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Abstract: The main purpose of this paper is to improve, generalize, unify, extend and enrich the
recent results established by Dung and Hang (2015), Piri and Kumam (2014, 2016), and Singh et al.
(2018). In our proofs, we only use the property (F1) of Wardowski’s F-contraction, while the many
authors in their papers still use all tree properties of F-contraction as well as two new properties
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1. Introduction and Preliminaries

Fixed-point theory (metrical and topological) is one of the most important theories
in nonlinear mathematical analysis. It began to develop in the late nineteenth century. It
is based on concepts such as iteration, the Picard sequence, fixed points, common fixed
points, continuous mapping on a bounded and closed subset of Rn, et cetera. The first
explicit result in metrical fixed-point theory appeared in 1922 by the Polish mathematician
S. Banach. It was used to solve one type of integral equation. It is known in literature as the
Banach contraction principle (BCP) [1] and has become a very popular and a fundamental
tool in solving existing problems, arising not only in pure and applied mathematics but
also in many branches of sciences, engineering, social sciences, economics and medical
sciences. Furthermore, 1974’s Ćirić’s quasi-contraction [2] is one of the most frequently
found generalizations of the Banach contraction principle. He considered all possible six
values d̃(x̃, ỹ), d̃(x̃, tx̃), d̃(ỹ, tỹ), d̃(x̃, tỹ), d̃(ỹ, tx̃) and d̃(tx̃, tỹ) by combining x̃, ỹ, tx̃, tỹ for all
x̃, ỹ ∈ X where t is self-mapping on a metric space

(
X , d̃

)
. Namely, in [2], Ćirić formulated

and proved the following result:

Theorem 1 ([2]). Let t : X → X be a self-mapping on a complete metric space
(
X , d̃

)
and

k ∈ [0, 1) such that for all x̃, ỹ ∈ X

d̃(tx̃, tỹ) ≤ k ·max
{

d̃(x̃, ỹ), d̃(x̃, tx̃), d̃(ỹ, tỹ), d̃(x̃, tỹ), d̃(ỹ, tx̃)
}

. (1)

Then t has a unique fixed point x̃∗ ∈ X , and for each x̃ ∈ X , the corresponding Picard
sequence {tn x̃}n∈N converges to x̃∗ as n→ +∞.
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The quasi-contractive condition (1) of Ćirić is, in fact, the generalization of the follow-
ing six well-known contractive conditions:

d̃(tx̃, tỹ) ≤ k1 · d̃(x̃, ỹ),

d̃(tx̃, tỹ) ≤ k2 max
{

d̃(x̃, tx̃), d̃(ỹ, tỹ)
}

,

d̃(tx̃, tỹ) ≤ k3 max
{

d̃(x̃, tỹ), d̃(ỹ, tx̃)
}

,

d̃(tx̃, tỹ) ≤ k4 max
{

d̃(x̃, ỹ), d̃(x̃, tx̃), d̃(ỹ, tỹ)
}

,

d̃(tx̃, tỹ) ≤ k5 max

{
d̃(x̃, ỹ),

d̃(x̃, tx̃) + d̃(ỹ, tỹ)
2

,
d̃(x̃, tỹ) + d̃(ỹ, tx̃)

2

}
,

d̃(tx̃, tỹ) ≤ k6 max

{
d̃(x̃, ỹ), d̃(x̃, tx̃), d̃(ỹ, tỹ),

d̃(x̃, tỹ) + d̃(ỹ, tx̃)
2

}
,

where ki ∈ [0, 1), i = 1, 6.
In 1982, Istratescu [3] introduced convex contractions in the setting of metric spaces

and proved the corresponding fixed-point result. He considered the following seven values:
d̃(x̃, ỹ), d̃(tx̃, tỹ), d̃(x̃, tx̃), d̃

(
tx̃, t2 x̃

)
, d̃(ỹ, tỹ), d̃

(
tỹ, t2ỹ

)
and d̃

(
t2 x̃, t2ỹ

)
for all x̃, ỹ ∈ X . For

further details, the reader is referred to papers [4–7].

Definition 1 ([3]). A self-mapping t on X is said to be a convex contraction if there exist constants

ai ≥ 0, i = 1, 6 with
6
∑

i=1
ai < 1 such that for all x̃, ỹ ∈ X we have

d̃
(

t2 x̃, t2ỹ
)
≤ a1 · d̃(x̃, ỹ) + a2 · d̃(tx̃, tỹ) + a3 · d̃(x̃, tx̃)

+ a4 · d̃
(

tx̃, t2 x̃
)
+ a5 · d̃(ỹ, tỹ) + a6 · d̃

(
tỹ, t2ỹ

)
.

(2)

Theorem 2 ([3]). Let
(
X , d̃

)
be a complete metric space, t : X → X a convex contraction. Then,

t has a unique fixed point x̃∗ ∈ X , and for each x̃ ∈ X , the sequence {tn x̃}n∈N converges to x̃∗.

It is not difficult to see that (2) implies the next more general contractive condition

d̃
(

t2 x̃, t2ỹ
)
≤ k7 max

{
d̃(x̃, ỹ), d̃(tx̃, tỹ), d̃(x̃, tx̃), d̃

(
tx̃, t2 x̃

)
, d̃(ỹ, tỹ), d̃

(
tỹ, t2ỹ

)}
,

where k7 =
6
∑

i=1
ai ∈ [0, 1). Recall that contraction conditions for a self-mapping t on a metric

space
(
X , d̃

)
usually contained, at most, the following five values: d̃(x̃, ỹ), d̃(x̃, tx̃), d̃(ỹ, tỹ),

d̃(x̃, tỹ), and d̃(ỹ, tx̃). Recently, by adding four new values d̃
(
t2 x̃, x̃

)
, d̃
(
t2 x̃, tx̃

)
,

d̃
(
t2x, y

)
, and d̃

(
t2 x̃, tỹ

)
to a contraction condition, Kumam et al. [8] introduced a new

generalization of the Ćirić fixed-point theorem [2] called a generalized quasi contraction.

Definition 2 ([8]). Let t : X → X be a self-mapping on a complete metric space
(
X , d̃

)
and

λ ∈ [0, 1) such that for all x̃, ỹ ∈ X

d̃(tx̃, tỹ) ≤ λ ·max
{

d̃(x̃, ỹ), d̃(x̃, tx̃), d̃(ỹ, tỹ), d̃(x̃, tỹ), d̃(ỹ, tx̃),

d̃
(

t2 x̃, x̃
)

, d̃
(

t2 x̃, tx̃
)

, d̃
(

t2 x̃, ỹ
)

, d̃
(

t2 x̃, tỹ
)}

.
(3)

Then the mapping t is called a generalized quasi-contraction.
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For this new type of contractive mapping in metric spaces, the authors in [8] proved
the following result:

Theorem 3 ([8]). Each generalized quasi-contraction t on complete metric space
(
X , d̃

)
has a

unique fixed point x̃∗ ∈ X . Moreover, for each x̃ ∈ X the corresponding Picard sequence {tn x̃}n∈N
converges to x̃∗ as n→ +∞.

D. Wardowski [9] introduced the notion of F-contraction and proved a new fixed-point
theorem for it in his attempt to generalize the Banach contraction principle [1].

Definition 3 ([9]). Let F̃ denote the class of all functions F̃ : (0,+∞) → (−∞,+∞) which
satisfy the following:

(F1) F̃ is strictly increasing, that is, for all ũ, ṽ ∈ (0,+∞) if ũ < ṽ then F̃(ũ) < F̃(ṽ);
(F2) For each sequence {ãn}n∈N of positive numbers holds: limn→+∞ ãn = 0 if and only if

limn→+∞ F̃(ãn) = −∞;
(F3) There exists k ∈ (0, 1) such that limr̃→0+ r̃k F̃(r̃) = 0.

A mapping t : X → X is said to be an F-contraction on
(
X , d̃

)
if there exist F̃ ∈ F̃ and

τ̃ > 0 such that for all x̃, ỹ ∈ X,

d̃(tx̃, tỹ) > 0 yields τ̃ + F̃
(

d̃(tx̃, tỹ)
)
≤ F̃

(
d̃(x̃, ỹ)

)
. (4)

It is easy to check that the functions F̃i : (0,+∞)→ (−∞,+∞), i = 1, 4 , defined with
F̃1(r̃) = ln r̃; F̃2(r̃) = r̃ + ln r̃; F̃3(r̃) = −r̃−

1
2 ; F̃4(r̃) = ln

(
r̃ + r̃2),

are in F̃ .

Theorem 4 ([9]). Let
(
X , d̃

)
be a complete metric space and let t : X → X be an F-contraction.

Then, t has a unique fixed point x̃∗ ∈ X . On the other hand, the sequence {tn x̃}n∈N converges to
x̃∗ for every x̃ ∈ X .

Remark 1. Notice that Theorem 4 is true if F̃ : (0,+∞) → (−∞,+∞) is non-decreasing.
Moreover, if the function F̃: (0,+∞)→ (−∞,+∞) is non-decreasing then we conclude that there
are limr̃→q̃− F̃(r̃) = F̃(q̃−) and limr̃→q̃+ F̃(r̃) = F̃(q̃+). For more details on monotone functions,
as well as on F-contractions, see [10–20].

Motivated by the idea of Wardowski and Dung [20], Dung and Hang [21] intro-
duced the notion of a generalized F-contraction and proved some fixed-point theorems for
such maps.

Definition 4 ([21]). Let
(
X , d̃

)
be a metric space. A mapping t : X → X is said to be a

generalized F-contraction on
(
X , d̃

)
if there exist F̃ ∈ F̃ and τ̃ > 0 such that, for all x̃, ỹ ∈ X ,

d̃(tx̃, tỹ) > 0 yields τ̃ + F̃
(

d̃(tx̃, tỹ)
)
≤ F̃(N (x̃, ỹ)), (5)

where

N (x̃, ỹ) = max

{
d̃(x̃, ỹ), d̃(x̃, tx̃), d̃(ỹ, tỹ),

d̃(x̃, tỹ) + d̃(ỹ, tx̃)
2

,

d̃
(
t2 x̃, x̃

)
+ d̃
(
t2 x̃, tỹ

)
2

, d̃
(

t2 x̃, tx̃
)

, d̃
(

t2 x̃, ỹ
)

, d̃
(

t2 x̃, tỹ
)}

.

(6)
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Theorem 5 ([21]). Let
(
X , d̃

)
be a complete metric space and let t : X → X be a generalized

F-contraction mapping. If t or F̃ is continuous, then t has a unique fixed point x̃∗ ∈ X , and for
every x̃ ∈ X the sequence {tn x̃}n∈N converges to x̃∗.

In [22], the authors described a large class of functions by replacing the conditions (F2)
and (F3) with the next ones:

(F2’) inf F = −∞ or, also, by
(F2”)there exists a sequence {αn}n∈N of positive real numbers such that limn→+∞ F(αn) =

−∞,
(F3’) F̃ is continuous on (0,+∞).

The authors in [22] denote by F the family of all functions F̃ : (0,+∞)→ (−∞,+∞)
which satisfy conditions(F1), (F2’), and (F3’).

Example 1 ([22], Example 1.8). Let F̃1(r̃) = −1
r̃ , F̃2(r̃) = −1

r̃ + r̃, F̃3(r̃) = 1
1−er̃ , F̃4(r̃) = 1

er̃−e−r̃ .

Then F̃i ∈ F , i = 1, 4.

Under this new conditions, defined as the conditions (F1), (F2’), and (F3’), the authors
in [22] proved some Wardowski and Suzuki–Wardowski-type fixed-point results in metric
spaces as follows.

Theorem 6 ([22], Theorem 2.2). Let t be a self-mapping of a complete metric space
(
X , d̃

)
.

Suppose that there exist F̃ ∈ F and τ̃ > 0 such that, for all x̃, ỹ ∈ X ,

d̃(tx̃, tỹ) > 0 yields τ̃ + F̃
(

d̃(tx̃, tỹ)
)
≤ F̃

(
d̃(x̃, ỹ)

)
. (7)

Then, t has a unique fixed point x̃∗ ∈ X , and for every x̃ ∈ X the sequence {tn x̃}n∈N
converges to x̃∗.

Theorem 7 ([22]). Let t be a self-mapping of a complete metric space
(
X , d̃

)
into itself. Suppose

that there exist F̃ ∈ F and τ̃ > 0 such that, for all x̃, ỹ ∈ X ,

1
2

d̃(x̃, tx̃) < d̃(x̃, ỹ) yields τ̃ + F̃
(

d̃(tx̃, tỹ)
)
≤ F̃

(
d̃(x̃, ỹ)

)
. (8)

Then, t has a unique fixed point x̃∗ ∈ X , and for every x̃0 ∈ X the sequence {tn x̃0}n∈N converges
to x̃∗.

In order to explain some aspects of the paper we will use the following definition.

Definition 5 ([23–25]). Let t : X → X and α̃ : X ×X → [0,+∞). Then t is said to be triangular
α̃−admissible if

(t1) α̃(x̃, ỹ) ≥ 1 implies α̃(tx̃, tỹ) ≥ 1 for all x̃, ỹ ∈ X ;
(t2) α̃(x̃, z̃) ≥ 1 and α̃(z̃, ỹ) ≥ 1 imply α̃(x̃, ỹ) ≥ 1 for all x̃, ỹ, z̃ ∈ X .

If t : X → X and α̃ : X ×X → [0,+∞) satisfy only (t1), then t is α̃−admissible.
The property of the triangular alpha-admissible mapping has been given in ([24], see

Lemma 7) as:

Lemma 1 ([24]). Let t be a triangular α̃−admissible mapping. Assume that there exists x̃0 ∈ X
such that α̃(x̃0, tx̃0) ≥ 1. Define sequence {x̃n} by x̃n = tn x̃0. Then,

α̃(x̃m, x̃n) ≥ 1 for all m, n ∈ N∪{0} with m < n. (9)
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Definition 6 ([26]). Let t be an α̃−admissible mapping on a non-empty set X . We say that t has
the property
(H) if for each x̃, ỹ ∈ Fix(t), there exists z̃ ∈ X such that α̃(x̃, z̃) ≥ 1 and α̃(ỹ, z̃) ≥ 1.

Definition 7 ([26], Definition 7). An α̃−admissible mapping t is said to be an α̃∗−admissible,
if for each x̃, ỹ ∈ Fix(t) 6= ∅, we have α̃(x̃, ỹ) ≥ 1. If Fix(t) = ∅, we say that t is vacuously
α̃∗−admissible.

In [26], the authors introduced the following notion and proved two corresponding
results.

Definition 8 ([26], Definition 8). A self-mapping t on X is said to be an α̃− F−convex contrac-
tion if there exist two functions α̃ : X ×X → [0,+∞) and F̃ ∈ F̃ such that

d̃p
(

t2 x̃, t2ỹ
)
> 0 yields τ̃ + F̃

(
α̃(x̃, ỹ)d̃p

(
t2 x̃, t2ỹ

))
≤ F̃(Mp(x̃, ỹ)) (10)

for all x̃, ỹ ∈ X where p ≥ 1, τ̃ > 0 and

Mp(x̃, ỹ) = max
{

d̃p(x̃, ỹ), d̃p(tx̃, tỹ) , d̃p(x̃, tx̃), d̃p
(

tx̃, t2 x̃
)

, d̃p(ỹ, tỹ), d̃p
(

tỹ, t2ỹ
)}

.

Remark 2. Condition (10) is correct if α̃ : X ×X → (0,+∞). This is due to the definition of the
function F̃ because it maps (0,+∞) to (−∞,+∞). Note that examples 6, 7 and 8 from [26] are
trivial because α̃(x̃, ỹ) = 1 for all x̃, ỹ ∈ X .

Lemma 2 ([26], Lemma 1). Let
(
X , d̃

)
be a metric space and t : X → X be an α̃− F−convex

contraction satisfying the following conditions:

(i) t is α̃−admissible;
(ii) there exists x̃0 ∈ X such that α̃(x̃0, tx̃0) ≥ 1.

Define a sequence {x̃n} in X by x̃n+1 = tx̃n = tn+1 x̃0 for all n ≥ 0. Then
{

d̃p(x̃n, x̃n+1)
}

is strictly non-increasing sequence in X .

Theorem 8 ([26], Theorem 2). Let
(
X , d̃

)
be a complete metric space and t : X → X be an

α̃− F−convex contraction satisfying the following conditions:

(i) t is α̃−admissible;
(ii) There exists x̃0 ∈ X such that α̃(x̃0, tx̃0) ≥ 1;
(iii) t is continuous or orbital continuous on X .

Then, t has a fixed point in X . Further, if t is α̃∗−admissible, then t has a unique fixed
point z̃ ∈ X . Moreover, for any x̃0 ∈ X if x̃n+1 = tn+1 x̃0 6= tx̃n for all n ∈ N ∪ {0}, then
limn→+∞ tn x̃0 = z̃.

Let us introduce two well-known lemmas [27] which we will further use in the proofs
of our results:

Lemma 3. Suppose that {x̃n}n∈N in a metric space
(
X , d̃

)
that satisfies limn→+∞ d̃(x̃n, x̃n+1) = 0

is not a Cauchy sequence. Therefore, there exist η̃ > 0 and sequences of positive integers
{nk}, {mk}, nk > mk > k such that each of the next sequences

d̃
(

x̃nk , x̃mk

)
, d̃
(

x̃nk+1, x̃mk

)
, d̃
(

x̃nk , x̃mk−1
)
, d̃
(

x̃nk+1, x̃mk−1
)
, d̃
(

x̃nk+1, x̃mk+1
)

tends to η̃+ when k→ +∞.



Mathematics 2022, 10, 12 6 of 13

Lemma 4. Let {x̃n+1} = {tx̃n} = {tn x̃0}, n ∈ N∪{0}, t0 x̃0 = x̃0 be a Picard sequence in
a metric space

(
X , d̃

)
induced by a mapping t : X → X and x̃0 ∈ X be an initial point. If

d̃(x̃n, x̃n+1) < d̃(x̃n−1, x̃n) for all n ∈ N then x̃n 6= x̃m whenever n 6= m.

In 1974, Ćirić [2] (see also [28]) introduced the notion of orbital continuity. If t is a
self-mapping of a metric space (X ; d̃), then the set O(x̃; t) = {tn x̃ : n ∈ N∪ {0}} is called
the orbit of t at x̃, and t is called orbital continuous if ũ = limi→+∞ ttmi x̃. Continuity of
t obviously implies orbital continuity, but the converse is not necessarily true [28]. This
notion was used by the authors of [26].

2. Improved Results

Our first result in this section is the new proof of Theorem 5 (main result from [21]). In
it we will use only the property (F1) of the function F̃ : (0,+∞)→ (−∞,+∞).

Proof of Theorem 5. First, from (5), whenever x̃ 6= ỹ, this yields

d̃(tx̃, tỹ) < N (x̃, ỹ), (11)

where

N (x̃, ỹ ) = max

{
d̃(x̃, ỹ ), d̃(x̃, tx̃ ), d̃(ỹ, tỹ ),

d̃(x̃, tỹ ) + d̃(ỹ, tx̃)
2

,

d̃
(
t2 x̃, x̃ ) + d̃

(
t2 x̃, tỹ )

2
, d̃
(

t2 x̃, tx̃
)

, d̃
(

t2 x̃, ỹ
)

, d̃
(

t2 x̃, tỹ
)}

.

First, we prove the uniqueness of a possible fixed point of the mapping t. Indeed, if x̃
and ỹ are two distinct fixed point of t, we get:

d̃(tx̃, tỹ) = d̃(x̃, ỹ) < max

{
d̃(x̃, ỹ), 0, 0,

d̃(x̃, ỹ) + d̃(ỹ, x̃)
2

,
0 + d̃(x̃, ỹ)

2
, 0, d̃(x̃, ỹ), d̃(x̃, ỹ)

}
= d̃(x̃, ỹ)

(12)

which is a contradiction.
Next, we show the existence of a fixed point for the mapping t. For this, let x̃0 be an

arbitrary point from X and {x̃n}n∈N be a corresponding Picard sequence. If x̃q = x̃q+1 for
some q ∈ N, then according to the previous work shown,x̃q is a unique fixed point of t.
Therefore, let x̃n 6= x̃n+1 for all n ∈ N∪ {0}. Putting x̃ = x̃n−1 and ỹ = x̃n in (11), we obtain

d̃(x̃n, x̃n+1) < max
{

d̃(x̃n−1, x̃n), d̃(x̃n−1, x̃n), d̃(x̃n, x̃n+1),

d̃(x̃n−1, x̃n+1) + 0
2

,
d̃(x̃n+1, x̃n−1) + 0

2
, 0, d̃(x̃n+1, x̃n), 0

}
= max

{
d̃(x̃n−1, x̃n), d̃(x̃n, x̃n+1),

d̃(x̃n−1, x̃n) + d̃(x̃n, x̃n+1)

2
, d̃(x̃n+1, x̃n)

}
≤ max

{
d̃(x̃n−1, x̃n), d̃(x̃n, x̃n+1)

}
.

(13)

Note that (13) implies that d̃(x̃n, x̃n+1) < d̃(x̃n−1, x̃n), because otherwise we have a
contradiction. Therefore, there exists ξ̃ ≥ 0 such that d̃(x̃n, x̃n+1) → ξ̃ as n → +∞. Note
that condition (13) also implies that

τ̃ + F̃
(

d̃(x̃n, x̃n+1)
)
≤ F̃

(
d̃(x̃n−1, x̃n)

)
, (14)

that is, by taking the limit in (14), we get according to Remark 1 : τ̃ + F̃
(

ξ̃+
)
≤ F̃

(
ξ̃+
)

,
which is a contradiction with τ̃ > 0. In order to prove that the sequence {x̃n}n∈N is a
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Cauchy, we will use Lemma 3. Namely, putting x̃ = x̃nk and ỹ = x̃mk in (5), we get the
following inequality:

τ̃ + F̃
(

d̃
(

x̃nk+1, x̃mk+1
))
≤ F̃

(
N
(

x̃nk , x̃mk

))
, (15)

where

N
(

x̃nk , x̃mk

)
= max

{
d̃
(

x̃nk , x̃mk

)
, d̃
(

x̃nk , x̃nk+1
)
, d̃
(

x̃mk , x̃mk+1
)
,

d̃
(

x̃nk , x̃mk+1
)
+ d̃
(

x̃mk , x̃nk+1
)

2
,

d̃
(

x̃nk+2, x̃nk

)
+ d̃
(

x̃nk+2, x̃mk+1
)

2
,

d̃
(

x̃nk+2, x̃nk+1
)
, d̃
(

x̃nk+2, x̃mk

)
, d̃
(

x̃nk+2, x̃mk+1
)}

.

Hence, N
(

x̃nk , x̃mk

)
→ max

{
η̃, 0, 0, η̃+η̃

2 , 0+η̃
2 , 0, η̃, η̃

}
= η̃ as k → +∞. Further, (15)

yields τ̃ + F̃(η̃+) ≤ F̃(η̃+), which is a contradiction with τ̃ > 0.
The completeness of metric space

(
X , d̃

)
implies that x̃n converges to some x̃ ∈ X . If the

mapping t is continuous, we get

x̃ = lim
n→+∞

x̃n = lim
n→+∞

tx̃n−1 = t
(

lim
n→+∞

x̃n−1

)
= tx̃,

that is, x̃ is a unique fixed point of t. Now, suppose that the mapping F̃ is continuous. Put
x̃ = x̃n and ỹ = x̃ in (5). Since x̃n 6= x̃m whenever n 6= m, we can suppose that there is k ∈ N
such that x̃ /∈ {x̃n for n > k}. This means that d̃(tx̃n, tx̃) > 0 for n > k. Then we obtain

d̃(tx̃n, tx̃) > 0 yields τ̃ + F̃
(

d̃(tx̃n, tx̃)
)
≤ F̃(N (x̃n, x̃)), (16)

where

N (x̃n, x̃) = max

{
d̃(x̃n, x̃), d̃(x̃n, tx̃n), d̃(x̃, tx̃),

d̃(x̃n, tx̃) + d̃(x̃, tx̃)
2

,

d̃
(
t2 x̃n, x̃

)
+ d̃
(
t2 x̃n, tx̃

)
2

, d̃
(

t2 x̃n, tx̃n

)
, d̃
(

t2 x̃n, x̃
)

, d̃
(

t2 x̃n, tx̃
)}

;

that is,

N (x̃n, x̃) = max
{

d̃(x̃n, x̃), d̃(x̃n, x̃n+1), d̃(x̃, tx̃),
d̃(x̃n, tx̃) + d̃(x̃, tx̃)

2
,

d̃(x̃n+2, x̃) + d̃(x̃n+2, tx̃)
2

, d̃(x̃n+2, x̃n+1), d̃(x̃n+2, x̃), d̃(x̃n+2, tx̃)
}

.

(17)

Letting n → +∞ we get that N (x̃n, x̃) → max
{

0, 0, d̃(x̃, tx̃), d̃(x̃,tx̃)
2 , 0, 0, d̃(x̃, tx̃)

}
=

d̃(x̃, tx̃). We used the next inequalities: d̃(x̃n, tx̃) ≤ d̃(x̃n, x̃) + d̃(x̃, tx̃) and d̃(x̃n+2, tx̃) ≤
d̃(x̃n+2, x̃) + d̃(x̃, tx̃). If d̃(x̃, tx̃) > 0, then (16) implies

τ̃ + F̃
(

d̃(x̃, tx̃)
)
≤ F̃

(
d̃(x̃, tx̃)

)
,

which is a contradiction. Hence, x̃ is a unique fixed point of t in both cases: t or F̃ is
continuous.

Remark 3. Since d̃(x̃, ỹ) ≤ N (x̃, ỹ) for all x̃, ỹ ∈ X , we have that Theorem 5 (that is, Theorem
2.1 from [22]) is an immediate consequence of Theorem 4.
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Our second completely new result in this paper is the proof of Theorem 6. We will
use only the property (F1) of the given mapping F̃ : (0,+∞)→ (−∞,+∞) which means
improvement of the corresponding approach in [22].

Proof of Theorem 6. First, (8) implies the uniqueness of a possible fixed point of the map-
ping t : X → X . Indeed, if x̃ and ỹ are two distinct fixed points of t, then because

1
2

d̃(x̃, tx̃) =
1
2

d̃(x̃, x̃) = 0 < d̃(x̃, ỹ),

we have that
τ̃ + F̃

(
d̃(tx̃, tỹ)

)
≤ F̃

(
d̃(x̃, ỹ)

)
;

that is,
τ̃ + F̃

(
d̃(x̃, ỹ)

)
≤ F̃

(
d̃(x̃, ỹ)

)
,

which is a contradiction with τ̃ > 0. Hence, if t has a fixed point, it is unique.
Now, we prove the existence of a fixed point for t. Let x̃0 ∈ X be an arbitrary

point and {x̃n}n∈N be the corresponding Picard sequence. If x̃q = x̃q+1 for some q ∈ N,
then x̃q is a unique fixed point of t. Suppose that x̃n 6= x̃n+1 for each n ∈ N. Since
1
2 d̃(x̃n, Tx̃n) =

1
2 d̃(x̃n, x̃n+1) < d̃(x̃n, x̃n+1), then according to (8), we get

τ̃ + F̃
(

d̃(x̃n, x̃n+1)
)
≤ F̃

(
d̃(x̃n−1, x̃n)

)
, (18)

for all n ∈ N. This further means (because (F1)) d̃(x̃n, x̃n+1) < d̃(x̃n−1, x̃n), that is, d̃(x̃n, x̃n+1)→
δ̃∗ for some δ̃∗ ≥ 0. If δ̃∗ > 0, we get from (18)

τ̃ + F̃
(

δ̃∗+
)
≤ F̃

(
δ̃∗+

)
,

which is a contradiction with τ̃ > 0. In order to prove that {x̃n} is a Cauchy sequence, we
put x̃ = x̃nk and ỹ = x̃mk in (8). This further means that

τ̃ + F̃
(

d̃
(

x̃nk+1, x̃mk+1
))
≤ F̃

(
d̃
(

x̃nk , x̃mk

))
,

from which as k→ +∞ it follows

τ̃ + F̃(η̃+) ≤ F̃(η̃+),

a contradiction with τ̃ > 0.
Since

(
X , d̃

)
is complete, there exists x̃∗ such that {x̃n} converges to x̃∗, that is,

limn→+∞ d̃(x̃n, x̃∗) = 0.
By using only condition (F1), one can prove, as in [22], that for all n ∈ N :

1
2

d̃(x̃n, tx̃n) < d̃(x̃n, x̃∗) or
1
2

d̃
(

tx̃n, t2 x̃n

)
< d̃(tx̃n, x̃∗). (19)

Now, from (19), for all n ∈ N, either

τ̃ + F̃
(

d̃(tx̃n, tx̃∗)
)
< F̃

(
d̃(x̃n, x̃∗)

)
(20)

or
τ̃ + F̃

(
d̃
(

t2 x̃n, tx̃∗
))

< F̃
(

d̃(tx̃n, x̃∗)
)

(21)

holds. Both the conditions (20) and (21) imply that x̃n converges to tx̃∗ as n → +∞.
Because x̃n also converges to x̃∗, we obtain that x̃∗ is a unique fixed point of t. The proof of
Theorem 6 is complete.
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Our next new result in the sequel of this part will be the improvement of Lemma 2
(that is Lemma 1 from [26]). In fact, we will prove that the sequence

{
d̃p(x̃n, x̃n+1)

}
is

strictly decreasing whenever x̃n 6= x̃n+1 for all n ∈ N∪ {0}.

Proof of Lemma 2. If x̃0 ∈ X is an arbitrary point, then as in the proof of Lemma 1 in [26],
it follows that α̃(x̃n, x̃n+1) ≥ 1 for all n ∈ N∪{0}. Further, suppose that x̃n 6= x̃n+1 for all
n ∈ N∪{0}. Putting x̃ = x̃n−1 and ỹ = x̃n in (10), we get

τ̃ + F̃
(

α̃(x̃n−1, x̃n) · d̃p(x̃n+1, x̃n+2)
)
≤ F̃(Mp(x̃n−1, x̃n)),

where
Mp(x̃n−1, x̃n) = max

{
d̃p(x̃n−1, x̃n), d̃p(x̃n, x̃n+1), d̃p(x̃n−1, x̃n),

d̃p(x̃n, x̃n+1), d̃p(x̃n, x̃n+1), d̃ p(x̃n+1, x̃n+2)};
(22)

that is,
Mp(x̃n−1, x̃n) = max

{
d̃p(x̃n−1, x̃n), d̃p(x̃n, x̃n+1), d̃p(x̃n+1, x̃n+2)

}
.

Finally, we get

τ̃ + F̃
(

α̃(x̃n−1, x̃n) · d̃p(x̃n+1, x̃n+2)
)

≤ F̃
(

max
{

d̃p(x̃n−1, x̃n), d̃p(x̃n, x̃n+1), d̃p(x̃n+1, x̃n+2)
})

,
(23)

for all n ∈ N∪{0}. Since α̃(x̃n−1, x̃n) ≥ 1, for all n ∈ N we identify that (23) becomes

τ̃ + F̃
(

d̃p(x̃n+1, x̃n+2)
)

≤ F̃
(

max
{

d̃p(x̃n−1, x̃n), d̃p(x̃n, x̃n+1), d̃p(x̃n+1, x̃n+2)
})

.

According to the property (F1) of the function F̃, it follows that

τ̃ + F̃
(

d̃p(x̃n+1, x̃n+2)
)
≤ F̃

(
max

{
d̃p(x̃n−1, x̃n), d̃p(x̃n, x̃n+1)

})
; (24)

that is,
d̃p(x̃n+1, x̃n+2) < max

{
d̃p(x̃n−1, x̃n), d̃p(x̃n, x̃n+1)

}
for all n ∈ N. In order to prove that d̃p(x̃n+1, x̃n+2) < d̃p(x̃n, x̃n+1) for all n ∈ N∪{0}, we
will distinguish three cases:

I. N = =
{

n ∈ N : d̃p(x̃n−1, x̃n) = d̃p(x̃n, x̃n+1)
}

;

II. N< =
{

n ∈ N : d̃p(x̃n−1, x̃n) < d̃p(x̃n, x̃n+1)
}

;

III. N> =
{

n ∈ N : d̃p(x̃n−1, x̃n) > d̃p(x̃n, x̃n+1)
}

.

Obviously, N = N= ∪N< ∪N> and N= ∩N< = N= ∩N> = N< ∩N> = ∅. Analyzing
each of these three cases, we conclude that d̃p(x̃n, x̃n+1) < d̃p(x̃n−1, x̃n) for all n ∈ N. This
further means that there exists limn→+∞ d̃p(x̃n, x̃n+1) = δ̃ ≥ 0. If δ̃ > 0, then from (24),
it yields

τ̃ + F̃
(
δ+
)
≤ F̃

(
δ+
)
,

which is a contradiction with τ̃ > 0. We have proved Lemma 2.

Our second new result is the proof of Theorem 8 (that is Theorem 2 from [26]). In it,
we will use only the property (F1).

Proof of Theorem 8. As in [26] (see the proof on page 6), we get that α̃(x̃n, x̃n+1) ≥ 1 for all
n ∈ N∪{0}, where x̃n+1 = tn+1 x̃0 6= tn x̃0 is a Picard sequence induced by any point x̃0 ∈
X . According to the above Lemma, the sequence {x̃n}n∈N∪{0} satisfies d̃p(x̃n+1, x̃n+2) <
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d̃p(x̃n, x̃n+1) for all n ∈ N∪{0} and d̃p(x̃n, x̃n+1)→ 0 as n→ +∞. This further means that
d̃(x̃n, x̃n+1)→ 0 as n→ +∞. Therefore, we can use Lemma 3. Indeed, putting x̃ = x̃nk and
ỹ = x̃mk in (10) (it is clear that d̃p(t2 x̃, t2ỹ

)
= d̃p(x̃nk+2, x̃mk+2

)
> 0), we get

τ̃ + F̃
(

α
(

x̃nk , x̃mk

)
· d̃p
(

t2 x̃nk , t2 x̃mk

))
≤ F̃

(
Mp(x̃nk , x̃mk

))
, (25)

where

Mp(x̃nk , x̃mk

)
= max

{
d̃p(x̃nk , x̃mk

)
, d̃p(x̃nk+1, x̃mk+1

)
, d̃p(x̃nk , x̃nk+1

)
,

d̃p(x̃nk+1, x̃nk+2
)
, d̃p(x̃mk , x̃mk+1

)
, d̃p(x̃mk+1, x̃mk+2

)}
→ max

{
η̃+, η̃+, 0, 0, 0, 0

}
= η̃+ as k→ +∞.

(26)

Since, according to Lemma 1, α̃
(

x̃nk , x̃mk

)
≥ 1, we identify that (25) becomes

τ̃ + F̃
(

d̃p(x̃nk+2, x̃mk+2
))
≤ F̃

(
Mp(x̃nk , x̃mk

))
.

Taking the limit as k→ +∞ and using Remark 1 and Lemma 3, we get

τ̃ + F̃
(
η̃++

)
≤ F̃

(
η̃++

)
,

which is a contradiction with τ̃ > 0. Hence, the sequence {x̃n} is a Cauchy. In the sequel,
the proof is as in [26].

In the sequel, we give some immediate corollaries of Theorem 8. Addditionally, we
improve two things from [26] (we consider interval (0,+∞) instead of [0,+∞), and we
notice that it is sufficient to suppose that t is orbitally continuous).

Corollary 1. Let
(
X , d̃

)
be a complete metric space and α̃ : X × X → (0,+∞) be a function.

Suppose that t : X → X is a self-mapping satisfying the following conditions:

(i) There exists k ∈ [0, 1) such that for all x̃, ỹ ∈ X

α̃(x̃, ỹ) · d̃
(

t2 x̃, t2ỹ
)
≤ k ·M1(x̃, ỹ), (27)

where

M1(x̃, ỹ) = max
{

d̃(x̃, ỹ), d̃(tx̃, tỹ), d̃(x̃, tx̃), d̃
(

tx̃, t2 x̃
)

, d̃(ỹ, tỹ), d̃
(

tỹ, t2ỹ
)}

.
(ii) t is α̃−admissible;
(iii) There exists x̃0 ∈ X such that α̃(x̃0, tx̃0) ≥ 1;

(iv) t is orbitally continuous on
(
X , d̃

)
.

Then, t has a fixed point in X . Further, if t is α̃∗-admissible, then t has a unique fixed
point z̃ ∈ X . Moreover, for any x̃0 ∈ X if x̃n+1 = tn+1 x̃0 6= tn x̃0 for all n ∈ N∪{0}, then
limn→+∞ tn x̃0 = z̃.

Corollary 2. Let
(
X , d̃

)
be a complete metric space and α̃ : X × X → (0,+∞) be a function.

Suppose that t : X → X is a self-mapping satisfying the following conditions:

(i) for all x̃, ỹ ∈ X

α̃(x̃, ỹ) · d̃
(

t2 x̃, t2ỹ
)
≤ α̃1 · d̃(x̃, ỹ) + α̃2 · d̃(tx̃, tỹ) + α̃3 · d̃(x̃, tx̃) + α̃4 · d̃

(
tx̃, t2 x̃

)
+ α̃5 ·̃d(ỹ, tỹ) + α̃6 ·̃d

(
tỹ, t2ỹ

) (28)
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where 0 ≤ α̃i < 1), i = 1, 6 such that
6
∑

i=1
α̃i < 1;

(ii) t is α̃−admissible;
(iii) There exists x̃0 ∈ X such that α̃(x̃0, tx̃0) ≥ 1;

(iv) t is orbitally continuous on
(
X , d̃

)
.

Then, t has a fixed point in X . Further, if t is α̃∗-admissible, then t has a unique fixed
point z̃ ∈ X . Moreover, for any x̃0 ∈ X , if x̃n+1 = tn+1 x̃0 6= tn x̃0 for all n ∈ N∪{0}, then
limn→+∞ tn x̃0 = z̃.

Corollary 3. Let t be a continuous mapping on a complete metric space
(
X , d̃

)
into itself. If there

exists k ∈ [0, 1) satisfying the following inequality

d̃
(

t2 x̃, t2ỹ
)
≤ k ·max

{
d̃(x̃, ỹ), d̃(tx̃, tỹ), d̃(x̃, tx̃), d̃

(
tx̃, t2 x̃

)
, d̃(ỹ, tỹ), d̃

(
tỹ, t2ỹ

)}
(29)

for all x̃, ỹ ∈ X , then t has a unique fixed point in X .

The immediate consequences of some of our obtained results in this paper are new
contractive conditions that generalize and complement results from [28].

Corollary 4. Let
(
X , d̃

)
be a complete metric space and t be a self-mapping satisfying F−contraction

type (7) where τ̃i > 0, i = 1, 3 such that for all x̃, ỹ ∈ X with d̃(tx̃, tỹ) > 0 the following inequali-
ties holds true:

τ̃1 + exp
(

d̃(tx̃, tỹ)
)
≤ exp

(
d̃(x̃, ỹ)

)
(30)

τ̃2 −
1

d̃(tx̃, tỹ)
≤ − 1

d̃(x̃, ỹ)
(31)

τ̃3 + exp
(

d̃(tx̃, tỹ)
)
· ln
(

d̃(tx̃, tỹ)
)
≤ exp

(
d̃(x̃, ỹ)

)
· ln
(

d̃(x̃, ỹ)
)

. (32)

Then, t has a unique fixed point x̃∗ ∈ X , and for each x̃ ∈ X , the sequence {tn x̃}n∈N
converges to x̃∗.

Proof. First, put in Theorem 5 N (x̃, ỹ) = d̃(x̃, ỹ), F̃(r̃) = exp(r̃), F̃(r̃) = − 1
r̃ , F̃(r̃) =

exp(r̃) · ln(r̃), respectively. Since every one of the functions r̃ 7→ F̃(r̃) is strictly increasing
on (0,+∞), the result follows by Theorem 5.

3. Conclusions

This paper considered the results on fixed-point theorems concerning F−contraction
as presented in the papers mentioned in the abstract. Some significant improvements
have been presented, since our approach is based only on the strictly increasing function F̃
introduced by Wardowski (2012) instead of all three properties presented by the same author
that are still largely used. Even though we have proven that only this one property (F1) is
sufficient in the case of multivalued mappings, our research raises some new questions:

1. Since d̃p is a continuous b-metric for each metric d̃ and p > 1, it is natural to ask
whether Theorem 8 ([26], Theorem 2.) is true if d̃p is replaced by an arbitrary b-metric d̃b?
For some details see [29];

2. The same question can be asked for Lemma 2 ([26], Lemma 1), that is, is the sequence
d̃b(x̃n, x̃n+1) strictly decreasing, where d̃b is an arbitrary b-metric?;

3. Considering that each strictly increasing function F̃ : (0,+∞) → (−∞,+∞) is
continuous almost everywhere (also see [30]), it is natural to ask what is the relationship
between all three properties (F1), (F2), and (F3), i.e., (F1), (F2’) and (F3’)?

It is obvious that the results will open new perspectives (for example [31–33]) and
topics for researchers and therefore, this paper will be useful for new studies related to
fixed-point theory.
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