger values
of β. One can see from Figures 2D and E that a positive control
gain excites the amplitude modulation instability within a small
area of parameters. The growth of the positive control gain results

FIGURE 1 | Growth rate of modulational instabilities as the function of
wavenumber q for different values of c and v, u � 2. (A) c � iv, (B) c � i(v + 2),
(C) c � 2 + i(v − 1), (D) c � 2 + iv. Branches corresponding to the amplitude
modulation instability and the phase modulation (Benjamin–Feir)
instability are marked as “AM” and “BF,” respectively.
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in extension of the domain of subcritical instability (see
Figure 2F). For 8q � 0.3, the amplitude modulation instability
is replaced by the phase modulation instability.

DISCUSSIONS

We investigated the modulation instability of Marangoni wave
patterns that emerge at the interface of a thin liquid film heated
from below. Applying the multiple scale expansion to the system
of PDEs for the film thickness and liquid temperature, we derive
complex PDEs for the envelope function of the longitudinal
modulated roll pattern. The equation for the envelope
function is very much like the complex Ginzburg–Landau
equation, except for the additional non-linear term
proportional to the surface deformation. Previously, a similar
additional term was obtained in the study given in ref [14], and it
was connected to the interaction of two monotonic Marangoni
instability modes: the short wave and the long wave. In our case,
the additional term arises due to the non-linear interaction
between the slowly growing mode with the critical wavelength
and the slowly decaying large-scale mode. Note that the term with
〈A2〉X in the amplitude equation for a monotonic instability was
first obtained in the study mentioned in the ref [15].

The stability analysis of the traveling wave is provided within
the CGLE-like equation for the envelope function. Two modes of
instability were revealed: one caused by the amplitude
modulation and the other caused by the phase modulation.
The latter is similar to the Benjamin–Feir instability first
discovered for the Stokes wave [16]. Note that the
modulational instability was formerly studied in the

framework of the CGLE, and only phase modulation
instability was found. Thus, amplitude modulation instability
is a completely new effect of the interaction with a stable soft
mode. This interaction also modified the criterion for the phase
modulation instability.

Calculations show that the uncontrolled roll patterns are stable
against the perturbations with a slightly different wavelength.
However, in the absence of the control, traveling rolls emerge
through the subcritical bifurcation within certain parameter
domains. Previously, it was demonstrated that one can
eliminate subcritical bifurcation by applying the non-linear
feedback control [7]. But besides that, non-linear feedback
control affects pattern selection as well. In this article, we
reveal that the non-linear feedback control with positive gain
can produce an amplitude modulation instability, and the control
with negative gain can produce a phase modulation instability.
Thus, the non-linear feedback control can destabilize traveling
rolls against the longitudinal modulation at the same time as it
stabilizes traveling rolls against the subcritical excitation.

Here, we examined only longitudinal modulations of the
traveling wave pattern. This is sufficient if the region has a shape
of a rectangle, which is long only in one direction. If the thin film is
infinite in the x − y plane, a transverse modulation of the traveling
wave is possible. Investigation of roll pattern stability against the
transverse wave could be a good subject for the future studies.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

FIGURE 2 | Domains of stability for traveling rolls against the longitudinal modulations for (A) uncontrolled convection; (B,C) negative non-linear feedback control
gain 8q � −0.2,−0.3; (E,F) positive non-linear feedback control gain 8q � 0.1, 0.3. (D) Zoomed-in fragment of the panel (E). Dashed lines indicate the area of the
oscillatory convection. Within domains marked “subTR,” traveling rolls bifurcate subcritically. “TR”marks domains of stability for traveling rolls. Benjamin–Feir instability
and the amplitude modulational instability occur within domains marked “BF” and “AM,” respectively.
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