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Abstract

In this paper, Bayes estimators of the unknown shape and scale parameters of the Exponentiated
Inverse Rayleigh Distribution (EIRD) have been derived using both the frequentist and bayesian
methods. The Bayes theorem was adopted to obtain the posterior distribution of the shape and
scale parameters of an Exponentiated Inverse Rayleigh Distribution (EIRD) using both conjugate
and non-conjugate prior distribution under different loss functions (such as Entropy Loss Function,
Linex Loss Function and Scale Invariant Squared Error Loss Function). The posterior distribution
derived for both shape and scale parameters are intractable and a Lindley approximation was
adopted to obtain the parameters of interest. The loss function were employed to obtain the
estimates for both scale and shape parameters with an assumption that the both scale and
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shape parameters are unknown and independent. Also the Bayes estimate for the simulated
datasets and real life datasets were obtained. The Bayes estimates obtained under different
loss functions are close to the true parameter value of the shape and scale parameters. The
estimators are then compared in terms of their Mean Square Error (MSE) using R programming
language. We deduce that the MSE reduces as the sample size (n) increases.

Keywords: Lindley’s approzimation; posterior distribution; prior distribution; entropy loss function;
linex loss function; scale invariant squared error loss function.

1 Introduction

Rayleigh distribution originated from a two parameters Weibull distribution and it’s a suitable
model for modelling life-time data sets. Let the random variable T follows a Rayleigh distribution,
then the random variable x = % has an inverse Rayleigh distribution (IRD). The inverse Rayleigh
distribution (IRD) was introduced by [1] for modeling realibility and survival data sets. [2] studied
some properties of IRD and [3] discussed the properties and maximum likelihood estimation of
the scale parameter of IRD. The variance and the higher order moments of this distribution do not
exist. The reliability sampling plans of IRD was carried out by [4]. The probability density function
(PDF) of the one parameter IRD

f(z,a)zﬁe %), o>0,z>0. (1.1)

The closed-form expressions for the mean, harmonic mean, geometric mean, mode and the median
of IRD was discussed by [5]. The estimation of the parameter o using both different classical
and Bayesian estimation methods was carried out by [5] and [6]. In recent years, attention has
been shifted to the generalization of probability distribution theory, most applied in reliability
estimation [7, 8,9, 10]. The transmuted Rayleigh distribution and transmuted generalized Rayleigh
distribution were developed by [11, 12] respectively. [13] and [14] proposed a Beta Inverse Rayleigh.
The exponentiated inverse Rayleigh distribution (EIRD) also known as a life time distribution was
introduced by [15]. This distribution can be adopted for reliability estimation and statistical quality
control. The probability density function (pdf) of EIRD is written as
2 _

f(w):nge‘(%)z (1—6_(%)2)a 1; a>0,0>0,2z>0 (1.2)
where « is the shape parameter and o is the scale parameter and the exponential inverse exponential
distribution is denoted as EIED(«a, o). The inverse Rayleigh distribution is the particular case of
(1.2) for & = 1. The cumulative density function (cdf) is defined as

F(w)zl_(l_e%%z)“ a>0,0>0,z>0 (1.3)

Fig (1), (2), (3) and (4) shows the PDF, CDF, reliability function and hazard function of EIRD for
various values of both shape and scale parameters.

The reliability function is given by

R(z) = (176—&)2)" a>0,0>0,z>0 (1.4)
and the hazard function is
202 o a2y —1
h(z) = Z‘; e (5)? (1_e (z)2> ; a>0,0>0,z>0 (1.5)

In this article, we propose the Bayes estimators for shape and scale parameters of an EIRD under
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the Entropy Loss Function, Linex Loss Function and Scale Invariant Squared Error Loss Function
given that the scale and shape parameters are unknown. In Sections 2, we discuss the estimation
of the shape and scale parameters. In Section 3, numerical results are presented for both the
simulated and real-life data on survival times of patients with breast cancer, and Section 4 contains
the conclusion.

2 Materials and Methods

2.1 Maximum likelihood function

Let x = (1,2, ..., 2Zn) be arandom variable drawn from EIRD with size n. The likelihood function
for the given random sample can be expressed as

n n
4 o o -1
L(z/o,a) =2"c"a" [[ a2 (G- H (1 - e_(?)z)a (2.1)

i=1 i=1
The log-likelihood function of (2.1) is

InL(z,0,a) =nloga+2nlogo —3> " (logx) —

led

L) e+, (1-e ) (2:2)
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The maximum likelihood estimator of the shape and scale parameters o and « is obtained by
differentiating the (2.2) on parameters o and «. The maximum likelihood differential equations are:

n n g\2
OlnL(x/o) 2n 1 e (&)
gRAFI) —2021?4&0(0{—1)}

= — —_— 2.3
0o o = a2 (1 _ e—(%)z) 23)

OlnL - (=
%:g+;m(176 <m>2) (2.4)

equating (2.4) = 0, we will obtain the maximum likelihood estimate of &

—Nn

S (e @) -

substituting (2.5) in (2.3), we obtained an expression for the parameter o and equating to zero.

2n "1 —n = e (9’
UL Y N 1 S S — (2.6)
e S (e ) ) )

from (2.6), it’s clear that the equation is not in explicit form, so to obtain the estimates of parameters
o and « we solve the nonlinear equations (2.3) and (2.4) simultaneously. The estimated value for
parameters o and « can be obtained numerically using an iterative approach known as Newton
Raphson method [16, 17, 18]. The elements of the Fisher information matrix for the parameter o
and « can be expressed as

8%l(o,0)  02%l(o,a)
— o2 coa
Jo = 82?(0,04) 85)1((7,(1) (27)
doda da2

The Jacobian matrix must be a non-singular symmetric matrix so its inverse must exist. So, using
the Newton Raphson method we have

arty1 || aw F Blg’(f) '

with error term e being the absolute differences between the new and the previous value of ¢ and
« in the iterative algorithm. That is

| ewr(o) | | oker | | ok (2.9)
€kt1 (a) k41 Qg
where o, and ay are the initial values of o and « respectively.

2.2 The Bayesian estimation of the parameters of EIRD

In the estimation of EIRD parameters under Bayesian method, three types of loss function were
considered. The first is LINEX loss function (LLF) which is also known as linear-exponential loss
function which is asymmetric. [19] introduced the LLF and these loss function have been adopted
by several authors such as [20, 21, 22, 23, 24, 25] among many. The LLF rises approximately
exponentially on one side of zero and approximately linearly on the other side [26]. The second is
Entropy loss function (ELF) which was introduced by [27]. The ELF is an asymmetric loss function
which have been used by several authors like [28, 29, 30, 31]. These authors used ELF in its original
form by specifying ¢ to be equal to 1. The third loss function is scale invariant squared error loss
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function (SISLF) was introduced by [32] and it is also known as De-Groot loss function. The SISLF
has been used by several author such as [33, 34] The LLF can be expressed as

LLLFH(eT(é_g) —7(60—-0)—1) k>0,7#0 (2.10)

where 71 and k are the scale and shape parameters of the LLF. In this study, we assume that k=
1. Bayes estimator of the LLF is the value # that minimizes (2.10) [[35]].

n_ 1 —76
f=——m (Eg [e ]) (2.11)
provided that Fy [eiTe] exits.

The ELF is defined as
a\" 0\" 0
Lerr <0> x [<9> — plog (9) - 1} (2.12)

where p > 0. The minimum occurred at § = 6. If p = 1, as used by [28, 29], then (2.12) can be

expressed as R X R
Lerr <z> = {(Z) — log (Z) - 1:| (2.13)

The Bayes estimator of the ELF is the value § that minimizes (2.13) and can be expressed as
b=[E@0 )" (2.14)
[32] defined SISLF as
A\ 2
5 0—46
Lsrsrr(0,0) = <9> (2.15)

The Bayes’ estimates can be expressed as

1
OsisLr = if) (2.16)
E (g2)
To obtain the Bayes’ estimate of a and o, we need prior distribution for the parameters o and o.
For the two parameters we consider a non-informative prior for the shape parameter and a natural
conjugate prior for the scale parameter (with the assumption that the shape parameter is known).
Thus the proposed prior distribution for the parameters a and o can be expressed as

m1(a) = L a>0 (2.17)
«
ma(0) = ot et a>0,b>0,0>0 (2.18)

I'(a)
The joint prior distribution for the parameters a and o is

a
b a—1_—bo

m(a,0) = aT(@) o

a>0,b>0,a>0,0>0 (2.19)

To obtain the posterior distribution of the parameters a and o we substitute (2.1) and (2.19) in
(2.20)

L(a,o|z)m(a, 0)

Pr(a, S 2.20
Ha o) o 157 )T Lla, o|z)7(a, 0)0ado (2:20)
aon _n_mn o fed a—1
V2telal s g e p(C 0y (i (1 _ 6—(;)2) go—le—bo
Pr(o,olz) = (2.21)

- - a—1
150 % i1 z=3em DS [T, (1 - 67(3)2) o~le"7dado
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It’s noted that the posterior distribution (2.21) takes a ratio form that involves an integration in
the denominator and that the denominator can’t be reduced to a closed form. Thus to estimate
the posterior distribution (2.21) will be difficult. In other to estimate the posterior distribution we
will adopt the Lindley’s approximation suggested by [36] which treats the ratio of the integrals as a
whole which results to a single numerical result. Many authors have employed this approximation
for obtaining the Bayes estimators for some lifetime distributions; see among others, [31, 30, 37, 3§]
In this work, we compute E(;]z) and E(#7|z) in order to find the variance estimates given by

Var(i|z) = E(0f|z) — (BE(0:]z))*  i=1,2 (2.22)

where 01 = o and 0> = « If n is sufficiently large, according to [36], any ratio of the integral of the

form ooy (o)
_ [ Ju(o,a)e’t PN dada
I(z) = Efu(o, )] = [ [ el arie doda (2.23)
where u(o,a) is a function of ¢ and « only, I(o, @) is the log-likelihood and p(o, @) is the log of
prior distribution 7 (o, @) Thus, for the unknown parameter o the Lindley’s approximation is

Elu(o, o)|z = u(,4) + %(Un(ﬁu) + prurir + %(L?»Oulaﬁl) + %(L12u1¢11¢22) (2.24)

where u(6, &) = % Also, for the unknown parameter o the Lindley’s approximation is

Elu(o, )|z = u(6,a) + %(Umtﬁzz) + pauzpoz + %(L03u2¢§2) + é(L21U2¢11¢22) (2.25)

where u(6,6) = +

All the quantities in the above expression of I(x) have the following representations:

9" 1(o, ) .
Ly =2_22% i =0,1,2,
J dotoad $3=0 3
8®l(o, a)
L f— 7’ f—
12 Ooda? 0
il e(2) il (2)

l(o,a)  2n
fao="50 ~ &
0%l(o, ) 2n = (1)2 _ e(2)
Log=20%29 _ 20 9N~ (1) {21 _
20 o2 o2 ; x (a ); z2 (1 (%)
ne(2) no e (8)
— 402 c 4o — 1)0?
izzl (l—e(%)z) i=1 x2 (1—@(%)2)
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Lo — 82l(a,a) _.n
27 THaz T T a2
[ 2*l(o, a) 2n
07 T 98 1%
1
¢11 = T
and
1
P22 = 102

The values of the Bayes estimates of parameters o and « can now be obtained.

a. Case of the LINEX loss function (LLF')

i For the parameter o, let u(é,&) = e % then u1 = —ke " and u1; = k%e™ %,

UuU22 :0

U =

. 1| _us 1 1 1
OLLF = % |:€ ke 4 §U11¢11 + pruigi1 + §L30U1¢)§1 + §L12U1¢11¢122:| (2.26)

—k&

ii For the parameter o, let u(é,&) = e " then us = —ke and uge = kZe k¢,

U1ZU11:0

. 1] s 1 1 1
QLLr = —¢ {6 ke §u22¢22 + pauzpoa + §L03U2¢>§2 + §L21U2¢11¢22} (2.27)

b. Case of the Entropy loss function (ELF)

i For the parameter o, let u(6,&) = % then uy = —% and w11 = %, Us = Uo2 =0
-1
. 1 1 1 9 1
opLr = | =+ §u11¢11 + prurgir + §L30U1¢11 + §L12u1¢>11¢22 (2.28)
ii For the parameter «, let u(é,&) = é then us = fﬁ and uoo = %, ur =u11 =0
11 1 1 -t
AELF = |:a + §u22¢22 + pau2po + §L03U2¢§2 + §L21u2¢11¢22:| (2.29)

c. Case of the scale invariant squared error loss function (SISLF)

i For the parameter o, let u(6,4&) = % then u; = —é and u1; = U%, us = u22 = 0 and
kA oAy 1 * 2 * 6 koK
also let u*(6,4) = = then u] = -5 and uj; = ~5 Uz = Uz = 0

[012 + %uﬁ(ﬁu + pruidn + %L?)Ouffﬁl + %L12UT¢)11¢22]
[% + %U11¢J11 + pruigi1 + %L30U1¢%1 + %L12u1¢11¢22]

GSISLF = (2.30)

2
o3

* *

ii For the parameter «a, Let u*(6,4&) = % then u5 = —% and u3y, = ul =uj; =0
o

(14’

and also let u(6,d) = é then us = —a% and uos = %, ur =u11 =0

[é + Ludsdon + pausdan + S Losubdss + %L21U§¢11¢22]
[+ + Su22doz + pauzdar + 5 Losuid3, + 5 Loiuadiidas]

asrsLr = (2.31)
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3 Analysis

3.1 Monte Carlo Simulation

In this section, we simulated a random sample of sizes n = 30, 50, 100 and 200 from an EIRD with
parameters o = 0.5,1.5 and 2, a = 0.5 and 0.8, kK = 1 and 2. The results were replicated 10,000
times and the average result were presented in the tables using R Software. Monte Carlo method
is any computational approach psuedo-random number solve a mathematical problems as defined
by [39]. Thus the numerical approach follows

1. For known parameters values (o, «), we simulated a random sample of size of n from EIRD
using the quantile function of the EIRD distribution is given by

\/—log (1-a-v=)

. We then estimate the shape parameters o using Bayesian approach

Q) = (3.1)

2
3. We then estimate the shape parameters o using Bayesian approach
4. Perform 10,000 repititions of step 1-2

5. We compute the MSE

The results were replicated 10,000 times and the average result were presented in the Tables 1-
4. To examine the performance of Bayesian estimates for both shape and shape parameter of
Exponentiated Inverse Rayleigh Distribution under different loss functions, the estimate and MSE
values obtained by the method of MLE, LLF, ELF and SISLF are shown in Tables 1-4.

Table 1. Estimates of the parameters of the four methods MLE, LLF, ELF and
SISLF with their MLEs

n | Paramet MLE LLF ELF SISLF
a o o o o o o (4 a o
20 | 05 | 05| 03277 | 03037 | 0.5298 | 05417 | 05280 | 05320 | 05212 | 0.5195
a=13 (0.0708) | (0.0759) | (0.0155) | (0.0269) | (0.0114) | (0.0272) | (0.0105) | (0.0273)
b=1 | 12| 05720 | L5060 | 05232 | 12292 | 05204 | 13145 | 05148 | 1.3401
=2 (0.0754) | (0.4735) | (0.0061) | (0.2287) | (0.0060) | (0.2605) | (0.0058) | (0.3204)

2 | 037725 | 1.0128 | 05190 | 2.1340 | 0516 | 22064 | 05119 | 2.3326
(0.0561) | (0.3028) | (0.0047) | (0.8753) | (0.0047) | (0.9440) | (0.0045) | (1.3331)
1 25| 0.8240 | 16145 | 1.0464 | 2.8056 | 1.0396 | 27898 1.0306 | 3.0045

a=0.5 (0.1107) | (0.5340) | (0.0183) | (1.6256) | (0.0178) | (1.7014) | (0.0171) | (2.5415)
b=15| 1 | 11475 | 08599 | 1.0582 | 11127 | 10495 | 1.0791 | 1.0371 | 1.0870
k=05 (0.1800) | (0.2520) | (0.0310) | (0.1654) | (0.0272) | (0.1579) | (0.0257) | (0.1874)

15 | 11328 | 21407 | 1.0505 | 1.6725 | 1.0424 | 1.6376 | 1.0327 | 1.6994
(0.1398) | (0.7288) | (0.0226) | (0.4472) | (0.0219) | (0.4476) | (0.0209) | (0.5825)
50 | 05 | 05| 04793 | 04612 | 05024 | 05033 | 05022 | 05021 | 05015 | 0.50033

a=1.3 (0.0565) | (0.0766) | (0.0015) | (0.0018) | (0.0009) | (0.0018) | (0.0008) | (0.0018)
b=1 [ 12 | 04947 | 11250 | 05086 | 12271 | 05075 | 12341 | 05051 | 12374
=2 (0.0452) | (0.2167) | (0.0021) | (0.0060) | (0.0021) | (0.0638) | (0.0021) | (0.0677)

2 | 04996 | 1.9006 | 05073 | 2.0271 | 0.5063 | 2.0660 | 0.5044 | 2.1009
(0.0408) | (0.408T) | (0.0016) | (0.2017) | (0.0017) | (0.2256) | (0.0016) | (0.2544)
1 25| 11066 | 29527 | 1.0179 | 2.6076 | 1.0151 | 2.5940 | 1.0115 | 2.6571

a=2.3 (0.0817) | (0.6750) | (0.0064) | (0.4002) | (0.0063) | (0.4056) | (0.0062) | (0.4714)
b=1 | 1 | 11063 | 12834 | 10226 | 10421 | 1.0190 | 1.0276 | 1.01401 | 1.0251
k=05 (0.0976) | (0.2524) | (0.0102) | (0.044) | (0.0096) | (0.0427) | (0.0094) | (0.0444)

15| 1.0139 | 18878 | 1.0204 | 15667 | 1.0171 | 1.5494 | 1.0127 | 1.5626
(0.0788) | (0.3849) | (0.0077) | (0.1115) | (0.0076) | (0.1093) | (0.0074) | (0.1189)
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Table 2. Estimates of the parameters of the four methods MLE, LLF, ELF and
SISLF with their MLEs

n Parameter MLE LLF ELF SISLF
o a o [ o « o a 4 a
100 0.5 0.5 | 0.5862 0.5640 0.5052 0.5072 0.5049 0.5048 0.5035 0.5014
a=1.3 (0.0453) | (0.067) | (0.0030) | (0.0036) | (0.0018) | (0.0037) | (0.0018) | (0.0037)
b=1 | 1.2 | 04559 1.2014 0.5041 1.2129 0.5035 1.2159 0.5023 1.2166
k=2 (0.0281) | (0.1609) | (0.0010) | (0.0281) | (0.0010) | (0.0291) | (0.0010) | (0.0298)

2 | 0.458 | 19313 | 05034 | 2.0102 | 05029 | 2.0303 | 05020 | 2.0457
(0.0253) | (0.2830) | (0.0008) | (0.094) | (0.0008) | (0.1003) | (0.0008) | (0.1061)
1 25 | 10481 | 23789 | 1.0081 | 2.5512 | L0067 | 25431 | 10048 | 25716

a=1.5 (0.0553) | (0.3622) | (0.0030) | (0.1775) | (0.0030) | (0.1781) | (0.0029) | (0.1917)
b=1 1 1.1096 1.0723 1.0108 1.0205 1.0090 1.1096 1.0065 1.0117
k=10.5 (0.0714) | (0.1424) | (0.0045) | (0.0197) | (0.0044) | (0.0192) | (0.0044) | (0.0196)

15| 09254 | 12725 | L0112 | 15332 | L0095 | 15242 | L0073 | 1.5295
(0.0566) | (0.1728) | (0.0038) | (0.0498) | (0.0037) | (0.0491) | (0.0036) | (0.0511)
200 | 05 | 05| 0.4926 | 04769 | 05024 | 05038 | 05024 | 05023 | 05017 | 0.5001

a=13 (0.0285) | (0.0393) | (0.0017) | (0.0018) | (0.0009) | (0.001S) | (0.0008) | (0.0018)
b=1 | 12 | 05350 | 13687 | 05018 | 12051 | 0.5015 | 12065 | 0.5009 | 1.2066
=2 (0.0230) | (0.1349) | (0.0005) | (0.0135) | (0.0005) | (0.0137) | (0.0005) | (0.0139)

2 | 05323 | 23485 | 05015 | 2.0024 | 05013 | 2.0124 | 05001 | 2.0196
(0.0205) | (0.2590) | (0.0004) | (0.0456) | (0.0003) | (0.0471) | (0.0004) | (0.0484)
1 25 | 1.0183 | 27745 | 10041 | 2.5210 | L0034 | 25172 | L0025 | 25296

a=25 (0.0374) | (0.3128) | (0.0015) | (0.0818) | (0.0015) | (0.0819) | (0.0015) | (0.0845)
b=1 [ 1 | 1053 | L0707 | L0054 | 10093 | 1.0044 | 1.0056 | 10032 | 1.0047
k=05 (0.0474) | (0.0995) | (0.0022) | (0.0092) | (0.0021) | (0.0091) | (0.0022) | (0.0091)

15| 10161 | 16512 | 10050 | 15162 | 1.0042 | 15117 | 1.0031 | 15140
(0.0416) | (0.1681) | (0.0018 | (0.0242) | (0.0018) | (0.0240) | (0.0018) | (0.0244)

3.2 Application to Coating weight by chemical method on Tcs and
Bcs.

In this section, the EIRD is applied to two (2) real data sets which were gotten from [15]. The first
data set was a 72 observations on coating weight by chemical method on top center side (TCS) and

the second data set was 72 observations on coating weight by chemical method on bottom center
side (BCS).

For the Tcs data

36.8 47.2 35.6 36.7 55.8 58.7 42.3 37.8 55.4 45.2 31.8 48.3 45.3 48.5 52.8 45.4 49.8 48.2 54.5 50.1
48.4 44.2 41.2 47.2 39.1 40.7 40.3 41.2 30.4 42.8 38.9 34.0 33.2 56.8 52.6 40.5 40.6 45.8 58.9 28.7
37.3 36.8 40.2 58.2 59.2 42.8 46.3 61.2 58.4 38.5 34.2 41.3 42.6 43.1 42.3 54.2 44.9 42.8 47.1 38.9
42.8 29.4 32.7 40.1 33.2 31.6 36.2 33.6 32.9 34.5 33.7 39.9

For the Bcs

45.5 37.5 44.3 43.6 47.1 52.9 53.6 42.9 40.6 34.1 42.6 38.9 35.2 40.8 41.8 49.3 38.2 48.2 44.0 30.4
62.3 39.5 39.6 32.8 48.1 56.0 47.9 39.6 44.0 30.9 36.6 40.2 50.3 34.3 54.6 52.7 44.2 38.9 31.5 39.6
43.9 41.8 42.8 33.8 40.2 41.8 39.6 24.8 28.9 54.1 44.1 52.7 51.5 54.2 53.1 43.9 40.8 55.9 57.2 58.9
40.8 44.7 52.4 43.8 44.2 40.7 44.0 46.3 41.9 43.6 44.9 53.6 The data is summarized in Table 3.

Table 3. Estimates of the parameters of the four methods MLE, LLF, ELF and
SISLF with their MLEs for the real life datasets

a=3.b=4andk=2

Data MLE LLF ELF SISLF

o o L o a o a o
Tes | 73.0125 | 13.1818 | 71.3211 | 12.2881 | 63.1867 | 12.9207 | 71.3211 | 12.9014
Bes | 78.5689 | 12.2331 | 76.9089 | 17.0602 | 69.1793 | 17.8291 | 70.1575 | 17.8466
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4 Conclusion

In this work, we consider the classical method and Bayesian method under different loss functions
such as Entropy Loss Function, Linex Loss Function and Scale Invariant Squared Error Loss
Function. We employed the Bayesian techniques to obtain the posterior estimates of an EIRD using
both conjugate and non-conjugate prior distribution under different loss functions and adopted the
maximum likelihood approach to estimate the two parameter of interest. Fig. 1. shows that
the PDF of the EIRD distribution at varying parameter values which shows that the distribution
is positively skewed and the Fig. 2. is the CDF which shows the increasing pattern as other
distributions. Fig. 3. shows the reliability graph which proves that the distribution can be used in
lifetime studies since the graph tends to decrease as the time increases. Fig. 4. shows the hazard
graph which shows the upside down bath-tub curve shape.

Table 1 and 2 shows the posterior estimates with MSE under different loss functions for the simulated
datasets. Table 3, shows the posterior estimate on the real life dataset (coating weight by chemical
method on top center side (TCS) and bottom center side (BCS))for different prior distribution
under different loss functions

Based on the results displayed in Tables 1 and 2, we observed that all the posterior estimates for both
shape and scale parameters for the simulated datasets are close to the true values of parameters of
an EIRD. Also, we discovered the methods are consistent since the values of MSE decrease as sample
size increases. It can be observed that the Bayesian estimates for both scale and shape parameters
under the Bayesian techniques perform better than that of the classical techniques . The results
obtained under the loss function ELF were quite more efficient than others loss functions because
of its smallest MSE.
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