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Abstract

In this work, we study the Magic Polygons of order 3 (P (n, 2)) and we introduce some properties
that were useful to build an algorithm to find out how many Magic Polygons exists for the
regular polygons up to 24 sides. The concepts of Equivalents Magic Polygons and Derivatives
Magic Polygons which allowed to classify, and avoid ambiguity about the representations of such
elements, are also introduced.
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1 Introduction

Magic Polygons are objects that had its inspiration on the classics Magics Squares, and these are
known from a long time ago, and there are algorithms to build Magic Squares of different orders,
as we can see in [1, 2, 3, 4, 5, 6]. Furthermore, such objects has applications in fields like Computer
Science Physics and Cryptography according to [7, 8, 9].

Magic Squares of order n are arrangement of n2 squares in n rows and n columns and filled with
numbers from 1 to n2 by a way that the sum along the rows columns and diagonals is constant and
called magic sum. The Magic Square of order 1 has only one element, therefore is trivial. There’s no
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Magic Square of order 2, because is impossible to build it without a repetition of values. It follows
that the Magic Square of order 3 is the smaller non trivial Magic Square, and unless considering
rotation and reflections there are only one possibility for the Magic Square of order 3. Ian Stewart
in his book “Incredible Numbers”, claim that there are 880 possibles Magic Squares of order 4, and
275.305.224 for a Magic Squares of order 5. The number of possibilities for the Magic Squares of
order 6 is unknown, but estimatives claim it is about 1.77× 1019.

However, we know that there are at least one Magic Polygon for all n even greater than six, according
the algorithm provided in [11], except the magic square, is unknown how many Magic Polygons
exists for n even equal or greater than six. This is the main goal of this work, show how many
Magic Polygons exists from the Hexagon (n = 6) until the regular polygon of 24 sides.

To reach it, it was necessary a implementation of an algorithm that could find all possibles Magic
Polygons for each regular polygon. Firstly, is provided the definition of a Magic Polygon, and then
is showed how a Magic Polygon can be represented as an element of the Symmetric Group. Is also
showed the properties that allow us to implement the algorithm with some basic optimizations.

Two relevant concepts are here introduced, Equivalents Magic Polygons and Derivatives Magic
Polygons, these concepts avoid ambiguity in the count of the Magic Polygons, because, as shall
be showed we can represent the Magic Polygons by many ways, and we can get infinities Magic
Polygons from one, but with these two concepts, we can classify them.

By making an bond between the magic polygons and some elements of the symmetric groups and
bring these two new elements, some possibilities of study appears.
In the last section, there are a table with the numbers of possibilities for all Magic Polygons up to
24 sides, and the main goal of this work is reached.

2 Magic Polygons - Definition and Properties

In this section, is adopted the definition of Magic Polygons provided in [10], which is a generalization
of the Magic Polygon according [11], the propositions here not proved, can be viewed in these works.

Definition 2.1. Let Ω be a set of k
2

regular polygons on plane with n sides and corresponding
parallel sides and centered in a central point C.

A magic polygon P (n, k) of n sides and order k+1 is a set of k2n
2

+1 points satisfying the following
conditions:

(i) Points of magic polygon are labeled by distinct values from 1 to k2n
2

+ 1;

(ii) One point of a magic polygon is the central point C;

(iii) kn
2

points of magic polygon are vertices of the k
2

regular polygons of Ω;

(iv) The magic polygon has k − 1 intermediate points on each edge of regular polygons in Ω,

which gives a total of
(k − 1)nk

2
intermediate points.

(v) Segments with diametrically opposite ends of the larger polygon of Ω intersecting the central
point contain k + 1 points of the magic polygon;

(vi) Segments with ends at two adjacent vertices of a polygon of Ω contains k + 1 points of the
magic polygon;

(vii) The sum of values corresponding to the k+ 1 points on each segment defined in (iv) and (v)
is a fixed value u, called of magic sum.
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Fig. 1. Examples of Magic Polygons P (8, 2) and P (4, 4) respectively

Theorem 2.1. A Magic Polygon P (n, k) has the following properties:

(i) the magic sum is: (k + 1)
k2n+ 4

4
;

(ii) the value of the central point is:
k2n+ 4

4

(iii) the sum Sj of the values representing to j−th points partitioning each edge on magic polygon
chosen clockwise is:

Sj =
kn(k2n+ 4)

8

These properties are proved in [10].

If we take k = 2, Magic Polygons P (n, 2) are formed by one regular polygon, the vertex, and the
edges middle points and its geometric center. Therefore has 2n + 1 elements. Its magic sum is
3(n + 3), the cantral point has the value n + 1 and the sum Sj of all elements in the vertex is
n(n+1) (the same for the sum of the elements in the edges middle points). We note that the magic
sum u, is three time the central point c (u = 3(n+ 1)).

In [10, 11] is proved that a Magic Polygon P (n, 2) exist if, and only if, the regular polygon has a
number of sides even and greater than six. All approach made in this work is valid only for the
Magic Polygons of order 3 (P (n, 2)).

Is easy to see that Magic Polygons has a discrete and finite framework, therefore we can adopt an
algebraic representation for such objects in order to be aided by algebraic concepts to explore its
properties. Once the geometric framework of magic polygons has the symmetric properties natives
in the regular polygons, and its elements are positives integers numbers along of the perimeter, the
concepts of dihedral group, finite groups Z/nZ and symmetric groups, shall be very important.

As mentioned, a Magic Polygon is about the natural numbers 1, 2, 3...2n + 1 along the perimeter
of the regular polygon, so it is nothing beyond a permutation of such elements, therefore a Magic
Polygon can be algebraically represented in the well known notation for symmetric groups:(

1 2 . . . n n+ 1 n+ 2 . . . 2n 2n+ 1
f(1) f(2) . . . f(n) n+ 1 f(n+ 2) . . . f(2n) f(2n+ 1)

)
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where the numeration direction is counter-clockwise, and he first element is by convention the right
vertex nearest the symmetric vertical axis of the polygon, and above the horizontal symmetric axis.
As we can see, the image of n+1 is n+1, this is in fact the central point that stands in the polygon
geometric center.

Definition 2.2. An element of the symmetric group of (2n+1)! order, is an algebraically representation
of the Magic Polygon of n if the following conditions are satisfied:



i) f(n+ 1) = n+ 1;
ii) ∀i, 1 ≤ i ≤ n, f(i) + f(i+ (n+ 1)) = 2c;
iii) ∀i odd , 1 ≤ i < n− 1, f(i) + f(i+ 1) + f(i+ 2) = u;
iv) f(n− 1) + f(n) + f(n+ 2) = u;
v) ∀i even, n+ 2 ≤ i < 2n− 1, f(i) + f(i+ 1) + f(i+ 2) = u;
vi) f(2n) + f(2n+ 1) + f(1) = u;

(2.1)

The first condition is due to vertex root of the Magic Polygon, which value is fixed with n+ 1, the
second is due to the opposite elements in the perimeter of the polygon, once both stands in the
same symmetric axis, that splits the polygon in two, they are the elements f(i) and f(i + n + 1),
because the central point is the element f(n+ 1), thus f(i) + f(i+ n+ 1) + c = u, once u = 3c we
have f(i)+f(i+n+1) = 2c. The next condition, is due to the sum of the elements along the edge of
regular polygon, by definition, their sum must match u. Once f(1) is by definition a vertex, for all i
odd less than n− 1 it follows that f(i) + f(i+ 1) + f(i+ 2) = u. We have, f(n+ 1) as central point,
thus f(n− 1),f(n) e f(n+ 2) are in the same edge and their sum shall be the magic sum. From the
element n+2 beyond, if i is even, so f(i), f(i+1) and f(i+2) shall be in the same edge, and therefore
their sum must be the magic sum. It give us the fifth condition. By last, the sixth condition refers
the fact that the elements f(2n), f(2n+1) and f(1) stands in the same edge which close the polygon.

By adopting this convention, we can represent the Magic Polygon P (8, 2) on the Fig. 1 by the
following way:

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
15 11 1 12 14 5 8 16 9 3 7 17 6 4 13 10 2

)
(2.2)

It follows that the Magic Polygons are elements of the symmetric group, but as a subset, they didn’t
make a subgroup, because it’s obvious that the identity function, which is the neutral element in
the symmetric group, does not represent a Magic Polygon. From this representation, to find all
Magic Polygons for a given n, one option is by declaring 2n variables, and visiting all permutations
of the set:

{1, 2, 3 . . . 2n, 2n+ 1} − {n+ 1}
and verify, which ones satisfies the the conditions listed in Definition 2.2. However, such algorithm
would return the same permutation many times, and this is not good for the computation.

Based in some Magic Polygons properties that shall be here approached, will be possible find all
Magic Polygons for a given n by declaring only n variables, and reducing how many times the same
permutation is returned. Simplifying and fastering the computational process.

Theorem 2.2. The algebraic representation of a Magic Polygon is well defined by the values f(1),
f(2), . . . f(n). Puting in other words, a Magic Polygon can be represented by a n−permutation of
the set {1, 2, 3, . . . 2n+ 1}.
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Proof. Let f : {1, 2, . . . n} 7→ {1, 2, 3, . . . 2n + 1} an one-to-one function which has the following
properties:

i) f(i) 6= n+ 1 ∀ i ∈ {1, 2, . . . n};
ii) f(i) + f(i+ 1) + f(i+ 2) = u ∀ i odd ∈ {1, 2, . . . n− 2};
iii) f(i) + f(j) 6= 2c ∀ i, j ∈ {1, 2, . . . n};
iv) f(n− 1) + f(n)− f(1) = c;

(2.3)

i.e., f defines a n-permutation of {1, 2, 3, . . . 2n+ 1}.
Let’s extend the function f for the set {1, 2, 3 . . . 2n+ 1} in order to generate an element belonging
the symmetric group of order (2n+ 1)! this way:

• f(n+ 1) = n+ 1;

• ∀i ∈ {1, 2 . . . n}, f(i+ n+ 1) = 2c− f(i)

so we have the σ element:

σ =

(
1 2 . . . n n+ 1 n+ 2 . . . 2n 2n+ 1

f(1) f(2) . . . f(n) n+ 1 f(n+ 2) . . . f(2n) f(2n+ 1)

)
(2.4)

Affirmation: σ represents a Magic Polygon.

The injectivity of original function f with the properties i and iii ensures the bijectivity of the
extended function for the set {1, 2, . . . 2n + 1}. By propertie ii, fora all i odd 1 ≤ i < n − 1 ⇒
f(i) + f(i+ 1) + f(i+ 2) = u thus:

f(i+ n+ 1) + f(i+ n+ 2) + f(i+ n+ 3) =
(2c− f(i)) + (2c− f(i+ 1)) + (2c− f(i+ 2)) =

6c− (f(i) + f(i+ 1) + f(i+ 2)) =
6c− 3c = 3c = u

(2.5)

this way, for all i even n + 2 ≤ i ≤ 2n − 2, f(i) + f(i + 1) + f(i + 2) = u. By property iv,
f(n− 1) + f(n)− f(1) = c as f(i+ n+ 1) = 2c− f(i)⇒ −f(1) = 2c− f(n+ 2) therefore:

f(n− 1) + f(n)− 2c+ f(n+ 2) = c
f(n− 1) + f(n) + f(n+ 2) = 3c = u

(2.6)

this way sum of the elements f(n− 1), f(n) and f(n+ 2) is the Magic Sum:

Now we have:
f(2n) = 2c− f(n− 1)
f(2n+ 1) = 2c− f(n)
f(1) = 2c− f(n+ 2)

(2.7)

As proved, f(n− 1) + f(n) + f(n+ 2) = u, the sum f(2n) + f(2n+ 1) + f(1) shall be:

2c− f(n− 1) + 2c− f(n) + 2c− f(n+ 2) =
6c− (f(n− 1) + f(n) + f(n+ 2)) =

6c− 3c = 3c = u
(2.8)

Therefore, in conformity with the Definition 2.2 the sum of all elements in the edges of Regular
Polygons satisfies the magic sum.

Now, it’s necessary verify if the sums of the elements on the symmetric axis also satisfies the magic
sum.
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The sums in the symmetric axis, matchs the pattern f(i) + c+ f(i+n+ 1), where 1 ≤ i ≤ n. Once
f(i+ n+ 1) = 2c− f(i) the result follows.

The Definition 2.2 introduces the Magic Polygons as a permutation of the set {1, 2, . . . 2n+1} which
satisfies a few properties. In other words, the process of find Magic Polygons is a combinatorial
issue. And based in the Theorem 2.2 is enough to declare only n variables in the algorithm.

3 Equivalents Magic Polygons

It’s easy to see geometrically that rotations based on the geometric center of the polygon, and
reflection on the symmetric axis, provide us an different way to represent what is the same Magic
Polygon. A first look may induce to think that is another Magic Polygon, but in fact, is the same,
represented by a distinct way.

This encourage us to define Equivalents Magic Polygons, distinct representations that we can obtain
from a Magic Polygon by applying two operations, the rotation (ro) and the reflection (re).

In this section, and in the one following, we adopt the notation:

a↔ b means that the value a and the value b switches places;

a→ b means that the value a is replaced by the value b;

Definition 3.1. Let σ an element of symmetric group that represents a Magic Polygon. We say
that the element σ′ of S2n+1 is an Equivalent Magic Polygon of σ if σ′ can be obtained from σ
applying the following operations a finite number of times:

ii) Rotation in the geometric center of polygon:

ro(σ):(
1 2 .. n n+ 1 n+ 2 .. 2n 2n+ 1

f(2n) f(2n+ 1) .. f(n− 2) n+ 1 f(n) .. f(2n− 2) f(2n− 1)

)

ii) Reflection applied in vertex:

rev(σ):(
1 2 .. n n+ 1 n+ 2 .. 2n 2n+ 1

f(1) f(2n+ 1) .. f(n+ 3) n+ 1 f(n+ 2) .. f(3) f(2)

)
If i⊕ j = 2 on group Z/(2n+ 1)Z⇒ f(i)↔ f(j)

iii)Reflection applied in the Edge Middle Point:

rem(σ):(
1 2 .. n n+ 1 n+ 2 .. 2n 2n+ 1

f(2n) f(2n− 1) .. f(n) n+ 1 f(n− 1) .. f(2) f(2n+ 1)

)
If i⊕ j = 0 on group Z/(2n+ 1)Z⇒ f(i)↔ f(j)
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In reflection operation applied on vertex, the elements f(n+2) e f(n+1) would switch their places,
however, we know that the element f(n+1) is a fixed element, thus, both remain in their places. In
case i = 1, f(i) would switch place with itself, for 1 + 1 = 2 ∈ Z/(2n+ 1)Z, therefore it also remain
without change. Geometrically, the line that contain the elements f(1), f(n+ 1) e f(n+ 2) defines
the symmetric axis by which we the Magic Polygon is reflected, and, as expect, such elements does
not change their positions.

In reflection operation applied on edge middle point, something similar occurs, the elements f(n+2)
e f(n + 1) would switch their places, however, once again f(n + 1) is fixed, therefore both remain
in their places. And the element f(2n+ 1) would switch place with itself, therefore remain with no
change. Again such elements stands in the symmetric axis by which the polygon is reflected.

Such operations are due to the Dihedral Group (Dn) that acts in the regular polygon where is built
the Magic Polygon. We note that in a Magic Polygon, what really matters, is the adjacent elements,
and the elements that lies in the end of the lines that defines the symmetric axis. In a Dihedral
Group, such arrangement is not affected. Therefore, every element of a Dihedral Group gives us a
distinct mode to represent exactly the same Magic Polygon. So we have the following proposition:

Proposition 3.1. Every Magic Polygon of n sides can be represented by 2n distinct ways.

Considering the way fo the numeration, defined above, and the definition of the ro operation, we
can see that such operation occurs in the counter-clockwise way. And the reflection is applied only
in two axis, one of them is defined by two vertex, and the another by two edge middle points.
However is known that a regular polygon has n symmetric axis, but there’s no loss of generality
here. Because the definition takes two axis that are like the “representatives” of the others, thus, if
a composition of operations is made, we can reflect the Magic Polygon in any symmetric axis, by
the following way:

rn−k
o (re(rko (σ))) (3.1)

where rk means the ro applied k times, where k is the numbers of times necessary for the choose
axis match one of those given in the definition. And rn−k

o make the axis back to its original
position. Because rn−k

o (rko (σ)) = rno = e (neutral element). Note that the Dihedral Group is not
commutative, so the order of the operations in 3.1 cannot be changed.

Taking as example the Polygon P (8, 2) showed in the Figure 1, if we applied the ro operation we
shall have:

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
15 11 1 12 14 5 8 16 9 3 7 17 6 4 13 10 2

)

ro(σ) =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
10 2 15 11 1 12 14 5 9 8 16 3 7 17 6 4 13

)
The Fig. 2 show both representations:

Again, taking the Magic Polygon P (8, 2), if we applying in it the reflection in the vertex, we have:
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Fig. 2. On the left σ, On the right ro(σ)

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
15 11 1 12 14 5 8 16 9 3 7 17 6 4 13 10 2

)

rev(σ) =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
15 2 10 13 4 6 17 7 9 3 16 8 5 14 12 1 11

)
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Fig. 3. On the left σ On the right rev(σ)

4 Derivatives Magic Polygons

By definition, the Magic Polygons, are built with the natural sequence from 1 to 2n + 1, and the
value n+ 1 is fixed in the geometric center of the polygon. But is easy to see that if any constant k
is added to every values in the Magic Polygon, the sum keeps constant, because, once x+ y+ z = u
so: (x+k) + (y+k) + (z+k) = u+ 3k and k ∈ Z. Technically this is not a Magic Polygon, because
according the definition, a Magic Polygon is strictly build with the values 1, 2, . . . , 2n+ 1.

An particular case is the null magic sum, this can be done by subtracting n+ 1 from every element
from a Magic Polygon, the Fig. 4 illustrates that.
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More generally, it is possible replace every value x in the Magic Polygon by x − th value from a
arithmetic progression that the sum keeps constant, this is proved in the Theorem below.

Theorem 4.1. Let σ an element of the symmetric group that represents a Magic Polygon, and be
a1, a2, a3 . . . , a2n,
a2n+1 an arithmetic progression where the first value is a0 and common diference r. The replace
of every f(i) por af(i), change the magic sum to 3(a1 + nr) and the value of the central point to
a1 + nr.

Proof. Is known that if a1 is the first term of an arithmetic progression, the n− th is: a1 + (n− 1)r
Let f(i) + c+ f(i+ n+ 1) = u any sum along the symmetric axis of the polygon, due the rotation
(ro), let’s suppose, without loss of generality f(i) > f(i + n + 1), where 1 < i < n. So we have
f(i) = c+k for some k positive, and f(i+n+1) = c−k, because as proved, f(i)+f(i+n+1) = 2c.
Once we have c = n+ 1 so:

f(i) = c+ k = n+ 1 + k
f(i+ n+ 1) = c− k = n+ 1− k (4.1)

Therefore, the replaces shall be:

f(i) → a1 + ((n+ 1 + k)− 1)r
f(i+ n+ 1) → a1 + ((n+ 1− k)− 1)r

c → a1 + ((n+ 1)− 1)r
(4.2)

i.e. c = a1 + nr, and the new sum shall be:

a1 + ((n+ 1)− 1)r + a1 + ((n+ 1 + k)− 1)r + a1 + ((n+ 1− k)− 1)r =
3a1 + nr + (n+ k)r + (n− k)r =

3a1 + (3n+ k − k)r =
3a1 + 3nr = 3(a1 + nr)

(4.3)

Now, we have to verify the sum along the edges. Let i, j, k ∈ {1, 2, 3 . . . 2n + 1} − {n + 1} where
f(i), f(j) e f(k) lies in the same edge, so: f(i) + f(j) + f(k) = u.

f(i) → a1 + (f(i)− 1)r
f(j) → a1 + (f(j)− 1)r
f(k) → a1 + (f(k)− 1)r

(4.4)

Therefore:
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a1 + (f(i)− 1)r + a1 + (f(j)− 1)r + a1 + (f(k)− 1)r =
3a1 + (f(i) + f(j) + f(k)− 3)r =

(4.5)

By hypothesis: f(i) + f(j) + f(k) = u = 3n+ 3, so we have:

3a1 + (3n+ 3− 3)r = 3(a1 + nr) (4.6)

If a1 = 1 and r = 1 we get the magic sum 3n+3 for the natural sequence {1, 2 . . . 2n+1} as we know.

Definition 4.1. The Magic Polygons built from an arithmetic progression that is not the natural,
as procedure described in the Theorem 4.1, are called Derivatives Magic Polygons.

Corollary 4.1. Let, m, c′ e r integers where m = 3k for some k ∈ Z and r 6= 0, and be n ≥ 6
even, so:

i) Exists a Magic Polygon of n sides built by an arithmetic progression of common diference r
and magic sum m;

ii) Exists a Magic Polygon of n sides built by an arithmetic progression of common diference r,
and central point c′ and magic sum 3c′;

Proof. Based on the Theorem 2.1 the Magic Sum is u = 3c⇒ c = k and u = 3k, therefore according
Theorem 4.1 is enough to get an arithmetic progression a1, a2, . . . a2n+1 of common difference r
where an+1 = k. So we have:

an+1 = a1 + ((n+ 1)− 1)rk = a1 + nr ⇒ a1 = k − nr (4.7)

This way, we have the common, r and the initial term a1 given by the relation above. Now we just
need to replace every value in a known Magic Polygon. The second case is the same, we just need
to change k by c′.

5 Finding Magic Polygons

Based in the Theorem 2.2, it was implemented in the C Programming Language using loops and
simple conditionals, programs to find all Magic Polygons up to 24 sides.

For each Magic Polygon of n sides, the algorithm has been implemented by declaring n integers
variables in an array, (in the C language: int f [n];), and aided by the for loop, the value of each
f [i] variable was changed from 1 to 2n + 1 and with the if() conditional, it was verified if the
current permutation attended the restrictions showed in the Theorem 2.2. If so, the permutation
was returned by the program and write in a plain text file. An auxiliary variable was initiated with
value 0 and was increased by one each time a permutation was found, this way the number of magic
polygons was counted.

Once each Magic Polygon can be represented in distinct ways, in virtue of the operation re and ro
here described, it would be desirable that the programs does not returned the same solutions many
times.
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By this way, the number 1 has been fixed as image of f(1), i.e. as a vertex, and a second time as
image of f(2), i.e. as a middle point of a edge. This way, a permutation σ is returned, but the
equivalents:

ro(σ), ro(ro(σ)), ro(ro(ro(σ))), . . . rn−1
o (σ) (5.1)

would not, for the value 1 won’t be the image of the others vertex, and they are: f(3), . . . f(n −
1), f(n + 2) . . . f(2n). This way, all Magic Polygons where 1 is vertex are found. However, 1 can
be middle point of an edge as well, thus running the program one more time, with the value 1 as
image of f(2), all Magic Polygons where 1 is middle point are found. Once 1 is necessarily a vertex
or a edge middle point, all possible Magic Polygons for the current n are found.

However such procedure does not avoid the representations rev(σ) and rem(σ) being returned, this
way, all Magic Polygons are returned by the programs twice, being necessary to divide by 2 the
quantity of Magic Polygons founded by the programs to know the real number. But by fixing 1 first
as vertex and second as a edge middle point, is avoided that n Magic Polygons Equivalents being
returned, because we can rotate the regular polygon n times until it back to its original position.

An example, for hexagon, the distinct solution are in number of 4, however, we can represent every
by 2n distinct modes, as mentioned, due the action of dihedral group. If no element is fixed, so the
program would return 48 permutations, with this optimization, only 8 is returned. This difference
for polygons with a major number of sides became relevant, because as we shall see, the number of
possibles Magic Possibles grows fast.

In order to provide examples, the tables below show all possibles Magic Polygons for the Magic
Hexagon and the Magic Octagon, for both, they are in number of four. For the others Polygons,
due the high number of possibles Magic Polygons, it would not be suitable to represent all in tables.

Possibilities for Magic Hexagon

# f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) f10 f(11) f(12) f(13)

1 1 8 12 4 5 3 7 13 6 2 10 9 11

2 1 9 11 4 6 2 7 13 5 3 10 8 12

3 8 1 12 5 4 11 7 6 13 2 9 10 3

4 9 1 11 6 4 12 7 5 13 3 8 10 2

Possibilities for Magic Octagon

# f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8)

1 1 10 16 5 6 14 7 3

2 1 11 15 2 10 13 4 6

3 14 1 12 10 5 15 7 16

4 16 1 10 14 3 11 13 12

According to Theorem 2.2, the possibilities for Magic Octagon are represented by a 8−permutation
of the set {1, 2, 3 . . . 16, 17}.

The table below show the quantities for all Magic Polygons up to 24 sides. According Theorem 4.1
we can obtain infinities Magic Polygons, but they shall be just relabelling of these built with the
sequence {1,2,3. . . 2n+1}.
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The column f(1) = 1 show all possibilities when 1 is a vertex, and the column f(2) = 1 show all
possibilities when 1 is a edge middle point.

n f(1) = 1 f(2) = 1 # n f(1) = 1 f(2) = 1 #

6 2 2 4 16 2.034 2.950 4.984

8 2 2 4 18 20.056 25.218 45.274

10 4 8 12 20 203.265 257.563 460.828

12 87 79 166 22 1.908.120 2.585.799 4.493.919

14 375 487 862 24 22.062.915 29.268.446 51.331.361

These programs has been executed on a Personal Computer in the Operational System Debian
GNU/Linux 11 with a 7.6 GB of RAM and the processor Intel Core i5-6200U 2.3 GHz Quad Core.

6 Conclusion

Basics but no trivials optimizations has been used in order to improve the algorithm. However,
further properties of the Magic Polygons can be helpful to create algorithm with even better
performance. By introducing the Magic Polygons as elements of the symmetric groups, some
possibilities appears, like the aid of the concepts in group group theory and others algebraic
structures to understand better such objects. However, such approach is still in an embryonic stage.
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