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This research work reports on pure and acid-treated fennel seed biomaterials for the removal of metal ions of copper Cu(II), lead
Pb(II), and methylene blue (MB) dye from aqueous solution by batch adsorption. Pure fennel seeds were labelled as PFS; nitric
and sulphuric acid-treated seeds were designated as NAFS and SAFS, respectively. The adsorbents were characterised by SEM,
EDX, FTIR, XRD, and BET. The SEM images revealed that the surface of the adsorbents was porous. However,
physicochemical characterization further revealed that BET surface area, pore size, and pore width increased for NAFS and
SAFS compared to PFS. FTIR results revealed that the peaks for cellulose −COC and −OH decreased considerably for NAFS
and SAFS; this indicated that cellulose was hydrolyzed during acid treatment. Adsorption data showed that all biomaterials
had a higher affinity for MB dye more than Pb(II) and Cu(II) metal ions. The maximum adsorption capacities onto PFS were
6.834, 4.179, and 2.902mg/g and onto NAFS are 15.28, 14.44, and 4.475mg/g, while those onto SAFS are 19.81, 18.79 and
6.707mg/g respective for MB dye, Pb(II), and Cu(II) ions. Postadsorption analysis revealed that adsorption of Pb(II) and
Cu(II) was controlled mainly by the electrostatic attraction, while that of MB was synergistic of electrostatic attraction, π-π
interaction, and hydrogen bond. It was found that the uptake processes of MB dye onto all adsorbents fitted Freundlich while
both cations were described by Langmuir model. The thermodynamic parameters ΔHo and ΔGo indicated the endothermic
nature and spontaneity of the processes, respectively.

1. Introduction

Pollution of water by harmful substances such as metals ions
and dyes is a serious challenge faced by this generation. Over
100 million people worldwide do not have access to safe
drinking water, and it is projected that this number will
double in the near future [1, 2]. Excessive discharge of toxic
metal ions and dyes into the environment and aquatic
bodies primarily originates from numerous anthropogenic
activities [3, 4]. Growing industrialization and urbanization
have resulted in large amounts of pollutants such as toxic
metals ions [copper Cu(II) and lead Pb(II)] and organic
dye [methylene blue (MB)] that have been frequently
encountered in water [5–7].

Copper, lead, and methylene blue are of importance in
numerous factories and firms such as paints, textile, batte-
ries, and mining. Copper is particularly identified as an
essential mineral in biochemical processes at trace amounts.
However, these substances are harmful to living organisms
at high concentrations. Drinking water containing these
toxic substances results in adverse health. Therefore, their
presence in water is of critical concern.

Pb(II) ions are toxic and nonbeneficial to the human
body. The maximum acceptable level of Pb(II) ions in drink-
ing water has been set to 0.01mg/L by the WHO [8]. Con-
centrations beyond the acceptable level are detrimental and
cause dysfunction of the liver, kidney, brain, and reproduc-
tion system; mental retardation, and damages to the central
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nervous system [9]. On the other hand, Cu(II) ions are ben-
eficial to the living organisms at low concentrations. The
maximum acceptable concentration of Cu(II) ions in drink-
ing water is 1.5mg/L [10]. However, at high concentrations,
Cu(II) causes stomach cramps, nausea, diarrhea metabolism
disorder, damage to the neurological system, liver, kidney
damage, and lungs [11]. MB dye has a poisonous effect on
living organisms and the environment [12–16]. Its toxic
effect includes mental disorder, vomiting, nausea, abdominal
pain, eye burns, tissue necrosis, and cyanosis [17–19].

The degree of health problems caused by these sub-
stances is alarming. For this reason, several conventional
technologies such as chemical, physical, and biological
methods were developed for wastewater treatment. These
includes filtration, advanced oxidation, flocculation and
coagulation, catalysis, photo and chemical degradation, and
adsorption [20]. However, due to low cost and easy opera-
tion, adsorption is the most appropriate and reasonable
choice for the removal of organic pollutants and inorganic
heavy metal ions from wastewater [21]. Adsorption is the
process that involves deposition of pollutants onto the sur-
face of the adsorbent, by interaction with functional groups
on the surface [22, 23]. Biosorption is a green technology
that typically employs agricultural materials as adsorbents
for the removal of various pollutants from aqueous solution
[24]. Agricultural and biogenic materials have attracted the
attention of many researchers worldwide [7, 25, 26] due to
the versatility shown by the materials in removing various
pollutants from water.

In recent years, a number of agricultural materials and
waste have been discovered for the removal of various pol-
lutants in water. These biosorbents are materials such as
paw-paw seeds [27], black cumin seeds [28], argan nut shell
[29], rice husk [30], Corncob [31], and banana peel [32].

Fennel (Foeniculum vulgaris) is a perennial flowering
plant species [33]. It belongs to a family of the Apiaceae
[34]. It is cultivated in many parts worldwide. It is because
the entire fennel plant is versatile; the leaves, seeds, stalks,
and bulb are edible [35]. However, its flowers are used in
the production of yellow and brown dyes [36]. For this
reason, fennel plant and seeds are readily available and
accessible. One of the commercial and traditional use of fen-
nel seeds is to make fennel tea/drink [37, 38]. Thereafter,
tons of used fennel seeds are disposed in the environment,
and this in the near future will cause unbearable pollution.
So the purpose of this study was to simulate the used fennel
seeds and further chemically treat the seeds and apply
them for the removal of Cu(II), Pb(II) ions, and MB dye
from water.

The fennel seeds have been extensively used in medicine
and culinary purposes [39–41]. This is because of the chem-
ical content of the seeds such as vitamins, essential oil com-
pounds, fiber protein, antioxidants, minerals, aroma, and
flavour [34, 42]. The major structural constituents of fennel
seeds are carbohydrates (51.5%), fats (33.5%), and proteins
(15.6%). The carbohydrates found in fennel seeds are mostly
lignocellulosic materials (hemicellulose, cellulose, and lig-
nin) and small amounts of other natural occurring sugars
[43]. Lignocellulosic materials are natural polymers, con-

taining variety of monomers, especially different sugar units
[35]. The structure of lignocellulosic materials consist abun-
dant functional groups such as (−OH), (−CO), (−COOH),
and (−C=C) which could be a good candidate for adsorption
processes. However, very little attention has been given
to fennel seeds as a potential adsorbent in the adsorp-
tion of pollutants.

The surface of agriculture materials has various func-
tional groups. However, efforts have been made to enhance
the adsorption performance of the materials. One process
that addresses this issue is chemical modification by agents
such as nitric acid [44] and sulphuric acid [45]. This pro-
motes the content of oxygen containing functional groups
and also increases the surface area as well as pore distribu-
tion on the surface of the material [46]. This results in the
enhancement of the adsorption capacity.

Prior to this study, no similar work on fennel seeds was
documented that reported on porous acid-treated fennel
seeds. Also, to date, most studies on fennel seeds have
explored the efficiency of removing pollutants primarily
the adsorption focused on single pollutant removal ([47,
48] [49–51]). However, in reality, water pollutants coexist
as mixtures in wastewater. No study has ever reported on
the feasibility of fennel seeds when multiple pollutants coex-
ist in solution. The targeted pollutants were selected due to
their persistence in natural resources such as water and soil.
The objective of this research work was to develop new
porous fennel seed adsorbents for the removal of Cu(II),
Pb(II), and MB from aqueous solution. The results from this
study will add new knowledge to the database of fennel seed
application in water treatment. The work also established
the kinetics, thermodynamics, isotherms, and equilibrium
studies of Cu(II), Pb(II), and MB towards fennel adsorbents.
The reusability test of the adsorbents was evaluated.

2. Methodology

2.1. Chemicals and Materials. Unprocessed fennel seeds
(brand: natural products) were purchased from Dischem
Pharmacy in Vaal Mall, Vanderbijlpark. The following
chemicals were used in this work: concentrated sulphuric acid
(H2SO4)—99.99%, concentrated nitric acid (HNO3)—70.00%,
lead nitrate (Pb(NO3)2)—99.95%, copper(II) nitrate
hydrate (Cu(NO3)2)·2H2O—99.95%, and methylene blue
(C16H18ClN3S)—95.00%. All chemicals were AR grade
and obtained from Sigma-Aldrich, Johannesburg, South
Africa.

2.2. Preparation of Biosorbents

2.2.1. Pure Fennel Seeds (PFS). Several packs of fennel seeds
were milled to a fine powder using a household blender. The
obtained powder was put in boiling water for 30min then
dried in the oven overnight then passed through a sieve
mesh of 0.8-1mm. Then, the sieved material was labelled
pure fennel seeds (PFS).

2.2.2. Sulphuric Acid-Treated Fennel Seeds (SAFS). Exactly,
100 g of PFS was weighed and transferred to a beaker con-
taining 1000mL and diluted H2SO4 solution (5M). The
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solution and material were stirred for 120min at room tem-
perature. Thereafter, the material was isolated and soaked in
distilled water several times to get rid of excess acid. After-
ward, the material was dried in an oven overnight. The
resultant material was labelled sulphuric acid-treated fennel
seeds (SAFS).

2.2.3. Nitric Acid-Treated Fennel Seeds (NAFS). Exactly,
100 g of PFS was weighed and transferred to a beaker con-
taining 1000mL and diluted HNO3 solution (5M). The solu-
tion and material were stirred for 120min at room
temperature. Thereafter, the material was isolated and
soaked in distilled water several times to get rid of excess
acid. Afterward, the material was dried in an oven overnight.
The resultant material was labelled nitric acid-treated fennel
seeds (NAFS).

2.3. Biosorption Procedure. A stock solution of 1000mg/L
containing Cu(II), Pb(II) ions, and MB dye was prepared
using respective salts. A stock solution was prepared by dis-
solving 1 g each of the following salts: Cu(NO3)2, (Pb(NO3)2,
and (C16H18ClN3S), in 1 L volumetric flask. The ratio of
Cu(II) : Pb(II) :MB in the stock solution was 1 : 1 : 1. Then,
the working standard solutions (20, 40, 60, 80, and 100mg/L)
were prepared from the stock solution (1000mg/L) by a series
of dilutions. Adsorption study of Cu(II), Pb(II), and MB onto
PFS, SAFS, and NAFS was done by varying parameters such
as the initial concentration of the solution, contact time, pH,
and temperature of the system. The initial concentration of
the solution was studied at 298K for 120min on working stan-
dard solutions (20, 40, 60, 80, and 100mg/L). Contact time was
evaluated at 298K at time intervals 5-120min on working stan-
dard solution 100mg/L. pH was tested at 298K for 120min at
various pH1-8 on working standard solution 100mg/L. The
temperature of the system was evaluated at 288, 298, and
308K for 120min on a working standard solution of
100mg/L. For each parameter, 10mg of the adsorbent was
transferred into 20mL of the specified working standard in
capped vials. To confirm repeatability of the results, the sam-
ples were prepared in duplicates, then agitated and rocked
on an orbital shaker at 200 rpm. After the time has elapsed,
the solid was separated from the solution by centrifugation
at 2500 rpm for 5min. The remaining supernatant solution
was run on AAS and UV-vis.

2.4. Adsorption Data Management. Adsorption capacity (qe)
and adsorption percentage (%A) of PFS, SAFS, and NAFS
towards Cu(II), Pb(II), and MB were determined by equa-
tions qe = ðCo – CeÞV/W and %A = ððCo – CeÞ/CoÞ × 100,
respectively. The symbols used in the equations for adsorp-
tion capacity and adsorption percentage are initial and final
concentrations (in mg/L) represented by Co and Ce. Symbols
v and W are, respectively, designated for the volume of the
solution (in mL) and the mass of the adsorbent (in mg),
and further experimental data were determined by using
adsorption kinetics, isotherms, and thermodynamics
(explained in details in supplementary materials: SM1).

3. Characterization

The adsorbents were characterized by SEM, EDX, FTIR,
XRD, and BET to determine the surface morphology, chem-
ical composition, functional groups on the surface of the
biomaterials, phase, and nitrogen adsorption-desorption,
respectively. SEM images and EDX spectra were taken on a
Nova Nano SEM 200 from FEI operated between 5 and
15.0 kV. Clean sample holder and forceps were used to glue
the sample on adhesive double-sided carbon conductive
tape. Fennel seed adsorbents are nonconductive; therefore,
a coating machine was used. Thereafter, the samples were
transferred into the SEM for analysis. Perkin Elmer FTIR/
FTNIR spectrum 400 (Massachusetts, USA) was operated
between 4000 and 500 cm-1 to affirm the functional groups
attached to the surface of the adsorbents. XRD spectra were
obtained from MAXima_X 7000 operated between 2theta
(10-60o). Micromeritics ASAP 2020 plus (Micromeritics
Instrument, Georgia, Corporation, USA) was used to deter-
mine the BET surface area of the biomaterial under nitrogen
adsorption-desorption; the sample was degassed for 12 hrs at
40°C. The concentration of MB dye before and after
adsorption was measured. A Thermo Scientific Evolution
220 UV-Visible spectrophotometer was used to measure the
concentration of MB before and after adsorption. Inductive
couple plasma spectroscopy (ICP) and Thermo Scientific
iCAP 7000 Plus Series ICP-OES spectrometer (Thermo Fisher
Scientific, Massachusetts, USA) using ASX-520 autosampler
were used to measure the solutions containing Pb(II) and
Cu(II) ions before and after adsorption.

4. Results and Discussion

4.1. Characterization

4.1.1. SEM Analysis. The surface morphology of the adsor-
bents was analyzed by SEM images shown in Figures 1(a)–
1(f). The images of PFS (Figures 1(a) and 1(b)) revealed that
the surface of pure biomaterial had pores and bulges of dif-
ferent shapes and sizes. Similar results were observed by [49,
51] reporting on fennel seeds. It was also observed that the
structure of the pure biomaterial was heterogeneous. How-
ever, upon nitric and sulphuric acid treatment in
Figures 1(c) and 1(d) (NAFS) and Figures 1(e) and 1(f)
(SAFS), respectively, refinements were observed. The images
of NAFS in Figures 1(c) and 1(d) revealed that acid treat-
ment entered the plant cell tissues and caused significant
structural changes. The surface has been transformed into
somewhat flaky arrangements that are horizontal and rela-
tively porous. Also, the images of SAFS in Figures 1(e) and
1(f) showed that acid treatment had caused damage to the
cell tissues. Thus, the inner surface was exposed and revealed
amorphous structure that had pores. However, the refine-
ments in SAFS were less compared to NAFS. Porous surfaces
are important in adsorption processes of metal ions and dyes
[52]. The main reason for the changes and refinements in
morphologies could be due to the hydrolysis of cellulose, lig-
nins, and hemicellulose in the biomaterial during nitric and
sulphuric acid treatment [53, 54].
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4.1.2. EDX Analysis. EDX analysis in Figures 2(a)–2(c) was
carried to evaluate the elements present on the biomaterials.
The plots indicate that carbon and oxygen (C and O) are the
dominant constituents. This is in full agreement with the
chemical composition of lignocellulose materials which are
the main ingredients of biomaterials generally. These ele-

ments are typically recorded in agriculture materials [55,
56]. The results for PFS (Figure 2(a)) also recorded the pres-
ence of phosphorus (P) and chloride (Cl). Telkapalliwar and
Shivankar, [57] reported similar results, and such elements
are naturally occurring in plant-based materials. The plots
of NAFS (Figure 2(b)) and SAFS (Figure 2(c)), moreover

(a) (b)

(c) (d)

(f)(e)

Figure 1: SEM analysis of pure ((a, b) PFS) and treated ((c, d) NAFS and (e, f) SAFS) fennel seed adsorbents.
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registered nitrogen (N) and sulphur (S), respectively. The
presence of these elements may be attributed to the pretreat-
ment of the biomaterial with nitric and sulphuric acids. This

resulted in nitrogen (N) and sulphur (S) groups been func-
tionalized to the treated biomaterials. The registered ele-
ments are compared in Table 1.
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Figure 2: EDX plots of pure ((a) PFS) and treated ((b) NAFS and (c) SAFS) fennel seed adsorbents.
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4.1.3. FTIR Analysis. The FTIR spectra of the biomaterials
are shown in Figure 3. It was observed that PFS had a peak
for the hydroxyl (-OH) group at 3291 cm-1. The peak for
(−OH) was linked to cellulose (−COC) content in the bio-
material around 1016 cm-1 [49]. However, both peaks signif-
icantly decreased in intensity and slightly shifted to high
wavenumber in NAFS and SAFS. The changes in the spectra
of NAFS and SAFS indicated that some of the components
especially lignocellulose materials were hydrolyzed from
the seeds during acid treatment [58]. The peak for
(−CH=CH) at 2993 cm-1 was observed in PFS and SAFS
but not in NAFS. The strong peaks for (−CH) stretch at
2927 and 2858 cm-1 were exhibited by all adsorbents; this
was associated with (−CH) vibration of the carboxylic group
[50]. PFS observed a peak for the carboxylic group
(−COOH) at 1587 cm-1. However, in both NAFS and SAFS,
the peak for (−COOH) shifted to 1623 cm-1. Carbonyl group
(−C=O) for amide was observed at 1738 cm-1 in all mate-
rials. A peak at 1306 cm-1 was observed in NAFS alone; this
might be due to the formation of nitrate (−NO) group on the
surface of the material [59]. A new peak was formed in
NAFS and SAFS at 1451 assigned to stretch of (−CO) group
for primary alcohol [48]. A newly developed peak at
1141 cm-1 in SAFS was attributed to the sulphonate (−SO)
group introduced into the material during pretreatment
([60]), while for NAFS the peak around 1141 cm-1 was
assigned to (−CO) group for primary alcohol.

4.1.4. XRD Analysis. The XRD results of PFS, NAFS, and
SAFS are shown in Figure 4. The diffraction peaks in PFS
at 19.89, 23.02, and 23.95o are characteristic to amorphous
cellulose in the biomaterial [58]. However, in NAFS and
SAFS, a sharp peak at 19.89o considerably decreased in
intensity while a doublet positioned at 23.02 and 23.95o dis-
appeared. This was due to hydrolysis of cellulose from the
biomaterial during nitric and sulphuric acid [61].

4.2. Physicochemical Characterization. The data in Table 2
show the results for physicochemical characterization of
the fennel adsorbents. pH(PZC) plays a vital role in adsorp-
tion processes; it influences the ionization state of the adsor-
bents. The data show that the values of pH(PZC) for PFS,
NAFS, and SAFS were found to be 7.53, 6.05, and 6.18,
respectively. The results for PFS were close to neutrality,
while those of NAFS and SAFS were slightly acidic. More-
over, the data revealed that BET surface area, pore size,
and pore width increased for NAFS and SAFS compared to

PFS. The obtained results suggested that NAFS and SAFS
may be efficient adsorbents in the uptake processes.

4.3. Adsorption Studies

4.3.1. Concentration Effect and Isotherm Studies. The influ-
ence of initial concentration on the adsorption of Pb(II),
Cu(II), and MB was evaluated on solutions 20-100mg/L at
298K in Figures 5(a)–5(c). The plots (Figures 5(a)–5(c))
showed that the uptake of the pollutants increased when
the initial concentration of the solution was increased [62].
Therefore, the adsorption of Pb(II), Cu(II), and MB onto
PFS, SAFS, and NAFS was concentration dependent. At
the initial concentration of 20mg/L, it was observed that
the mass transfer was low, due to hindering forces such as
high mass transfer resistance [63]. However, at the initial
concentration of 100mg/L, the chances of collision between
Pb(II), Cu(II), and MB with the adsorbent surface were
greater resulting in higher mass transfer [64]. It was
observed that all biomaterials had a higher affinity for MB
dye than for Pb(II) and Cu(II) metal ions. The maximum
adsorption capacities on 100mg/L solutions onto PFS were
6.834, 4.179, and 2.902mg/g for MB, Pb(II), and Cu(II),
respectively. Adsorption of pollutants from bulk solution
was controlled mainly by three steps: (i) film and particle
diffusions which involves movement of pollutants from the
solution to the exterior surface of the adsorbents and then
to the interior surface ([65]), (ii) pore diffusion whereby pol-
lutants were trapped in the pores on the surface of the adsor-
bent ([66]), and (iii) electrostatic attraction and pi (π)
interaction between MB and the adsorbents. Furthermore,
the maximum adsorption capacities onto NAFS for MB,
Pb(II), and Cu(II) were enhanced to 15.28, 14.44, and
4.475mg/g. However, for SAFS, the maximum adsorption
capacities further improved for all pollutants to 19.81,
18.79, and 6.707mg/g, respectively.

To evaluate whether the uptake processes followed the
Langmuir or Freundlich isotherm model, the value of r2

was used as the determining factor. The r2 values of Lang-
muir and Freundlich were compared, and the model that
gave the highest r2 and closer to unity (1) was the one con-
sidered. It was observed from Table 3 that the uptake pro-
cesses of MB onto all adsorbents had high r2 values for
Freundlich than Langmuir. The Freundlich model is linked
to the formation of multilayer of MB on adsorbent heteroge-
neous surfaces ([67, 68]), while the uptake processes of
Pb(II) and Cu(II) had high r2 values for Langmuir than
Freundlich. The Langmuir model is based on the premise

Table 1: EDX chemical composition comparison study of fennel seed adsorbents.

PFS NAFS SAFS
Element Percentage (%) Element Percentage (%) Element Percentage (%)

C 49.20 C 54.55 C 72.23

O 44.45 O 40.99 O 26.02

P 2.68 N 4.06 S 1.75

Cl 3.67 Cl 0.40 — —
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that monolayer adsorption was formed onto sites having an
equal affinity for both cations [69, 70].

4.3.2. Time Effect and Kinetic Studies. The efficiency of PFS,
SAFS, and NAFS was estimated at different time intervals, to
evaluate the uptake rate of each adsorbent towards Pb(II),
Cu(II), and MB within 5-120min (Figures 6(a)–6(c)). It
was observed that processes in Figures 6(a)–6(c) followed a
similar trend. Adsorption capacities of the adsorbents
increased when contact time was increased [71]. Also, the
removal rate of MB dye onto all adsorbents was rapid more
than that of Pb(II) and Cu(II) cations. In Figure 6(a), it was
observed that MB attained equilibrium faster and stabilized
within 40min, while the cations had a slow rate, both reach-
ing equilibrium in 60min. In Figure 6(b), the rate was higher
and MB attained equilibrium in the initial 30min while
Pb(II) and Cu(II) ions reached equilibrium in 40 and
60min, respectively. Thereafter, no significant increase was
recorded. In Figure 6(c), it was observed that both MB and
Pb(II) stabilized within the initial 40min while Cu(II) in
30min. It was observed that at the beginning of all the
adsorption processes removal rate was rapid and this could
be explained by the fact that abundant active sites, pores,
and surface were available [72, 73]. However, as the time
elapsed, the active sites were used and this resulted in little
to no adsorption recorded [74].

The data obtained from the effect of time was used to
estimate the kinetic mechanisms involved in the adsorption
of Pb(II), Cu(II), and MB on the biomaterials. In this work,
three adsorption kinetics models were determined: PFO,
PSO, and IPD in Table 4. To quantify the better fitted model
either PFO or PSO the value of r2 was used as the

Table 2: Physicochemical characterization of pure (PFS) and
treated (NAFS and SAFS) fennel seed adsorbents.

Adsorbent
BET

pH(PZC)Surface area
(m2/g)

Pore size
(cm2/g)

Pore width
(nm)

PFS 0.947 0.002759 1.55 7.53

NAFS 3.668 0.004920 2.80 6.05

SAFS 1.674 0.003519 2.69 6.18
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Table 3: Isotherm models for the adsorption of Pb(II), Cu(II), and MB onto pure (PFS) and treated (NAFS and SAFS) fennel seed
adsorbents.

Isotherms
PFS NAFS SAFS

MB Pb(II) Cu(II) MB Pb(II) Cu(II) MB Pb(II) Cu(II)

Langmuir

Qo (mg/g) 11.59 10.47 2.754 15.85 18.98 9.201 21.78 25.84 8.002

B 0.01531 0.06215 0.04680 0.1089 0.03282 0.08953 0.06925 0.01698 0.03618

r2 0.9696 0.9904 0.9951 0.9242 0.9980 0.9764 0.9689 0.9951 0.9974

Freundlich

1/n 0.5017 0.1229 0.1527 6.314 0.2942 0.2178 6.141 0.3018 1.142

kf 1.800 1.287 0.5593 5.372 1.176 0.1532 3.978 1.122 2.659

r2 0.9966 0.9498 0.9594 0.9990 0.9959 0.9879 0.9942 0.9939 0.9712

Experimental (qe) 6.834 4.179 2.902 15.28 14.44 4.475 19.81 18.79 6.707
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determining factor. Thereafter, r2 values of both models
were compared and the one that had the highest r2, closer
to unity (1), was considered. Data in Table 4 indicated that
all adsorption processes in this work had the highest r2

values for PFO than PSO. Therefore, PFO was the better
fitted model in the adsorption of Pb(II), Cu(II), and MB
onto PFS, NAFS, and SAFS. This indicated the processes
were more towards physisorption [75].

4.3.3. Diffusion Processes. The adsorption mechanism(s) of
Pb(II), Cu(II), and MB onto PFS, NAFS, and SAFS was fur-

ther investigated by different diffusion processes such as
intraparticle, film, and pore in (Table 5). It was observed that
the values for intraparticle particle diffusion rate (Ki) were
higher for PFS than for the treated adsorbents (NAFS and
SAFS), while the surface adsorption parameter (C) gave
higher values for NAFS and SAFS than PFS. This trend sug-
gests that surface adsorption was dominant on NAFS and
SAFS than PFS. This further indicates that there was reduced
rate of diffusion on the adsorbents surface, i.e., movement of
the pollutants from the exterior to the interior surface [76].
The calculated intraparticle diffusion coefficient (Di) for
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Figure 6: Time effect studies on the adsorption of Pb(II), Cu(II), and MB onto pure (a) PFS and treated (b) SAFS and (c) NAFS fennel seed
adsorbents (system parameters: temperature = 298K, pH = 7, working solution = 100mg/L, and adsorbentmass = 10mg).
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the adsorbents was in the range of 10-5 to 10-13; this suggests
that the uptake processes of Pb(II), Cu(II), and MB involved
chemisorption systems [77]. The data in the table revealed
that D1 was higher for NAFS and SAFS than PFS, and this
signified that film diffusion was also involved in the uptake
processes [78]. However, the obtained values for (D2) were
low in PFS; this showed that there was restriction of pollut-
ants in the internal surface of the adsorbent. For NAFS and
SAFS, the values for D2 were higher suggesting that pore
diffusion was involved in the uptake processes [79].

4.3.4. Temperature Effect and Thermodynamic Studies. The
effect of temperature on the sorption of Pb(II), Cu(II) ions,
and MB dye was evaluated at 288, 298, and 308K as shown
in Figures 7(a)–7(c). It was observed that all processes
(Figures 7(a)–7(c)) followed the same trends. The uptake of
all pollutants increased when the temperature of the system
was increased. The plots recorded a sharp increase in adsorp-
tion when the temperature of the system was increased from
288 to 308K. This revealed that the uptake processes were
endothermic in nature [20, 80]. The results indicated that tem-
perature increase had a positive effect on the uptake reactions.
Increasing the temperature of the system supplied the pollut-
ants with enough kinetic energy to overcome the hindering
forces such as mass transfer resistance [81]. Therefore, this
enhanced the adsorption processes.

Thermodynamic parameters Gibbs energy (ΔGo), stan-
dard enthalpy (ΔHo), and standard entropy (ΔSo) in

Table 6 were estimated from the data of temperature effect.
The obtained data for ΔHo had positive values; this sug-
gested that the adsorption of MB dye, Pb(II), and Cu(II) ions
onto used biosorbents was endothermic processes [82]. This
was in agreement with temperature effect results which
revealed that the reactions favored high temperatures. It
was also observed that the reactions had ΔSo values that were
negative this indicated reduced degree of freedom at the
solid-liquid at equilibrium [83]. The parameter ΔGo gave
negative values; this suggested that the reactions were spon-
taneous and feasible [21].

4.3.5. pH Effect. The pH of the solution is among the most
essential parameters in adsorption studies. It influences the
oxidation state of the pollutants in the solution and the sur-
face properties of the biomaterials [84]. Depending on the
solution pH, Cu(II) ions exist as different species such as
Cu(II), Cu(OH)+, Cu(OH)2, Cu(OH)3

−, and Cu(OH)4
2−

([22]), while Pb(II) ions can exist as Pb(II), Pb(OH)+,
Pb4(OH)2

4+, Pb3(OH)4
2+, and Pb(OH)2 [7]. Typically, MB

solution is constituted of positively charged unprotonated
cations [85]. Therefore, in this work, pH effect was evaluated
at pH1, 3, 5, 7, and 8 for the adsorption of Pb(II), Cu(II) cat-
ions, and MB dye on working standard 100mg/L at 298K as
shown in Figures 8(a)–8(c). The adsorption trend of PFS is
shown in Figure 8(a). It was observed from the plot that at
strong acidic conditions around pH1–3 the uptake of the
pollutants was low. This was because at pH1–3 effective

Table 4: Kinetic models for the adsorption of Pb(II), Cu(II), and MB onto pure (PFS) and treated (NAFS and SAFS) fennel seed adsorbents.

Models
PFS NAFS SAFS

MB Pb(II) Cu(II) MB Pb(II) Cu(II) MB Pb(II) Cu(II)

PFO

qe (mg/g) 6.800 5.277 3.143 15.01 14.09 4.893 19.04 19.51 6.483

K1 (min-1) 0.634 0.061 0.064 0.206 0.055 0.136 0.148 0.048 0.029

r2 0.971 0.983 0.971 0.976 0.995 0.976 0.982 0.991 0.986

PSO

qe (mg/g) 9.204 5.947 3.619 28.92 23.57 14.31 28.56 27.84 9.891

K2 (g/mgmin) 0.198 0.262 0.430 0.071 0.101 0.231 0.058 0.077 0.283

r2 0.943 0.944 0.968 0.963 0.967 0.944 0.978 0.951 0.934

Experimental (qe) 6.971 5.543 3.193 15.98 13.73 5.102 19.83 18.67 6.19

Table 5: Diffusion parameter for the removal of Pb(II), Cu(II), and MB onto PFS, NAFS and SAFS.

Diffusion model
PFS NAFS SAFS

MB Pb(II) Cu(II) MB Pb(II) Cu(II) MB Pb(II) Cu(II)

Intraparticle
diffusion

C (mg/g) 2.397 2.027 1.078 13.61 11.91 2.301 16.92 16.26 2.744

Ki (g/mg min0.5) 0.835 0.641 0.386 0.216 0.166 0.676 0.266 0.220 0.629

Di (cm
2/s) 4:8 × 10−6 4:1 × 10−6 2:2 × 10−6 2:7 × 10−5 2:4 × 10−5 4:7 × 10−6 3:4 × 10−5 3:3 × 10−5 5:6 × 10−6

r2 0.971 0.976 0.972 0.989 0.987 0.970 0.986 0.985 0.989

Film diffusion
D1 (cm

2/s) 3:1 × 10−8 2:6 × 10−8 1:3 × 10−8 4:0 × 10−8 3:2 × 10−8 2:5 × 10−8 5:0 × 10−8 4:3 × 10−8 3:1 × 10−8

r2 0.9774 0.9856 0.9723 0.9734 0.9788 0.9675 0.9754 0.9790 0.9682

Pore diffusion
D2 (cm

2/s) 1:6 × 10−8 1:5 × 10−8 1:1 × 10−8 2:3 × 10−7 2:0 × 10−7 2:1 × 10−8 2:8 × 10−7 2:8 × 10−7 2:5 × 10−8

r2 0.9432 0.9695 0.9698 0.9561 0.9556 0.9506 0.9521 0.9675 0.9570
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competition was high for active sites between protons (H+)
and pollutants [86]. The adsorption of (H+) protonated the
surface of the biomaterial and resulted in enhancing the repul-
sion forces between pollutants and adsorbent surface resulting
in low adsorption. However, when the pH of the solution was
increased to pH5, the uptake slightly increased. This could be
explained by the fact that at pH5 effective competition was less
and as such improved the uptake [62]. Further increase in
uptake was observed when the pH of the solution was
increased to pH7 and 8. This was because the surface of adsor-

bents was deprotonated, and this resulted in increased electro-
static interaction between the pollutants and functional groups
such as −OH−, −CO−, and -COC groups [87]. The adsorption
processes of SAFS and NAFS are shown in Figures 8(b) and
8(c), respectively. It was observed that the plots for SAFS and
NAFS followed the same pattern. At acidic conditions pH1,
3, and 5, the uptake of the pollutants was reduced. However,
the uptake significantly improved when the pH of the solution
was increased to 7 and 8. The adsorption of Pb(II), Cu(II) ions,
and MB dye onto PFS, SAFS, and NAFS was pH dependent.
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Figure 7: Temperature effect studies on the adsorption of Pb(II), Cu(II), and MB onto pure (a) PFS and treated (b) SAFS and (c) NAFS fennel
seed adsorbents (system parameters: working solution = 100mg/L temperature = 298K, pH = 7, contact time = 120 min, and adsorbent
mass = 10mg).
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Table 6: Thermodynamics for the adsorption of Pb(II), Cu(II), and MB onto pure (PFS) and treated (NAFS and SAFS) fennel seed
adsorbents.

Parameter
PFS NAFS SAFS

MB Pb(II) Cu(II) MB Pb(II) Cu(II) MB Pb(II) Cu(II)

ΔHo (KJmol-1) 3.665 2.723 2.397 9.275 8.028 3.818 18.75 16.05 5.916

ΔSo (Jmol-1 K-1) -9.820 -6.392 -4.682 -30.51 -25.96 -9.845 -64.76 -53.78 -17.26

ΔGo (KJmol-1) 288 K -7.230 -7.480 -8.796 -4.444 -4.959 -8.358 -5.464 -0.652 -7.635

298K -5.564 -6.508 -8.165 -0.718 -1.623 -6.949 -1.430 -4.222 -6.893

308K -5.636 -6.437 -8.029 0.574 -0.696 -6.748 -3.367 -10.14 -4.734
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Figure 8: pH effect on the removal of Pb(II), Cu(II), and MB onto pure (a) PFS and treated (b) SAFS and (c) NAFS fennel seed adsorbents
(system parameters: temperature = 298K, working solution = 100mg/L, contact time = 120 min, and adsorbentmass = 10mg).
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Figure 9: Effect of competing ions/molecules on the adsorption of (a) Pb(II), (b) Cu(II), and (c) MB onto pure fennel seeds (PFS) (system
parameters: temperature = 298K, working solution = 100mg/L, contact time = 120 min, and adsorbentmass = 10mg).

13Adsorption Science & Technology



4.3.6. Adsorption Mechanism. Establishing the adsorption
mechanism(s) is of great importance. This is dependent on
several factors such as the morphology and functional
groups present on the surface of the adsorbent, as well as size
and charge of the pollutant. The major structural constitu-
ents of fennel seeds are mostly lignocellulosic materials
(hemicellulose, cellulose, and lignin). The lignocellulosic
materials are natural polymers, containing repeating units
of monomers. The structure of lignocellulosic materials con-
sists abundantly of oxygen-rich functional groups such as
(−OH), (−CO), and (−COOH) which could be a good candi-
date for adsorption processes [35, 43]. Therefore, it was
anticipated that these functional groups were involved in
the uptake processes. It was observed in Scheme 1 that the
uptake of MB and the cations (Cu(II) and Pb(II)) was con-
trolled by different adsorption mechanism(s). The removal
of MB involved several processes such as (i) π-π interaction

between the aromatic rings [39, 41, 88, 89], (ii) electrostatic
attraction occurred positively charged (N+) from MB and
(OH) from lignocellulosic materials [90], and (iii) hydrogen
bonds formed by (N) molecules from MB and interacting
with (O) molecules from lignocellulosic materials ([91]),
while the uptake of both Cu(II) and Pb(II) was controlled
mainly by electrostatic attraction.

4.3.7. Effect of Competing Ions/Molecules on the Adsorption
of Pb(II), Cu(II), and MB. The effect of competing ions/mol-
ecules was studied in order to investigate the influence it had
on the adsorption processes. Figure 9(a) shows the adsorp-
tion of Pb(II) in the presence of competing ions/molecules
(Cu(II) and MB) at different concentrations. It was observed
that the adsorption potential of the adsorbent decreased
when the concertation of competing ions/molecules was
increased from 50 to 200mg/L in the solution. Moreover,
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Figure 10: FTIR spectra (a) PFS, (b) NAFS, and (c) SAFS before and after adsorption.
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considerably decline in qe was recorded when the competing
ions/molecules were 200mg/L. In the presence of Cu(II)
ions, qe declined from 4.02 to 3.54mg/g. When MB was dis-
solved in the solution, it declined to 2.94mg/g. This might be
explained by the fact the adsorbent had high affinity for
Cu(II) ions and MB dye. Also, when the adsorbate is held

on the surface of PFS; it had the shielding effect on the func-
tional groups [92]. This inhibited the electrostatic interac-
tion between Cu(II) and the adsorbent, thus decreasing the
adsorption capacity (qe) of the adsorbent [93]. Similar obser-
vation was recorded in (Figures 9(b) and 9(c)) for the
adsorption of Cu(II) and MB, respectively. In Figure 9(b),

(a) (b)

(c) (d)

(e) (f)

Figure 11: SEM images of pure ((a, b) PFS) and treated ((c, d) NAFS and (e, f) SAFS) fennel seed adsorbents after adsorption.
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the presence of Pb(II) ions decreased the adsorption of
Cu(II) from 2.96 to 2.41mg/g, while the introduction of
MB decreased the adsorption to 2.04mg/g. According to
Figure 9(c), the qe of MB (6.92mg/g) declined when Cu(II)
and Pb(II) ions were added to the MB solutions to 6.60
and 6.44mg/g, respectively.

4.4. Postadsorption Studies

4.4.1. FTIR Analysis. FTIR spectra of PFS, NAFS, and SAFS
were compared before and after adsorption. This was per-
formed in order to identify the functional groups account-
able for adsorption of the pollutants [94]. It was observed
in Figure 10(a) that PFS exhibited the peak for (–OH) at

3291 cm-1; however, after adsorption, the peak decreased in
intensity. The peak assigned to (–COOH) at 1587 cm-1

slightly shifted after adsorption to 1609 cm-1. A new peak
was developed after adsorption at 1455 cm-1. The peak for
(–COC) at 1016 cm-1 considerably decreased in intensity
after adsorption. The changes suggest that the functional
groups were involved in uptake processes, while other
groups such as (–CH=CH), (–CH), and (–C=O) remained
unchanged before and after adsorption implying that the
groups did not take part in the uptake. For NAFS in
Figure 10(b), the peak at 1141 shifted after adsorption to
1150 cm-1. The peak for (–COC) at 1016 cm-1 also shifted
to 1011 cm-1. Other functional groups remained unchanged.
For SAFS (Figure 10(b)), the peak for (–OH) was at
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Figure 12: Reusability test of pure (a) PFS and treated (b) NAFS and (c) SAFS fennel seed adsorbents towards the adsorption of Pb(II),
Cu(II) ions, and MB dye.
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3295cm-1. However, after adsorption, this peak significantly
decreased in intensity. The peaks for (–CO) and (–COC)
respective at 1243 and 1016cm-1 also decreased in intensity
after adsorption. Other functional groups remained unchanged.

4.4.2. SEM Analysis. The SEM images of the adsorbents after
adsorption were used to evaluate the stability of the adsorbents
as shown in Figures 11(a)–11(f). It was observed that the effect
of pollutants binding to the surface somehow caused changes
to the morphology of the adsorbents. Particularly for PFS
(Figures 11(a) and 11(b)) and SAFS (Figures 11(e) and 11(f
)), the pores on the surface were larger after adsorption com-
pared to before (i.e., PFS (Figures 1(a) and 1(b)) and SAFS
(Figures 1(e) and 1(f)). Similar observations were made in a
number of studies prior [95–97].

4.5. Reusability Test. The biosorbent reusability test was
evaluated over three reuse cycles. The reusability results are
shown in Figures 12(a)–12(c). After each cycle, the biosor-
bents were regenerated before reuse. It was observed in
Figures 12(a)–12(c) that the biosorbents lost some of the
adsorptive strength in consecutive cycles. This may be attrib-
uted to the inability of the biosorbents to desorb some of the
pollutants from the pores and surface during the regenera-
tion process; therefore, this resulted in low uptake in the fol-
lowing cycles.

4.6. Comparison Studies. The removal uptake of fennel seeds
was compared with similar biosorbents listed in Table 7. The
data shows that modified fennel seeds had good uptake than
other biosorbents towards Pb(II), Cu(II) ions, and MB dye.
The adsorbents used in this study are promising and have
a good uptake.

5. Conclusions

This work reports on biosorbent material of fennel seed
treatment with HNO3 and H2SO4 solutions for the removal

of MB dye, Pb(II), and Cu(II). SEM images established that
the surface morphology of the adsorbents was porous.
EDX analysis revealed that elements C and O were the dom-
inant constituents while trace amounts of P and Cl were
recorded. FTIR spectra confirmed the presence of (−OH),
(−COC), (−C=O), and (−COOH) groups on the surface of
the adsorbents. The results for the concentration effect
revealed that the uptake of the pollutants increased when
the initial concentration of the solution was increased. At
the initial concentration of 20mg/L, it was found that the
mass transfer was low, due to high hindering forces. How-
ever, at an initial concentration of 100mg/L, the chances of
collision between Pb(II), Cu(II), and MB with the adsorbent
surface were greater therefore; this resulted in higher mass
transfer. The maximum adsorption capacities on 100mg/L
solutions onto PFS were 6.834, 4.179, and 2.902mg/g for
MB, Pb(II), and Cu(II), respectively. However, onto NAFS,
the maximum adsorption capacities for MB, Pb(II), and
Cu(II) were enhanced to 15.28, 14.44, and 4.475mg/g, while
for SAFS the maximum adsorption capacities further
improved for all pollutants to 19.81, 18.79, and 6.707mg/g,
respectively. Thus, the uptake of pollutants onto PFS, SAFS,
and NAFS was concentration dependent. Isotherm data
established that the uptake processes of MB dye onto all
adsorbents fitted Freundlich while both cations were
described by the Langmuir model. It was found that adsorp-
tion increased when the temperature of the system was
increased. The thermodynamic parameter ΔHo had positive
values which indicated the endothermic nature of the pro-
cesses. The obtained values for ΔGo suggested that the
uptake was spontaneous and feasible.

Data Availability

The data supporting the findings of this study may be made
available from the corresponding author on request.

Table 7: Comparison studies of fennel seeds for the adsorption of MB, Cu(II), and Pb(II) with other agriculture biomaterials.

Adsorbent Pollutant qe (mg/g) pH Contact time (min) Concentration (mg/L) Ref

Treated fennel seeds (SAFS) MB 19.81 8 120 100 This study

Spent coffee grounds MB 18.70 5 12 hours 500 [98]

Black cumin seeds MB 16.85 4.8 120 100 [7]

Carbon from coir pith MB 5.87 6.9 120 50 [99]

Brewery waste MB 4.920 7 135 2.5 [100]

Treated fennel seeds (SAFS) Pb(II) 18.79 8 120 100 This study

Moringa stenopetala seeds Pb(II) 16.13 5 360 60 [101]

Black sapote seeds Pb(II) 5.50 9 48 hours — [102]

Bagasse fly ash Pb(II) 2.50 5 140 60 [103]

Banana peel Pb(II) 2.18 5 20 80μgmL-1 Anwar et al., 2010

Treated fennel seeds (SAFS) Cu(II) 6.707 8 120 100 This study

Watermelon rind Cu(II) 5.730 — 10 hours 10 [104]

Barley straw Cu(II) 4.640 7 240 10 [105]

Almond shell Cu(II) 3.620 6 120 50 [106]

Potato peels Cu(II) 0.3877 6 120 400 [107]
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