
Research Article
Breather Positons and Rogue Waves for the Nonlocal
Fokas-Lenells Equation

Chun Wang, Rong Fan, Zhao Zhang, and Biao Li

School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China

Correspondence should be addressed to Biao Li; libiao@nbu.edu.cn

Received 7 March 2021; Accepted 22 April 2021; Published 30 April 2021

Academic Editor: Wen-Xiu Ma

Copyright © 2021 Chun Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we investigate breather positons and higher-order rogue waves for the nonlocal Fokas-Lenells equation. In this
nonlocal optical system, rogue waves can be generated when periods of breather positons go to infinity. In addition, we find two
very interesting phenomena: one is that rogue waves sitting on a periodic line wave background are derived; the other is that a
hybrid of rogue waves and a periodic kink wave is also constructed. We believe that these interesting findings exist in the optical
system corresponding to the nonlocal Fokas-Lenells equation.

1. Introduction

In the field of mathematics and physics, the research on the
degenerate solutions of integrable equations has always been
a hot topic. These degenerate solutions include lump solu-
tions, smooth positon solutions, breather positon solutions,
and rogue waves. In general, rogue waves localized in both
time and space may produce three to five times more ampli-
tude than background waves in a very short time [1]. Rogue
waves have also been observed in space plasmas, as well as
in optics, when propagating high-power optical radiation
through photonic crystal fibers [1–4]. In recent years, many
scholars have paid much attention to rogue wave [1] solu-
tions and positon solutions of integrable nonlinear partial
differential equations. In 2013, He et al. proposed the gener-
ation mechanism of higher-order rogue waves for the nonlin-
ear Schrödinger equation (2). Similarly, their team applied
this mechanism to other integrable equations, such as the
modified KdV equation (5) and Fokas-Lenells (FL) equation
(7), to obtain higher-order rogue waves. Since Matveev [5, 6]
proposed singular positon solutions for the Korteweg-de
Vries equation in 1992, many experts [7–11] have been work-
ing in this field. Among the numerous studies on positons,
Wang et al. [10] elaborate the connection between breather
positons and rogue waves for a local integrable system.

In this research, we study the nonlocal FL equation [12]:

qxt + q − 2iqq −x,−tð Þqx = 0, ð1Þ

to find some new results. Equation (1) describes the promul-
gation of ultrashort pulsation in visual fiber. It must be men-
tioned here that the famous FL equation was proposed by
Fokas [13]. Soliton solutions and breather solutions to equa-
tion (1) have been given in Ref. [12]. And we have used this
nonlocal optical system to obtain some relatively satisfactory
results [14, 15]: two types of smooth positons with a periodic
line wave background and smooth positons with a nonzero
background. However, as far as we know, the breather solu-
tions and rogue wave solutions of this important mathemat-
ical and physical model (1) have not been studied.

Combining Refs. [4, 12], a new solution q½n� of the nonlo-
cal FL equation (1) through n-fold Darboux transformation
with a plane wave solution q½0� = aeiθ, θ = bx + ð2 a2b + 1Þt/b,
is given by

q n½ � = q 0½ � −
N2n
D2n

, ð2Þ
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with

D2n =

λn1ϕ1 λn−11 φ1 ⋯ λ
− n−2ð Þ
1 ϕ1 λ

− n−1ð Þ
1 φ1

λn2ϕ2 λn−12 φ2 ⋯ λ
− n−2ð Þ
2 ϕ2 λ

− n−1ð Þ
2 φ2

⋮ ⋮ ⋱ ⋮ ⋮

λn2n−1ϕ2n−1 λn−12n−1φ2n−1 ⋯ λ
− n−2ð Þ
2n−1 ϕ2n−1 λ

− n−1ð Þ
2n−1 φ2n−1

λn2nϕ2n λn−12n φ2n ⋯ λ
− n−2ð Þ
2n ϕ2n λ

− n−1ð Þ
2n φ2n

���������������

���������������

,

ð3Þ

where

ϕj = 2 abλje
iσΩ + −λj

2 + b + 2σ
� �

e−iσΩ
� �

eiθ/2,

φj = −λj
2 + b + 2σ

� �
eiσΩ + 2 abλje

−iσΩ� �
e−iθ/2,

Ω = −
t

bλj
2 + x,

σ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λj

4 + −4 a2b2 − 2 b
� �

λj
2 + b2

q
:

ð4Þ

Here, a ∈ℂ and b ∈ℝ. And N2n is a determinant given
by D2n through replacing its last column with vector
λ−n1 ϕ1 λ−n2 ϕ2 ⋯ λ−n2n−1ϕ2n−1 λ−n2nϕ2n½ �T .

In the second section, we will show that the relation
between breather positons and rogue waves mentioned in
Ref. [10] still holds true for nonlocal integrable systems.
Then, we apply different constraints and degenerate mecha-
nisms to equation (2) to produce some novel exact solutions,
like rogue waves sitting on a periodic line wave background, a
nonlinear superposition between rogue waves and a periodic
kink wave.

2. The Relation between Breather Positons and
Rogue Waves

Although in Refs. [10, 16] the authors obtained breather
positons in the local integrable system, these ideas are still
valid in the nonlocal system studied in this paper. Simply
put, the breather positon is a limit case of equation (2).
Hence, we give the following proposition about breather
positons without proof. At the same time, we may wish to
set fa = α i, b = 1, α ∈ℝg in order to facilitate discussion
and simplify the calculation.

Proposition 1. Based on the degenerate Darboux transforma-
tion, the nth-order breather positons qn−bp are given by

qn−bp = q 0½ � −
N2n ′
D2n ′

, ð5Þ

with

N2n ′ =
∂h ið Þ

∂εh ið Þ

�����
ε=0

N2nð Þij λj + ε2
� � !

2n×2n

,

D2n ′ =
∂h ið Þ

∂εh ið Þ

�����
ε=0

D2nð Þij λj + ε2
� � !

2n×2n

,

h xð Þ = 2
x − 1
2

� �
,

ð6Þ

where

α ∈ −1, 1½ �,
λ2j−1 = −λ∗2j = λ1, j = 1,⋯, n:

ð7Þ

Here, ½x� denotes the floor function of x, and D2n,N2n, and
q½0� are given by equation (2).

From Figure 1, we can have a general understanding of
the spatiotemporal characteristics of breather positons. Since
breather positons were proposed by Wang et al. [10], it has
been a difficult problem to study the change trend of breather
positons over time. It is always a difficult problem to find the
trajectories of breather positons [10, 16, 17]. Not to mention,
let us study the dynamic properties of breather positons like
decomposing smooth positons [7–9].

When λ = ba ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 + b

p
, we find ϕj = 0 and φj = 0. This

implies that eigenfunctions fϕj, φjg degenerate at λ = ba ±ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 + b

p
. In particular, when fb = 1, a = αi, α ∈ ½−1, 1�g, we

can get ba +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 + b

p
= −ðba −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 + b

p
Þ∗. Combining

with the main idea of Ref. [10], we can say that the period
of breather positons described by Proposition 1 goes to infin-

ity when fλ1 → ba +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 + b

p
a = αi, α ∈ ½−1, 1�g. In this

particular case just mentioned, breather positons are con-
verted to rogue waves.

Proposition 2. Based on the degenerate Darboux transforma-
tion, the nth-order rogue waves qn−RW are given by

qn−RW = q 0½ � −
N2n ′
D2n ′

, ð8Þ

with

N2n ′ =
∂h ið Þ

∂εh ið Þ

�����
ε=0

N2nð Þij λj + ε2
� � !

2n×2n

,

D2n ′ =
∂h ið Þ

∂εh ið Þ

�����
ε=0

D2nð Þij λj + ε2
� � !

2n×2n

,

h xð Þ = 2
x + 1
2

� �
:

ð9Þ
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where

α ∈ −1, 1½ �,
λ2j−1 = −λ∗2j = λ1 = ba +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 + b

p
, j = 1,⋯, n:

ð10Þ

Remark 3. There are many conclusions [2, 3, 7, 10, 11, 16] like
Propositions 1 and 2, so this research will not prove them in
detail. Essentially, all the propositions in this paper are differ-
ent limit cases of equation (2). The most difficult step to
derive these propositions is to obtain the constraints such
as equation (10) and the function hðxÞ that controls the
degree of degradation.

Figures 1 and 2 intuitively illustrate that the transforma-
tion relationship between breather positons and rogue waves
mentioned in Ref. [10] is still valid in the nonlocal FL system.

As λ1 approaches to ba +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 + b

p
, the other peaks near the

center region of breather positons gradually disappear until
only the central profile survives. In other words, as the period

of a breather positon goes to infinity, its central region will
turn into a rogue wave.

According to Proposition 2, the mathematical expression
of a first-order rogue wave q1−RW can be derived:

q1−RW = −i 16 α4tx + 4 iα2t + 12 iα2x + 4 α2t2 − 8 α2tx + 4 α2x2 − 3
� �

α e−i 2 α2t−t−xð Þ
16 α4tx + 4 iα2t − 4 iα2x + 4 α2t2 − 8 α2tx + 4 α2x2 + 1 :

ð11Þ

jq1−RWj has three critical points. jq1−RWj reaches the
maximum value 3jαj at point fx = 0, t = 0g; the minimum
value 0 is obtained at points ft = −3

ffiffiffi
3

p
/ð4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3 α2 + 4
p

αÞ,
x =

ffiffiffi
3

p
/ð4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3 α2 + 4
p

αÞg and ft = 3
ffiffiffi
3

p
/ð4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3 α2 + 4
p

αÞ, x
= −

ffiffiffi
3

p
/ð4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3 α2 + 4
p

αÞg. When fx→∞,t→∞g, it is easy
to find that jq1−RWj = jαj.

When n = 2, a second-order rogue wave q2−RW can be
derived from Proposition 2:

q2−RW = αi −
L1
L2

� 	
e−i 2α2t−t−xð Þ, ð12Þ
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Figure 1: Breather positons described by Proposition 1 with parameter selections a = i/2, b = 1, and λ1 = 1 + i (color online). (a) A first-order
breather positon jq1−bpj. (b) A second-order breather positon jq2−bpj. (c) A third-order breather positon jq3−bpj.
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where

L1 = 768 α7x5 + 6144 α9x4t − 3072 α7x4t − 12288 α9x3t2

+ 12288 α11x3t2 + 4608 α7x3t2 + 6144 α9x2t3

− 3072 α7x2t3 + 768 α7xt4 + 1536 iα7x4 + 192 iα5x4

− 768 iα5tx3 + 6144 iα9x3t + 1152 iα5x2t2

+ 9216 iα9x2t2 − 4608 iα7t2x2 − 768 iα5t3x
+ 3072 iα7xt3 + 192 iα5t4 − 768 α7x3 − 768 α5x3

− 4608 α7x2t + 1152 α5x2t + 6912 α7xt2 − 384 α5t3

− 576 iα5x2 + 288 iα3x2 − 576 iα3tx + 3456 iα5xt
+ 576 iα5t2 + 288 iα3t2 − 432 α3x − 288 α3t − 36 iα,

L2 = 64 α6x6 + 768 α8x5t − 384 α6x5t + 3072 α10x4t2

− 3072 α8x4t2 + 960 α6x4t2 − 6144 α10x3t3

+ 4096 α12x3t3 + 4608 α8x3t3 − 1280 α6x3t3

+ 3072 α10x2t4 − 3072 α8x2t4 + 960 α6x2t4 + 768 α8xt5

− 384 α6xt5 + 64 α6t6 − 192 iα6x5 + 960 iα6x4t
− 1536 iα8tx4 − 1920 iα6t2x3 − 3072 iα10t2x3

+ 4608 iα8x3t2 + 1920 iα6x2t3 + 3072 iα10x2t3

− 4608 iα8t3x2 − 960 iα6t4x + 1536 iα8xt4 + 192 iα6t5

+ 48 α4x4 − 192 α6x4 − 192 α4x3t − 384 α6x3t
+ 2304 α8x3t + 288 α4x2t2 + 1152 α6x2t2 + 2304 α8x2t2

− 192 α4xt3 − 384 α6xt3 + 2304 α8xt3 + 48 α4t4

− 192 α6t4 − 192 iα6x3 − 96 iα4x3 + 288 iα4x2t
+ 1728 iα6x2t − 288 iα4t2x − 1728 iα6t2x + 192 iα6t3

+ 96 iα4t3 + 144 α4x2 + 108 α2x2 − 216 α2xt + 1296 α4xt
+ 144 α4t2 + 108 α2t2 − 108 iα2x + 108 iα2t + 9:

ð13Þ

The maximum amplitude of jq2−RWj is 5jαj at ð0, 0Þ. In
addition to the maximum value, jq2−RWj has four other local
maximum points, which can be easily found in Figure 2(b).

The mathematical expressions for higher-order rogue
waves are too verbose to be given in this paper. By setting
ft = 0, x = 0g, the maximum amplitude of jqn−RWj is ð2n
+ 1Þjαj. On each side of the straight line t = 0, jqn−RWj
has ðnðn + 1Þ/2Þ − 1 local maximum points. The following
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Figure 2: Rogue waves described by Proposition 2 with parameters λ1 = ði/2Þ + ð ffiffiffi
3

p
/2Þ, a = i/2, and b = 1 (color online). (a) First-order rogue

wave. (b) Second-order rogue wave. (c) Third-order rogue wave.
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conclusion about higher-order rogue waves can also be
found in Figure 2. Starting from jtj =∞, before the maxi-
mum amplitude in the center, there are a series of peaks
in jqn−RWj and the height of these peaks gradually
increases. Comparing the relevant conclusions in Ref. [3],
the basic description of the rogue waves in the nonlocal
FL system is roughly the same as that in the local system.

To be honest, Propositions 1 and 2 simply apply the
mature method [3, 4, 10] to the new equation. The rogue
waves shown in Figure 2 are technically known as fundamen-
tal patterns of rogue waves. However, the nonlocal equation
studied in this paper must satisfy the condition fϕjðx, tÞ =
φjð−x,−tÞ, j = 1,⋯,2ng [12]. Therefore, a small perturbation
parameter cannot be introduced to generate triangular pat-
terns and ring patterns as in Refs. [3, 4, 18].

3. Rogue Waves Sitting on Other
Forms of Waves

A rogue wave with a plane wave background is commonplace
[1–4]. In order to better explain some phenomena in mathe-
matical and physical models, some scholars have explored
the generation mechanism of hybrid solutions consisting of
rogue waves and breather solutions [10, 18].

In equation (2), there is no constraint relation between
λ2j and λ2j−1. This is the biggest difference between the non-
local FL systems and the local systems in Refs. [1–4, 18].
Hence, a hybrid of rogue waves and other forms of solutions
can be derived. We have the following conclusion.

Proposition 4. Based on the degenerate Darboux transforma-
tion, a novel nonlinear superposition between the nth-order
rogue waves and other forms of solutions qn−RW−hyb is given by

qn−RW−hyb = q 0½ � −
N2n ′
D2n ′

, ð14Þ

with

N2n ′ =
∂h ið Þ

∂εh ið Þ

�����
ε=0

N2nð Þij λj + ε2
� � !

2n×2n

,

D2n ′ =
∂h ið Þ

∂εh ið Þ

�����
ε=0

D2nð Þij λj + ε2
� � !

2n×2n

,

h xð Þ =
0, x ≤ 2,

2
x + 1
2

� �
− 2, x > 2,

0
B@

ð15Þ

where

α ∈ −1, 1½ �,
λ1 = ξ1 + η1i,
λ2 = ξ2 + η2i,

λ2j−1 = −λ∗2j = λ3 = ba +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 + b

p
, j = 2⋯ n + 1:

ð16Þ

According to relevant conclusions in Refs. [12, 15], we
can get rogue waves sitting on periodic line waves when fξ1
= 0, ξ2 = 0g. A nonlinear superposition between rogue waves
and a periodic kink wave can be derived when fξ2 = 0, η1 =
−η2g. We have to say that it is difficult to give constraints that
guarantee the analyticity of hybrid solutions described by
Proposition 4. On the basis of some conclusions [12, 15],
the improvement of Proposition 4 is to get rogue waves sit-
ting on periodic line waves or a periodic kink wave. If the pre-
condition fξ1 = 0, ξ2 = 0g or fξ2 = 0, η1 = −η2g is satisfied
and the solution is an analytic function, then the solution
shown in Figure 3 will be derived. As far as we know, the
interaction between rogue waves and breathers is relatively
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Figure 3: (a) A first-order rogue wave sitting on periodic line waves described by Proposition 4 with parameters n = 1, a = i/2, λ1 = i, λ2 = 3i/2,
and λ3 = 3/2 +
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p
/2. (b) A nonlinear superposition between a first-order rogue wave and a periodic kink wave described by Proposition 4
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common [18], but the results shown in Figure 3 have not
been found.

4. Conclusion

In addition to studying the breather positons and rogue
waves for the nonlocal Fokas-Lenells equation, we also find
some new and interesting results shown in Figure 3: rogue
waves sitting on periodic line waves and a hybrid of rogue
waves and a periodic kink wave. Figures 1 and 2 vividly illus-
trate that a rogue wave can be generated when the period of a
breather positon goes to infinity. We have tried our best to
analyze the dynamic properties of rogue waves from two
aspects: specific mathematical expressions (equations (11)
and (12)) and exquisite images (Figure 2).

Although our research is concise and the graphics are
beautiful, the dynamic properties of these breather positon
solutions are worthy of further study. Can we find the trajec-
tories of breather positons as in Ref. [17]? If this works, then
we can make some important conclusions about the dynam-
ics. Can the nth-order breather positons be approximately
decomposed into n single breather waves with the phase shift
when ∣t ∣→∞? Can we find a constraint that guarantees that
the solution represented by Proposition 4 is analytic? Fur-
ther, how do we investigate the dynamic properties of singu-
lar solutions in Proposition 4? As far as we know, this
problem has not been resolved. We look forward to many
colleagues working together to solve them.
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