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In this article, we study the possibility of changing a physical degree of freedom of a particle to its quantum spin after quantization is
applied. Our approach to do such a survey is increasing the fundamental symmetries of the anyonic particle model with the help of
the symplectic formalism of constrained systems. After extracting the corresponding Poisson structure of all constraints, we
compare the effect of gauging on the phase spaces, the number of physical degrees of freedom, canonical structures of both
primary and gauged models, and the spin of the anyon, in terms of its energy.

1. Introduction

It is quoted from the early days of discovering quantum
mechanics and presenting the idea of the spin of the particle
that if the intrinsic angular momentum (spin) of a point par-
ticle is created from its coordinate and momentum vectors,
similar to the classical orbital angular momentum, then the
speed of such a point particle exceeds the speed of light.
Therefore, spin is chosen as an intrinsic, independent, and
nonderivable vector of other types of degrees of freedom.
Other investigations, especially in the field of particle physics,
showed that the value of this angular momentum is mea-
sured as an integer or half integer of the fundamental con-
stant ℏ , e.g., the spin of the electron, measured as
Si = ð1/2Þℏσi.

This angular momentum and its intrinsic quantum
observables satisfy the commutating algebra ½Si, Sj� = iℏεijk
Sk. Accompanied with this theoretical rule of canonical quan-
tization, which is presented later to quantize classical fields as
f,gDB → ð1/iℏÞ½,�, one can be classically intuited that we can
have models, where the spin operator is obtained from the
internal degrees of freedom (coordinate momentum).

This idea has the advantage of making the spin operator
with any value (not only integer or half integer) for the phys-

ical models called anyons [1, 2]. The most famous model of
this kind is the anyonic particles in condensed matter phys-
ics, which exist in the spaces with small dimensions [3].

Since we want all or a part of the coordinate-momentum
vectors of the spin vector to be of nonphysical space-like
vectors, we can write the initial particle model as a rela-
tivistic one [4, 5]. To do this, one should impose a non-
physical condition to the model. This can be done by
adding a space-like vector as a nonphysical degree of free-
dom to a relativistic particle model, which will be dis-
cussed further. The spin operator is then obtained from
the classical degree of freedom, after the canonical quan-
tization is applied. Now, let us make such a relativistic
particle model.

The prototype Lagrangian for a free relativistic particle
with massm can be considered as similar to its nonrelativistic
congener, i.e., L = ð1/2Þm _x2. Apparently, this Lagrangian
does not apply any restriction on the particle to obey the sec-
ond principle of relativity, i.e., having the velocity less than
the speed of light. To remove such an ambiguity, we can
use the Lagrangian of the free relativistic particle as

L =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 _xð Þ +m2

p
−m: ð1Þ
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Although this Lagrangian satisfies the second law of
relativity, it depends only on the momenta (phase-space
coordinates) and must be transformed to the configuration
space (i.e., to be a function of coordinates and corresponding
velocities), using a proper map. Replacing the relativistic
momentum with the four velocities of the particle, we obtain
the appropriate Lagrangian for the free relativistic particle [6].

Apparently, Lagrangian (1) does not include any spin
degree of freedom. In the classical mechanics point of
view, this degree of freedom is not an observable quantity
and will emerge after the model is quantized. A simple
proposed model of a relativistic particle in ðd + 1Þ
dimensions (μ = 0, 1,⋯, d − 1) and with the metric gμν =
diag ð+,−,⋯,−Þ is described by the following Lagrangian [1]:

L =
m _x: _nð Þffiffiffiffiffi

_n2
p , ð2Þ

where _n is assumed to be time-like. It has been shown that the
auxiliary space-like vector nμ, satisfying condition n2 + 1 = 0,
classically adds the spin to the relativistic particle [1].

Tenably, Lagrangian (2) describes a particle with an
arbitrary spin degree of freedom, which is called an anyon
[1–3, 7–9]. Due to its interesting statistics, it has been used
to model different phenomena in physics, such as the frac-
tional quantum Hall effect and high-Tc superconductivity
and even describing some physical processes in the presence
of cosmic strings [1, 9–21].

This article is organized as follows. As we said, our goal is
to make a gauged relativistic particle model with an arbitrary
spin degree of freedom. Hence, in Section II, we review the
constrained and symplectic structures of the primary non-
gauged model by calculating Dirac brackets between phase-
space variables. Using the symplectic embedding formalism
of constrained systems, in Section III, we make a gauged par-
ticle model. As we will see, this procedure is only successful if
we increase the phase space of the model by a couple of
auxiliary variables, in addition to its usual coordinates and
momenta and the nonphysical part ðnμ, ℘μÞ. Finally, we
modify the nonphysical condition and get its momentum
part as a light-like vector and obtain its effect on the spin of
the anyon.

Section IV pursues the same goal as Section 2, but here,
the Poisson structure of the gauged model is derived. To
obtain the pure Poisson structure by second class constraints,
we check the chain of constraints of the model to avoid any
kind of bifurcation. At the end of this section, we obtain
Dirac brackets of the gauged model.

Sections V and VI are presented in a way where the inter-
ested reader can check our claims and control our results. In
Section V, we compare the physical degrees of freedom of
both primary and gauged models. Gauge transformation
generators of the model are also obtained in Section VI.

In Section VII, we analyse our results by solving an aux-
iliary coordinate and review its effect on the spin of anyons.
This part is written in a proposing way, as a road map for
further works.

2. Phase Space of the Anyonic Model

In order to see if the classical form of the spin degree of free-
dom contains a physical property or not, we try to increase
the gauge symmetries of the Lagrangian (2). Our tool to do
such an investigation is the symplectic embedding formalism
of constrained systems [22–28].

Corresponding conjugate momenta of the coordinates xμ
and nμ are

pμ =
m _nμffiffiffiffiffi
_n2

p , ð3Þ

℘μ =
mffiffiffiffiffi
_n2

p _xμ −
_x: _n

_n2
_nμ

� �
: ð4Þ

The space-like condition of the added spin vector
imposes the following primary constraint as

ϕ0 ≔ n2 + 1 ≈ 0, ð5Þ

which is recognised as a first-class constraint, afterwards.
Using the definition of momenta in (3) and the condition

n _n = 0, we obtain the following null identities, depending on
phase-space coordinates. These identities which are defined
on the constraint surface are called primary constraints.

ϕ1 ≔ p2 −m2 ≈ 0, ð6Þ

ϕ2 ≔ n · p ≈ 0, ð7Þ
ϕ3 ≔ ℘ · p ≈ 0, ð8Þ

where weak equality, ≈0, indicates the null nature of con-
straints on the constrained surface. Knowing this fact, we
ignore using the weak equality for the rest of the article to
show constraints.

Considering Dirac’s classification of constraints, we see
that ϕ0 and ϕ1 are classified as first-class constraints, i.e., their
Poisson brackets and other constraints vanish, while ϕ2 and
ϕ3 are called second-class ones [29], i.e., having nonzero
Poisson brackets. The Poisson structure of the model is
obtained by calculating Dirac brackets of phase-space vari-
ables, Xμ, via the following relation:

Xα, Xβ

� �∗ = Xα, Xβ

� �
− Xα,Φif gΔ−1

ij Φj, Xβ

� �
, ð9Þ

where Φi is the set of all second-class constraints and Δij is
the Poisson bracket matrix of second-class constraints. Hav-
ing Xα = ðxμ, nμ, pμ, ℘μÞ, we calculate

xμ, xν
� �∗ =

1
m2 ℘μnν − nμ℘ν

� �
, ð10Þ

xμ, pν
� �∗ = δμν, ð11Þ

xμ, nν
� �∗ =

−1
m2 nμpν

	 

, ð12Þ
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xμ, ℘ν

� �∗ =
−1
m2 ℘μpν

� �
, ð13Þ

nμ, ℘ν

� �∗ = δμν −
pμpν
m2 , ð14Þ

which in quantization leads to a noncommutative phase
space [30]. It is worthwhile to mention that according to
Dirac prescription [29], the quantized model, i.e., the Hilbert
space of the quantum states, is fully available as

A, Bf g∗ ⟶ 1
iℏ

A, B½ �: ð15Þ

Apparently, the first-class constraint, ϕ0, confirms the
existence of a gauge symmetry in the model and persuades
us to increase such a symmetry. Nevertheless, we need to
check that this symmetry enhancement is only gained via
nμ or there would exist other degrees of freedom.

3. Gauging the Anyonic Model

In order to gauge the model via symplectic formalism, we
must be assured that the canonical Hamiltonian exists. But
for this model, Hc vanishes.

Hc = _x · p + _n · ℘−L = 0: ð16Þ

Thus, the embedding procedure which enhances the
gauge symmetry is not applicable anymore. This happens
due to the mixed nature of the model, consisting of both
first- and second-class constraints. A preexisting second-
class constraint in the model indicates the presence of a
redundant degree of freedom which spoils the gauge
symmetry [31].

To overcome this difficulty, we can use some auxiliary
coordinates, such as conjugate variables ðξμ, πμÞ, to extend
the phase space of the original model and convert a mixed
physical system to a pure second-class one, using the follow-
ing extensions [32, 33]:

pμ ⟶ pμ + ξμ,

Hc ⟶Hc +
1
2
π2:

ð17Þ

To transform the Lagrangian (2), one can do the follow-
ing replacement:

L⟶ L − ξ · _x + 1
2
_ξ
2
: ð18Þ

Since this replacement is a gauge-fixing term, which is
inserted in the gauge invariant Lagrangian, the arbitrariness
of the gauge-dependent variables will be destroyed, and via
the variation of the new Lagrangian, we obtain same equa-
tions of motion for the gauge invariant quantities.

It has been shown that the added variables and their cor-
responding momenta can be eliminated at the end of the

gauging process, using their constrained equation, if they
are second class in comparison to other constraints [34].

Thus, the Lagrangian (2) is modified to

L 0ð Þ =m
_x: _nffiffiffiffiffi
_n2

p − ξ · _x +
1
2
ξ2: ð19Þ

3.1. Symplectic Formalism of Modified Anyonic Model. In the
previous part, we added some gauge symmetry to the anyonic
model via (18). Here, we start the symplectic procedure to
increase the gauge symmetries of the modified anyonic
model [35]. A good review for the symplectic formalism
can be found in [36].

Corresponding momenta, which are calculated before as
relation (3), are now changed to the following relations, hav-
ing three variables instead:

pμ =
m _nμffiffiffiffiffi
_n2

p − ξμ,

℘μ =
mffiffiffiffiffi
_n2

p _xμ −
_x: _n

_n2
_nμ

� �
,

πμ = _ξμ:

ð20Þ

Calculating the canonical Hamiltonian, we have

Hc = _x · p + _n · ℘+ _ξ · π − L 0ð Þ =
1
2
π2 =V 0ð Þ: ð21Þ

Apparently, this system has the following primary
constraints:

ϕ0 = n2 + 1, ð22Þ

ϕ1 =Π2 −m2, ð23Þ

ϕ2 = n ·Π, ð24Þ

ϕ3 = ℘ ·Π, ð25Þ

where modified momenta is defined by Πμ = pμ + ξμ. We
observe that except for the constraint (5), all constraints in
(6)–(8) are modified. This shows that (5) will remain intact
during the embedding procedure, and thus, it can be ignored
till the end of the process.

Now, by introducing constraints ϕi into the canonical
sector of the first-order Lagrangian Lð0Þ, by means of the time
derivative of Lagrange multipliers _λi, we get the first-iterative
Lagrangian Lð1Þ as

L 1ð Þ = _x · p + _n · ℘+ _ξ · π − 〠
3

i=1

_λiϕ
i −V 0ð Þ, ð26Þ

where V ð0Þ is obtained in (21).
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Applying symplectic formalism, one can obtain the exist-
ing secondary constraint of the model as

ϕ4 = 4π ·Π: ð27Þ

It has been shown that one can construct the gauged
Lagrangian by enlarging the phase space and adding a
Wess-Zumino (WZ) term to the first-order Lagrangian as

~L
1ð Þ = L 1ð Þ + LWZ, ð28Þ

where LWZ is a function depending on the original coordi-
nates and WZ variable, defining with the help of two genera-
tors Gð1Þ and Gð2Þ [27, 34]:

LWZ = G 1ð Þ +G 2ð Þ: ð29Þ

Checking the Poisson brackets of the constraints (23),
(24), (25), and (27), we see that ϕ1 is first class with respect
to the others. So, the generators Gð1Þ and Gð2Þ are defined
by following relation (38)

G 1ð Þ = θϕ4,

G 2ð Þ = −θ2 ϕ4, ϕ1f g:
ð30Þ

In the above equations, θ is the WZ variable, and its
conjugate momentum, pθ, which will not be appear in
the gauged model, is a first-class constraint. Thus, it is
the sign of the presence of the gauge symmetry in the
obtained model.

Bringing this result into the first-order Lagrangian, we
obtain the gauged Lagrangian as

~L
1ð Þ = _x · p + _n · ℘+ _ξ · π + 〠

3

i=1

_λiϕ
i −

1
2
π2 + 4πΠθ − 8Π2θ2,

ð31Þ

and the embedded canonical Hamiltonian is read off as

~Hc =Hc −G 1ð Þ −G 2ð Þ: ð32Þ

4. Poisson Structure of the Gauged Model

Now, we calculate all constraints’ corresponding momenta,

using pλi = ∂~Lð0Þ/∂ _λi, with Φi = pλi (i = 1, 2, 3) and Φ4 = pθ,
and check out the consistency conditions

0 = _Φi = Φi, ~HT

� �
, ð33Þ

where

~HT = ~Hc + λiΦ
i: ð34Þ

Due to the fact that fΦi,Φjg = 0, secondary constraints

can be obtained by calculating Ψi = fΦi, ~Hcg. Thus,

Ψ1 =Π2 −m2,

Ψ2 = n ·Π,

Ψ3 = ℘ ·Π,

Ψ4 = π ·Π + 4m2θ:

ð35Þ

Now, calculating the consistency condition for Ψis, we
obtain the other part of the constraint chain structure.

Λ1 =m2θ,

Λ2 = n · π − λ3m
2,

Λ3 = ℘ · π + λ2m
2:

ð36Þ

At this level, the consistency will be terminated. It is
about time we should consider the primary constraint (5),
which is left over during the symplectic procedure. From its
consistency condition, we have

Ψ0 = λ3Λ2: ð37Þ

Finally, the constraint chain structure of the model is

ϕ0 ⟶Ψ0 ⟶ λ3Λ2, ð38Þ

Φ1 ⟶Ψ1 ⟶Λ1, ð39Þ
Φ2 ⟶Ψ2 ⟶Λ2, ð40Þ
Φ3 ⟶Ψ3 ⟶Λ3, ð41Þ
Φ4 ⟶Ψ4: ð42Þ

As we see, we encountered a nondesirable bifurcation in
the first and third lines of the chain structure. To overcome
such a problem, we can propose two solutions.

First, If we try to eliminate λ3, i.e., we get λ3 = 0, our
chains will be as follows:

ϕ0 ⟶Ψ0 ⟶ λ3 determinesmultiplier,

Φ1 ⟶Ψ1 ⟶Λ1,

Φ2 ⟶Ψ2 ⟶Λ2 incontradiction to λ3 = 0,

Φ3 ⟶Ψ3 ⟶Λ3,

Φ4 ⟶Ψ4:

ð43Þ

It is apparent that this contradicts our assumption.
Second and as the most proper approach, if we take

Ψ0 = λ3 = 0, then the canonical couples ðΦ3 = pλ3, λ3Þ are
constraints themselves, and one can throw them away
without considering them, when we are calculating Dirac
brackets. We are allowed to do this elimination due to
the fact that constraints which determine coefficients are
second-class constraints, while others are first-class ones
[33]. Therefore, the chain, Φ3 ⟶Ψ3 ⟶Λ3, will have
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never been taken into the account. Thus, in (38), we will
have first, second, third, and fifth lines, only.

According to this consideration, we would have more
first-class constraints, because the Poisson brackets depend-
ing on the mentioned chain structure are removed easily.

Rewriting the changed constraint according to our
assumption, we have

Λ2 = n · π: ð44Þ

After extracting all possible constraints, using their sim-
plified forms, we obtain only three first-class constraints as,
ϕ0,Φ1, and Φ2, and six second-class constraints in the model
asΦ4,Ψ1,Ψ2,Ψ4,Λ1, and Λ2. This classification can be done
with the help of the algorithm introduced in [33]. So, the
corresponding Poisson bracket matrix of these second-class
constraints will be

Δ =

0 0 0 −16m2 −m2 0

0 0 0 2m2 0 0

0 0 0 0 0 1

16m2 −2m2 0 0 0 0

m2 0 0 0 0 0

0 0 −1 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

: ð45Þ

We will obtain the following Dirac brackets, which indi-
cate the Poisson structure of the modified anyonic particle.

xμ, xν
� �∗ =

1
m2 πμΠν − πνΠμ

	 

, ð46Þ

xμ, ξν
� �∗ = nμnν −

1
m2 ΠμΠν, ð47Þ

xμ, pν
� �∗ = δμν, ð48Þ

xμ, πμ

� �∗ =
−1
m2 πμΠν − πνΠμ

	 

, ð49Þ

xμ, ℘ν

� �∗ = −nμπν, ð50Þ

ξμ, πν

� �∗ = δμν + nμnν −
1
m2 ΠμΠν, ð51Þ

ξμ, ℘ν

� �∗ = nμΠν, ð52Þ

nμ, ℘ν

� �∗ = δμν, ð53Þ

θ, pθf g∗ = 0, ð54Þ

πμ, πν

� �∗ =
1
m2 πμΠν − πνΠμ

	 

, ð55Þ

πμ, ℘ν

� �∗ = nμπν, ð56Þ

℘μ, ℘ν

n o∗
= − πμΠν − πνΠμ

	 

: ð57Þ

One can note that the cancellation of fθ, pθg∗ shows that
θ is a gauge degree of freedom. Comparing (46) and (10), we
see that the modified anyonic particle remained noncommu-
tative but with a more extended phase space [30].

5. Physical Degrees of Freedom

The number of physical degrees of freedom can be obtained
with the help of following relation:

N = # Qi −FC i −
1
2
SC i

� �
, ð58Þ

where Qi is the number of coordinates and FC i and SC i are
the numbers of first-class and second-class constraints,
respectively [37].

In a ð2 + 1Þ dimensional spacetime, the number of phys-
ical degrees of freedom of the original model is

N Original = 6 − 2 − 1 = 3, ð59Þ

while, for the modified model, it will be obtained as

N Modified = 12 − 3 − 3 = 6: ð60Þ

Apparently, the gauged model has three extra physical
degrees of freedom in comparison with the original model.
Generally, if we have all constraints solved in the model,
the number of degrees of freedom does not change after the
gauging process. But here, since we keep the auxiliary coordi-
nates, we have more degrees of freedom in the gauged model,
which can be interpreted as the interaction of the particle
with the electromagnetic (gauge) field [1, 38–41].

6. Gauge Transformations’ Generators

The generators of infinitesimal gauge transformations can be
obtained with the help of Poisson brackets of the first-class
constraints and the phase-space coordinates of Lagrangian
(31), i.e., χα, via the following relation [37, 42]:

δχ 1ð Þ
α = χ 1ð Þ

α , ϕj

n o
εj, ð61Þ

where εi are infinitesimal time-dependent parameters and ϕi
are first-class constraints. So the infinitesimal gauge transfor-
mations of the modified anyonic particle model which deter-
mine its gauge symmetries are

δxμ = 0, δpμ = 0, ð62Þ

δnμ = 0, δ℘μ = −2nμε0, ð63Þ
δξμ = 0, δπμ = 0, ð64Þ
δλ1 = ε1, ð65Þ
δλ2 = ε2, ð66Þ
δθ = 0: ð67Þ
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Apparently, Lagrangian (31) and the corresponding
Hamiltonian are invariant under these transformations.

7. Solving Auxiliary Coordinate and Its Effect on
the Spin of Anyons

As we mentioned in previous parts, to gauge the Hamiltonian
of a relativistic free any-spin particle, which is called an
anyon so far, with symplectic embedding formalism, we
extend the corresponding phase space with an auxiliary
gauging variable, which finally resulted to three levels of
constraints.

In this section, we intend to find a proper solution as an
ungauge fixing for second-class constraints, to obtain a
solved chain of constraints for the structure obtained in Sec-
tion IV. To show the distinction between the solved con-
straints and intact ones, we put a prime sign over the name
of all constraints, to notify that those constraints are simpli-
fied (imaged) on their constraint surface.

The first level of these three level constraints, indicating
that the gauged model exists, is

ϕ′0 = n2 + 1, Φ′1 = pλ1, Φ′2 = pλ2: ð68Þ

Among these constraints, ϕ′0 is a first-class one, inherited
unchanged from the former steps, describing anyons. The
two others indicate that the gauging procedure has two trivial
constraints, as the corresponding momenta of coordinates
added through the phase-space extension.

Also, the gauging procedure changes the symplectic
structure of the phase space which is shown by the following
second-class constraints:

Φ′4 = pθ,

Ψ′1 =Π2 −m2,

Ψ′2 = n ·Π,

Ψ′4 = π ·Π,

Λ′1 = θ,

Λ′2 = n · π:

ð69Þ

Then, the Poisson brackets of the second-class con-
straints include the terms containing only the gauging
Chern-Simons variables, i.e., ξμ, and its corresponding
momentum πμ, not the symplectic variables of the space
extension. Those variables are transplanted to the third cate-
gory of constraints. Actually, they are first- or second-class
constraints, where their existence does not affect the way
we determine the phase space of the model. These constraints
are Φ′3,Ψ′3,Λ′3, λ3, and pλ3.

As the first result, conveyed from the nontrivial Poisson
structure, the algebra of first-class constraints as the genera-
tors of gauge transformations of the gauged anyonic model
is Abelian, although this property does not affect the algebra
of the spins of the further quantum models.

Using the nonsymplectic Poisson structure and con-
straint equations (not equations of motion), one can find a
dynamical solution for gauging Chern-Simons auxiliary
coordinates ðξμ, πμÞ to remove them. This procedure adds a
potential term to the relativistic anyonic model by affecting
the kinematic part and changes the spin operator of the
model. As we previously mentioned, adding the auxiliary
coordinates has the advantage of making a complete
second-class system, which can be gauged later more easily.
Afterwards, these auxiliary coordinates should be removed.
This solution should be consistent with the obtained sym-
plectic structure.

Referring to the obtained Dirac brackets (46) and consid-
ering the second-class constraints and symplectic structure of
the model, one can infer that the best choice is to get πμ = 0,
which is a light-like condition for the auxiliary momentum
π2 = 0. This choice removes all terms containing πμ, includ-

ing the constraints Ψ′4 and Λ′2. The final symplectic struc-
ture is then obtained as

xμ, xν
� �∗ = 0, ð70Þ

xμ, ξν
� �∗ = −nμnν −

1
m2 ΠμΠν, ð71Þ

xμ, pν
� �∗ = δμν, ð72Þ

℘μ, ℘ν

n o∗
= 0, ð73Þ

xμ, ℘ν

� �∗ = 0, ð74Þ

nμ, ℘ν

� �∗ = δμν, ð75Þ

ξμ, ℘ν

� �∗ = nμΠν: ð76Þ
On the other hand, it seems that we are free to select any

solution for ξμ, but preferably, we solve it with the constraints

Ψ′1 and Ψ′2. In ð1 + 1Þ dimensions, these two relations
completely solve ξ = ðξ0, ξ1Þ, but in ð2 + 1Þ dimensions, a free
component will remain.

Anyway, as an important result, we see that the solution
of ξ is a function of p as the anyon momentum, which means
that ξ is related to the energy of the anyon. This important
result will be studied from another point of view.

In famous previous anyonic works [43, 44], the nonphys-
ical degree of freedom nμ and its corresponding momentum
℘μ are mostly used to make the spin operator of the particle,
since they are not related to a physical event (recalling the
constraint ϕ′0). If we look at the constraint Ψ′2 and the null
constraint Ψ′4, we see that ξ, which is regarded as a coordi-
nate (not the coordinate of a particle with mass m, rather a
massless particle π2 = 0), is perpendicular to n, and therefore,
it can contribute to the spin of the particle.

Thus, the anyonic spin relation can be generalized as

Sμ = εμνσ nν℘σ + f ξ, n,℘ð ÞEνξμ pð Þ	 

, ð77Þ
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where E is the electric part of the electromagnetic field,
obtained from the gauge potential ξ. This relation indicates
that the spin of the anyon is related to energy via ξμðpÞ [45].

Another point is that, regarding (70), the scalar function
f is determined in such a way where Sμ is an intrinsic spin,
i.e., it satisfies the intrinsic spin algebra, and is separated from
the classical angular momentum (see the second Dirac
brackets of (70)). This spin operator contains a space-like
vector n2 = −1, in addition to a light-like vector π2 = 0, and
its corresponding coordinate, ξμ.

7.1. Some Hints over Relation (77). As we know, the light-like
condition of a relativistic particle determines the thin border
of the physical world (including any vector with light-like
condition) and the nonphysical world (with space-like condi-
tion). Since quantum fluctuations may change the time-like
nature of the vector πμ to the light-like one π

2
μ = 0 and conse-

quently changes the nonphysical vector nμ to a light-like
vector, then we can read off the following correction for the
spin of the relativistic particle:

Snewμν = Soldμν + f ξð Þ nμξν − nνξμ
	 


: ð78Þ

Here, nμ and ξμ have the length and momentum

(or length−1) dimensions, respectively. The dimensionless
function f adds the correction term of the spin via the angu-
lar momentum-like term ðnμξν − nνξμÞ. Giving the length
dimension to nμ can be simply done by reintroducing the

space-like condition n2 + d2 = 0, but one should notify that
while nμ is nonphysical, dμ remains a nonphysical
observable.

For instance, in the fundamental theory of gravity, dμ is
regarded as the Planck length, and in an effective anyonic
theory in condensed matter physics, it can be chosen as a very
small length, which emerges in a quantum phase transition
(QPT) temperature of an order of nK and produces the
temperature as

d =
1

KBTQPT
: ð79Þ

Now, let us imagine that the model experiences a small
quantum fluctuation such as the creation of a particle (in
the context of high energy physics), a severe resonance, or
even an excitation (in the framework of condensed matter
physics). This event happens during the interaction of the
model and the corresponding background via the energy
exchange. The Hamiltonian of a free anyon is written as

H =
1
2
π2: ð80Þ

During this interaction, the energy function of the system
and quantum background in the transition point, i.e., QPT
temperature, is equal to

H =
1
2
π2 −

1
2
d2p2: ð81Þ

But there would be a situation where πμ ~ pμd. This situ-
ation, which is called a resonance situation, puts the system
in a dissipative phase, where the energy is leaked from the
pseudophysical part to the pseudononphysical one. It is
interesting to notice that the resonance width, i.e., the excited
mode or the pseudoparticle lifetime which gives the energy
uncertainty in the event, is related to the emergence of n in
the model. Other properties of the resonance point can be
obtained via the study of the kinematics and dynamics of
the model.

8. Discussion

In relativistic classical mechanics point of view, the basic
Lagrangian of the anyons are constructed with the help
of some nonphysical coordinates, such as nμ, with the
space-like condition n2 + 1 = 0. The corresponding angular
momenta of these coordinates make an any-spin particle
in the quantization process. Classically, relating physical
degrees of freedom of a particle to its quantum spin is
an unsolved problem.

Here, we address this problem by making a gauged model
via the symplectic formalism of constrained systems. Since
the primary model is a mixed model of both first- and
second-class constraints, the embedding gauging procedure
is unsuccessful. Thus, to perform a gauging process, we need
a pure second-class constraint, which is obtained by adding
an auxiliary couple of conjugate variables, changing the
model in a way we desire. Since the constraint n2 + 1 = 0
remains intact during the gauging process, one cannot couple
the auxiliary field with the help of nμ, and instead, this is done
with the help of a new coordinate ξμ and its corresponding
momentum πμ. Keeping these variables unsolved to the end
of the gauging process, we gave them the desirable physical
properties.

By looking to the second level of the constraints of the
gauged model, we see that they mostly contain the auxiliary
couple ðξμ, πμÞ. Although this couple is not a plainly
second-class constraint, they are related to the symplectic
part of the gauged model and the corresponding second-
class constraints. They also add a solved gauge field to the
anyonic particle, where its solutions are obtained with respect
to the primary coordinates ðξμ, πμÞ. This solved gauge field,
which is minimally coupled to the phase-space coordinates,
can be explained as the electromagnetic-like interaction
with the anyon. The corresponding constraint of this
auxiliary field, π2 = 0, shows that the field carrying the
electromagnetic-like interaction for the anyon is massless,
like the photon. One should note that the corresponding cou-
pling is only done by converting the SCCs to the FCCs.

In the context of the theory of a constrained system, one
can consider a part of second-class constraints as first-class
ones accompanying their fixing conditions. Thus, by dividing
the second-class constraints into two parts via a suitable
approach, one can keep a part of them and impose another
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part as the solutions, to obtain a first-class (say gauged) sys-
tem [46]. Using this method, we witness that the solution
πμ = 0 solves two second-class constraints Ψ′4 and Λ′2 and
leaves two first-class ones Ψ′1 and Ψ′2. This solution also
adds the coordinate ξμ to the Hamiltonian in the same way
where a gauge vector potential is added via minimal
coupling.

Hence, we added two types of the gauge symmetries to
the free relativistic particle model, where the spin of the
anyon is obtained from. The first is the global gauge symme-
try which is written via the variation terms (62) and obtained
via the symplectic embedding procedure. This symmetry
remains intact, even after the gauge fixing of constraints
Ψ′1 and Ψ′2 is applied.

The second type is the local gauge symmetry, which is
obtained via ungauge fixing of the second-class constraints
of the model. Here, the locality of gauge symmetry refers to
the momentum part of the phase space (not the configura-
tion space), which leads to the dependency of the spin of
the anyon to its momentum.

Also, as we saw, after gauging the anyon’s Hamiltonian,
we derived an interacting model, related to the correction
terms which appeared in the gauged model, which can be
considered as the interaction of anyons and the electromag-
netic (gauge) field. Extracting and comparing these terms
with others [1, 38, 40] may provide interesting results.

As another result, one can see the ungauge-fixing process
with the second-class constraints Ψ′4 and Λ′2, to write the
embedded Hamiltonian in a more standard form. These
two primarily canonical constraints are changed to nonca-
nonical forms after the embedding procedure and make the
symplectic structure, i.e., fθ, pθg∗ = 0. This means that they
correspond to a component of a canonical couple, e.g., pro-
posing the following solution for them

θ = pκ, pθ = pκ, κ, pκf g = 1: ð82Þ

This choice results in the terms related to θ, which is
added to the Hamiltonian via the embedding procedure,
and appeared as the form of the nonrelativistic kinetic term
of the new gauge degrees of freedom. Moreover, the coordi-
nate of this degree of freedom is a cyclic coordinate.

In the end, as we mentioned previously, by selecting a
specific solution for ξμ in ð1 + 1Þ dimensions, one can
completely solve ξμ components. This is an interesting result
and can open a field of study in the context of conformal field
theory (CFT) in ð1 + 1Þ dimensions, since it has been shown
that anyonic models, especially those which are studied in the
context of the quantum Hall effect, can be represented as
conformal blocks of a particular two-dimensional CFT
[47–51]. Moreover, due to the analogy existing between
the conformal blocks of CFT and the anyon wave functions,
there is a relation between the two-dimensional CFT and
the anyon theory, in the context of the Chern-Simons
field theory [51]. This relation is clearer between the
ð2 + 1Þ dimensional Chern-Simons theory and the two-
dimensional CFT [52, 53].

Hence, for further works, it would be interesting to
study the relation of the Virasoro algebra in the context
of anyon theories and to investigate the nonlinear extension
of W algebras.
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