

Asian Journal of Advanced Research and Reports

Volume 17, Issue 2, Page 19-29, 2023; Article no.AJARR.93199 ISSN: 2582-3248

Basic Properties of Buys-ballot Seasonal Variances Estimates for Choice of Models in Time Series

Kelechukwu C. N. Dozie^{a*} and Christian C. Ibebuogu^b

^a Department of Statistics, Imo State University, Owerri, Imo State, Nigeria. ^b Department of Computer Science, Imo State University, Owerri, Imo State, Nigeria.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJARR/2023/v17i2466

Open Peer Review History: This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: <u>https://www.sdiarticle5.com/review-history/93199</u>

Original Research Article

Received: 15/09/2022 Accepted: 02/11/2022 Published: 31/01/2023

ABSTRACT

This article presents basic properties of Buys-Ballot estimates for seasonal variances for the mixed,
multiplicative and additive models in time series. The emphasis is to characterize the basic
properties of seasonal variances for purpose of choice of model. In this article, the method of
seasonal variances with illustrative examples for choice of suitable models in time series
decomposition is also considered. Results show that, seasonal variances of the Buys-Ballot
estimates are for additive model 1) a product of trending parameter only 2) It is a product season j
through the square of the seasonal indices S_j^2 and parameters through the square of the
seasonal averages $\begin{pmatrix} -2 \\ X_{.j} \end{pmatrix}$ for multiplicative model 3) A constant multiple of the square of the
$\begin{bmatrix} \mathbf{A} \\ j \end{bmatrix}$
seasonal averages \ for multiplicative model 3) A constant multiple of the square of the
seasonal indices $\left(S_{j}^{2}\right)$ for mixed model.
seasonal indices (for mixed model.

*Corresponding author: Email: kcndozie@yahoo.com;

Keywords: Buys-ballot method; decomposition model; linear trend; seasonal variance; choice of model.

1. INTRODUCTION

One of the greatest problems identified in the use of descriptive method of time series analysis is choice of suitable model for decomposition of any study data. That is, when to use any of the additive, multiplicative or mixed model for analysis is uncertain. And it is clear that; use of wrong model will definitely lead to erroneous estimates of the component.

Decomposition models are typically additive or multiplicative, but can also take other forms such as pseudo-additive (combining the elements of both additive and multiplicative models). For short series, the cyclical is embedded in the trend Chatfield [1] and the observed time series $(X_t, t = 1, 2, ..., n)$ can be decomposed into the trend-cycle component (M_t) , seasonal component (S_t) and the irregular component (e_t) . Therefore, the decomposition models are

Additive Model

$$X_{t} = M_{t} + S_{t} + e_{t}$$
(1)

Multiplicative Model

$$X_t = M_t \times S_t \times e_t \tag{2}$$

and Mixed Model

$$X_t = M_t \times S_t + e_t. \tag{3}$$

The most use method for choice of model in time series decomposition is the graphical method. Brockwell and David [2] proposed the use the time plot of the entire series to choose a particular model for decomposition. Chatfield [1] employed the run sequence plot (time plot) is to choose between additive and multiplicative model. But there was no statistical test to justify the decision rule. The method of coefficient of variation of seasonal differences and quotient was proposed by Justo and Rivera [3]. The seasonal differences was calculated by taking the difference between a certain season of a period and the same season from the period before while the seasonal quotient was calculated as the quotient of a certain season of

the period and the same season from the period before.

In the framework for choice of model and detection of seasonal indices in time series, Iwueze and Nwogu [4] showed that when the trend cycle component is linear, the seasonal variances of the Buys-Ballot are constant for the additive model, but contain the seasonal indices for the multiplicative model. Therefore, choice between additive and multiplicative models reduces to test for constant variance can be used to identify the additive model. Therefore, they suggested that any test of constant variance can be used to identify the test that admits the additive model. This is an improvement over what is in existence. However, this approach can only identify the additive model when the column variance is constant, but does tell the analyst the alternative model when the variance is not constant. For additive, multiplicative and mixed models and linear trending curve studied, the seasonal variances in equations (4), (5) and (6) are functions of both trending series for additive model. Multiplicative and mixed models are functions of trending parameters and seasonal indices.

This article aims to bring clarity to this topic by (1) determining the basic properties of the seasonal variances. (2) choosing the appropriate model by the method of seasonal variances.

2. METHODOLOGY

The Buys-Ballot estimates of seasonal variances for the additive, multiplicative and mixed models derived by Iwueze and Nwogu [4] and Dozie [5] are shown in equations (4), (5), and (6).

For Additive Model:

$$\sigma_{.j}^{2} = \frac{b^{2}n(n+s)}{12} + \sigma_{1}^{2}$$
(4)

For Multiplicative Model:

$$\sigma_{j}^{2} = \left[\frac{b^{2}(n^{2}-s^{2})}{12} + \left[a+b\left(\frac{n-s}{2}\right)+b_{j}\right]^{2}\right]S_{j}^{2}\sigma_{2}^{2}$$
 (5)

For Mixed Model:

$$\sigma_{j}^{2} = \frac{b^{2} n(n+s)}{12} S_{j}^{2} + \sigma_{1}^{2}$$
(6)

For easy understanding of equations (4), (5), and (6), **n** is the total number of observations, **s** is the seasonal lag (number of columns), **b** is the slope, s_j is the seasonal indices, σ_1^2 is the error variance, assumed equal to 1, σ_2^2 the error variance is not known and needs to be estimated from time series data. For details of Buys-Ballot procedure, see lwueze and Nwogu [4], Dozie [5], Nwogu et al. [6], Dozie et al. [7], Dozie and Ijeomah [8], Dozie and Nwanya [9], Iwueze and Nwogu [10], Dozie and Uwaezoke [11], Dozie and Ibebuogu [12], Dozie and Ihekuna [13].

From equations (4), (5) and (6), we observed that, the Buys-Ballot estimates of mixed multiplicative and additive models are not the same. In particular, while the seasonal variance of the Buys-Ballot estimate is a function of *jth* season for multiplicative model. It depends on slope for both mixed and additive models.

2.1 Characteristics of Seasonal Variances in Time Series Analysis

2.1.1 For additive model and equation (5)

- (1) a product of trending parameter only
- (2) It is a function of slope
- (3) The error variances is not known, it needs to be estimated from data

2.1.2 For multiplicative model and equation (7)

- (1) it depends on the seasonal indices (S_j^2) of the jth column
- (2) A quadratic multiple of the square of the seasonal indices (S_j^2) . The quadratic is in j (3) It is a product season j through the square of the seasonal indices (S_i^2) and

parameters through the square of the seasonal averages $\left(\begin{array}{c} -2 \\ X_{.j} \end{array}
ight)$

2.1.3 For mixed model and equation (9)

- (1) It is a product slope of seasonal indices
- (2) It is a column specific
- (3) A constant multiple of the square of the seasonal indices $\left(S_{j}^{2}\right)$
- (4) The error variance is assumed equal to 1

These characteristics are what could be used for choice of appropriate model for decomposition of study series.

3. CHOICE BETWEEN MIXED AND MULTIPLICATIVE MODELS

For the purposes of choosing the appropriate model for decomposition, an analyst only needs to look at seasonal variances of the series. Hence, test for the choice between mixed and multiplicative models is based on the seasonal variances of the Buys-Ballot table.

Its is clear from equation (9) that the seasonal variances, which is depends only on the constant multiple of the square of the seasonal effect for the mixed model, will aid the choice model, because it is only one that is easily amenable to statistical test.

3.1 Chi-Square Test

To choose between mixed and multiplicative models, Nwogu, et al. [5] and Dozie, et al. [6] conducted Chi-Square test in seasonal variance of Buy-Ballot table for mixed model Therefore, test null hypothsis is thus,

$$H_0: \sigma_i^2 = \sigma_{zi}^2$$

and the suitable model is mixed

$$H_1: \sigma_i^2 \neq \sigma_{zi}^2$$

and the suitable model is not mixed

 $\sigma_j^2 = (j = 1, 2, ...s)$ is the true variance of the jth season.

$$\sigma_{zj}^{2} = \frac{b^{2}n(n+s)}{12}S_{j}^{2} + \sigma_{1}^{2}$$
⁽⁷⁾

and σ_1^2 is the error variance assumed to be equal to 1

Therefore, the statistic is
$$\chi_c^2 = \frac{(m-1)\sigma_j^2}{\sigma_{zj}^2}$$
 (8)

follows the chi-square distribution with m-1 degree of freedom, m is the number of observations in each column and s is the seasonal lag.

The interval $\left[\chi^{2}_{\frac{\alpha}{2},(m-1)},\chi^{2}_{1-\frac{\alpha}{2},(m-1)}\right]$ contains the statistic (8) with $100(1-\alpha)$ % degree of

confidence.

3.2 Empirical Example

This section is to present empirical example to illustrate the application of the Chi-Square test. The empirical examples consists of both stimulated series from the mixed and multiplicative models

3.3 Simulations Results from Mixed and Multiplicative Models

The data is a simulations of 120 values from the mixed and multiplicative models in time series analysis.

$$M_t = a + b(t) \tag{9}$$

for mixed model $X_t = M_t \times S_t + e_t$ and e_t being Gaussian N(0,1)

for multiplicative model $X_t = M_t \times S_t \times e_t$ and e_t being Gaussian $N(1, \sigma = 0.09)$

$$S_1 = 0.94, S_2 = 0.83, S_3 = 0.90, S_4 = 0.92, S_5 = 0.96, S_6 = 1.12, S_7 = 1.04, S_8 = 1.13, S_9 = 1.01, S_{10} = 0.96, S_{11} = 0.73, S_{12} = 0.81, S = 12. \quad a = 1.0, \quad b = 0.02$$

Each series of 120 observations has been arranged in the Buys-Ballot table as monthly data, with m = 10, s = 12. The test statistic given in equation (8) requires the computation of the Chi-square statistic and comparing it with the

critical values,
$$\left[\chi^2_{\frac{\alpha}{2},(m-1)},\chi^2_{1-\frac{\alpha}{2},(m-1)}
ight]$$
 .Under the

hypothesis the suitable model is mixed, the calculated value of the statistic in (8) is expected to lie within the range, otherwise, it will be concluded that the data does not accept mixed model. At 5% level of significance, the critical

values are for m-1= 9 degree of freedom, equal to 2.7 and 19.0. The decision rule is to reject null hypothesis if the calculated value of the statistic lie outside the interval otherwise do not reject it. Again, at 5% level of significance, the critical values are, for s(m-1) = 108 degrees of freedom, equal to 70.1 and 129.6. The calculated values of the test statistic from the simulated time series data are given in Table 3. When compared with the interval 70.1 and 129.6, the test statistic lie within the interval in 100 out of the 100 simulations. This shows that the test identified the mixed model successfully in 100% of the times.

Col					Sei	ies				
	1	2	3	4	5	6	7	8	9	10
1	9.5054	7.8937	9.8313	10.9478	11.2262	6.5270	8.1754	10.1747	8.6302	11.4643
2	11.4460	10.0819	8.4784	8.7076	7.3992	9.0979	9.3446	9.1427	10.2099	9.9456
3	9.8262	10.6055	10.3075	8.6204	12.8926	12.7582	8.8767	7.9017	11.8372	9.4075
4	6.0616	9.3167	9.2864	8.3987	8.7418	10.4852	7.9597	9.0097	9.0442	8.5360
5	9.0693	8.9255	8.1536	7.4221	9.3907	9.9461	10.2899	9.3621	8.7914	9.4324
6	5.2731	7.2256	10.8535	7.3170	11.2574	9.6887	9.7197	7.8266	9.5678	9.2602
7	9.9262	9.7359	8.3535	7.9367	7.3932	8.7275	8.4990	8.6878	9.0340	10.0346
8	7.8336	8.6354	9.4445	8.8982	8.7871	5.5260	9.5777	11.0049	8.4561	9.3923
9	7.8750	11.0158	10.2101	10.5401	9.6521	8.6745	9.6250	9.2179	10.4077	6.9103
10	8.8117	5.8229	8.8236	8.4856	10.8426	7.5166	10.5594	8.4483	7.2740	9.2414
11	8.0692	7.6919	12.6876	13.6161	9.0376	8.5530	9.0016	10.6673	7.2301	8.9335
12	8.3675	9.8286	7.9817	8.1223	9.1068	8.5058	8.2406	7.8481	12.3524	9.7364
Decision	Accept									

Table 1. Calculated chi-square for mixed model

The critical values for m-1=9 degrees of freedom are 2.7 and 19.0

Table 1 Continued. Calculated chi-square for mixed model

Col		Series												
	11	12	13	14	15	16	17	18	19	20				
1	8.5054	7.8937	8.8313	10.2278	10.4462	7.5270	8.8712	10.1747	8.1121	11.4643				
2	7.4460	10.0819	9.4784	8.7076	8.3992	9.0979	9.3446	9.1427	10.0909	9.2345				
3	9.8262	10.2123	9.9912	9.6204	8.8926	9.7582	8.1123	9.9017	9.7654	8.8090				
4	10.0616	9.0087	9.2864	8.3987	8.1126	10.4852	7.9098	8.0097	9.7320	8.7654				
5	9.0693	8.2137	8.1595	7.4221	8.3907	9.9461	10.2769	9.3821	8.8650	9.4329				
6	8.2731	8.2276	7.8535	9.3170	10.7761	8.6887	9.7107	9.8466	9.1254	9.8765				
7	9.9262	6.7359	8.3535	8.9367	8.3932	8.7275	8.9876	8.1228	9.0340	9.1343				
8	7.8336	8.6354	9.4445	9.8982	8.1212	9.0012	9.5770	10.9819	8.7654	9.0972				
9	9.8750	11.0158	8.2101	11.5401	8.6521	8.6745	7.6250	9.4321	8.4077	6.0987				
10	8.8117	8.8229	8.8236	8.4856	9.8426	9.5166	10.0974	8.7612	9.2740	8.7854				
11	6.0692	9.6919	10.6876	9.0071	9.0096	7.5530	9.0097	10.9646	7.2301	8.2128				
12	9.3675	6.8286	7.9817	8.9873	9.1068	8.5058	8.3398	7.9876	9.0909	8.4321				
Decision	Accept													

Col	Series													
	21	22	23	24	25	26	27	28	29	30				
1	8.1121	7.8231	8.8313	10.1901	10.2262	8.5270	8.1754	10.1747	8.6302	11.4321				
2	10.1120	10.9879	8.8765	8.8731	7.3992	9.0979	9.3446	9.1123	11.0099	9.1127				
3	9.9765	10.9875	9.3075	9.6204	8.8926	9.7582	8.8767	6.9017	9.2372	8.4765				
4	9.2213	9.3167	9.2864	8.3956	8.7912	10.4852	7.9597	9.3297	9.9842	8.3321				
5	9.1212	8.9255	8.1876	7.4221	8.3321	9.9461	10.2499	9.2321	8.0014	9.9876				
6	9.2731	8.2256	10.8535	9.3170	10.2574	8.6887	9.7197	7.8466	9.5678	9.2602				
7	9.9262	9.7359	8.3535	7.9367	8.3932	8.7275	8.4997	8.6878	9.0340	9.1219				
8	7.8336	8.2121	9.4445	9.8982	8.7871	9.5260	9.5770	10.0049	8.4561	9.2121				
9	7.8750	10.0212	8.2101	10.5401	8.6521	8.6745	7.6250	9.2179	8.4077	6.6543				
10	8.8117	8.8978	8.8236	8.4856	9.8426	7.5166	10.5594	8.2231	9.2740	8.9876				
11	8.0692	7.0032	10.6876	9.6161	9.0376	8.5530	9.0016	11.9216	7.7654	8.7654				
12	9.3675	7.8286	7.9817	8.1223	9.1068	8.5058	8.2406	7.2312	9.9876	8.7364				
Decision	Accept													

Table 1 Continued. Calculated Chi-Square for Mixed Model

The critical values for m-1=9 degrees of freedom are 2.7 and 19.0

Table 1 Continued. Calculated Chi-Square for Mixed Model

Col	Series													
	31	32	33	34	35	36	37	38	39	40				
1	7.1121	7.8231	8.9876	10.6654	10.4302	8.8763	5.1754	11.1747	6.6302	10.4321				
2	10.8870	10.9879	8.8765	8.8731	7.3992	9.0979	9.3446	9.1123	11.0099	5.1127				
3	7.9765	9.9875	9.3075	9.6204	8.8926	9.5543	8.8767	6.9017	5.2372	8.1127				
4	10.2213	9.3167	9.2864	8.3956	8.7912	10.1121	7.9597	9.3297	9.9074	8.0908				
5	5.1212	8.9255	8.1876	7.4221	8.3321	9.8787	10.2499	9.2321	8.8765	9.1210				
6	9.9012	6.2256	10.8535	9.3170	10.2574	8.6101	9.7197	7.8466	9.8765	9.5432				
7	4.9262	10.7359	8.3535	7.9367	8.3932	8.7765	8.4997	8.6878	9.9623	9.9009				
8	8.8336	6.2121	9.4445	9.8982	8.7871	9.9901	9.5770	10.0049	8.7756	5.2121				
9	6.8750	11.0212	8.2101	10.5401	8.6521	8.8677	7.6250	9.2179	8.2243	7.6543				
10	8.8117	8.8978	8.8236	8.4856	9.8426	7.4323	10.5594	8.2231	8.2740	7.9876				
11	8.0692	7.9072	10.6876	9.6161	9.0376	8.5539	9.0016	11.9216	8.7654	9.7654				
12	11.3675	4.8286	7.9817	8.1223	9.1068	8.7654	8.2406	7.2312	10.9876	7.7364				
Decision	Accept													

Col	Series													
	1	2	3	4	5	6	7	8	9	10				
1	8.5054	7.8937	8.8313	1.9478	1.2262	1.5270	1.1754	1.1747	2.6302	1.4643				
2	1.4460	1.0819	1.4784	8.7076	7.3992	0.0979	9.3446	9.1427	1.2099	2.9454				
3	9.8262	1.6055	9.3075	0.6204	1.8926	9.7582	2.8767	7.9017	9.8372	8.4075				
4	2.0616	9.3167	2.2864	8.3987	8.7418	1.4852	7.9597	0.0097	3.0442	3.5360				
5	9.0693	8.9255	8.1536	1.4221	8.3907	0.9461	1.2499	2.3821	8.7914	3.4324				
6	2.2731	0.2256	1.8535	9.3170	1.2574	3.6887	9.7197	7.8466	1.5678	1.2602				
7	6.9262	9.7359	2.2123	0.9367	0.3932	8.7275	2.4997	1.6878	0.0340	9.0346				
8	0.8336	2.6354	9.4445	9.8982	8.7871	9.5260	9.5770	1.0049	8.4561	1.3923				
9	7.8750	1.0158	1.2101	10.5401	3.6521	8.6745	7.6250	9.2179	8.4077	6.9103				
10	8.8117	2.8229	8.8236	0.4856	1.8426	2.5166	1.5594	8.4483	1.2740	1.2414				
11	8.0692	7.6919	1.6876	1.6161	2.0376	8.5530	1.0016	1.6676	7.2301	3.9335				
12	1.3675	7.8286	7.9817	8.1223	9.1068	2.5058	8.2406	7.8487	2.3524	4.7364				
Decision	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept				

Table 2. Calculated Chi-Square for Multiplicative Model

The critical values for m-1=9 degrees of freedom are 2.7 and 19.0

Table 2 Continued. Calculated Chi-Square for Multiplicative Model

Col					Seri	es				
	11	12	13	14	15	16	17	18	19	20
1	6.0876	7.7937	5.8313	2.9478	0.2262	2.5270	3.1754	2.1747	5.6302	0.4643
2	2.4460	1.9819	1.4784	8.7076	7.3992	0.0979	9.3446	9.1427	1.2099	2.9454
3	9.8262	1.6055	8.3075	0.6204	1.8926	9.7582	2.8767	7.9017	4.8372	7.4075
4	3.0616	10.3167	2.2864	8.3987	8.7418	1.4852	7.9597	0.0097	3.0442	3.5360
5	8.0693	9.9255	9.1536	2.4221	9.3907	1.9461	2.2499	4.3821	9.7914	5.4324
6	2.2731	1.2256	1.8535	9.3170	1.2574	3.6887	9.7197	7.8466	1.5678	1.2602
7	7.9262	9.7359	2.2123	0.9367	0.3932	9.7275	3.4997	2.6878	1.0340	7.0346
8	0.8336	2.6354	10.4445	9.8982	8.7871	9.5260	9.5770	1.0049	8.4561	1.3923
9	7.8750	1.0158	1.2101	10.5401	3.6521	8.6745	7.6250	9.2179	8.4077	6.9103
10	8.8117	1.8229	7.8236	0.4856	1.8426	2.5166	1.5594	8.4483	1.2740	1.2414
11	9.0692	8.6919	2.6876	2.6161	3.0376	9.5530	2.0016	3.6676	9.2301	5.9335
12	3.3675	9.8286	6.9817	9.1223	10.1068	3.5058	9.2406	9.8487	3.3524	5.7364
Decision	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept

Col					Serie	es				
	21	22	23	24	25	26	27	28	29	30
1	5.0876	5.7937	3.8313	3.9478	1.2262	2.5097	3.1121	2.9876	4.6302	1.4643
2	1.4460	1.8763	1.1212	8.0987	7.0982	0.1121	9.4521	9.0901	1.1121	2.0054
3	7.8262	1.6055	8.3075	0.6204	1.8926	9.7582	2.8767	7.9017	4.8372	7.4075
4	4.0616	10.6532	2.9875	8.0091	8.3209	1.7832	7.4321	0.2876	3.3211	3.0972
5	9.0693	9.9255	9.1536	2.4221	9.3907	1.9461	2.2499	4.3821	9.7914	5.4324
6	2.2731	1.2256	1.8535	9.3170	1.2574	3.6887	9.7197	7.8466	1.5678	1.2602
7	3.9262	9.7359	2.2123	0.9367	0.3932	9.7275	3.4997	2.6878	1.0340	7.0346
8	0.8336	2.6354	10.9876	9.9734	8.8762	9.9842	9.5770	1.0049	8.4561	1.3923
9	4.8750	1.0158	1.2101	10.5401	3.6521	8.6745	7.6250	9.2179	8.4077	6.9103
10	7.8117	1.8229	7.8236	0.4856	1.8426	2.5166	1.5594	8.4483	1.2740	1.2414
11	10.0692	8.6919	2.6876	2.6161	3.0376	9.5530	2.0016	3.6676	9.2301	5.9335
12	1.3675	7.8286	5.9817	7.1223	8.1068	2.5058	8.2406	7.8487	1.3524	0.7364
Decision	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept

Table 2 Continued. Calculated Chi-Square for Multiplicative Model

The critical values for m-1=9 degrees of freedom are 2.7 and 19.0

Table 2 Continued. Calculated Chi-Square for Multiplicative Model

Col					Se	ries				
	31	32	33	34	35	36	37	38	39	40
1	3.0876	4.7937	3.6543	3.9466	1.2232	2.5987	2.8756	2.1121	4.4432	1.1212
2	1.0090	1.8763	1.0098	6.0987	7.0982	0.1121	8.4521	9.0901	1.1121	2.2323
3	7.7654	1.6055	7.8876	1.6204	1.8926	9.7582	4.8767	7.9017	4.8372	7.8767
4	4.0087	10.6532	0.3212	7.0091	8.3209	1.7832	0.4321	0.2876	3.3211	3.0989
5	9.1218	9.9255	8.1536	2.9987	9.3907	1.9461	1.2499	4.3821	9.7914	5.4325
6	2.5432	1.2256	1.8987	9.9876	1.2574	3.6887	7.7197	7.8466	1.5678	4.2602
7	3.3212	9.7359	2.9987	0.7765	0.3932	9.7275	3.4997	2.6878	1.0340	1.0346
8	0.0987	2.6354	9.1126	9.0987	8.8762	9.9842	9.5770	1.0049	8.4561	0.3923
9	4.3245	1.0158	1.1121	10.0011	3.5433	8.6745	7.6250	9.2179	8.4077	6.9100
10	7.8917	1.8229	7.0987	0.8765	2.8426	2.5166	1.5594	8.4483	1.2740	1.2432
11	9.0692	8.6919	2.4532	1.6161	2.0376	9.5530	2.0016	3.6676	9.2301	5.1121
12	0.3675	7.8286	5.1219	7.7790	7.1068	2.5058	8.2406	7.8487	1.3524	0.0098
Decision	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept	Accept

S/N								Series							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
χ^2_c	102.07	106.78	114.41	109.01	115.73	106.01	109.87	109.29	112.84	112.30	105.07	105.37	107.10	110.55	108.14
Decision S/N	Accept 16	Accept 17	Accept 18	Accept 19	Accept 20	Accept 21	Accept 22	Accept 23	Accept 24	Accept 25	Accept 26	Accept 27	Accept 28	Accept 29	Accept 30
χ^2_c	107.48	107.86	112.71	107.49	107.34	107.70	107.97	108.84	108.42	107.72	108.01	107.83	107.88	109.36	108.36
Decision S/N χ^2_c	Accept 31 100.10	Accept 32 102.87	Accept 33 109.00	Accept 34 108.89	Accept 35 107.92	Accept 36 108.52	Accept 37 104.83	Accept 38 108.88	Accept 39 106.52	Accept 40 98.67	Accept 41 107.37	Accept 42 98.82	Accept 43 111.15	Accept 44 99.89	Accept 45 109.80
Decision S/N χ^2_c	Accept 46 102.21	Accept 47 96.54	Accept 48 110.68	Accept 49 110.17	Accept 50 109.56	Accept 51 105.38	Accept 52 102.78	Accept 53 102.31	Accept 54 114.01	Accept 55 95.79	Accept 56 100.87	Accept 57 115.54	Accept 58 111.31	Accept 59 91.30	Accept 60 112.81
Decision S/N χ^2_c	Accept 61 104.62	Accept 62 97.90	Accept 63 94.20	Accept 64 108.06	Accept 65 116.37	Accept 66 110.31	Accept 67 109.40	Accept 68 107.74	Accept 69 112.28	Accept 70 113.39	Accept 71 110.96	Accept 72 100.20	Accept 73 110.18	Accept 74 98.11	Accept 75 84.64
Decision S/N χ^2_c	Accept 76 117.02	Accept 77 107.73	Accept 78 101.55	Accept 79 92.70	Accept 80 97.98	Accept 81 109.18	Accept 82 113.66	Accept 83 100.54	Accept 84 109.64	Accept 85 117.80	Accept 86 110.89	Accept 87 115.57	Accept 88 119.99	Accept 89 109.56	Accept 90 105.76
Decision S/N χ^2_c	Accept 91 98.10	Accept 92 110.49	Accept 93 90.64	Accept 94 91.36	Accept 95 101.64	Accept 96 109.89	Accept 97 86.28	Accept 98 106.05	Accept 99 88.96	Accept 100 118.95	Accept	Accept	Accept	Accept	Accept
Decision	Accept														

Table 3. Calculated Chi-Square for Mixed Model

(The critical values for s (m - 1) = 108 degree of freedom are 70.1 and 129.6)

S/N								Series							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
χ^2_c	67.06	60.78	63.27	62.01	54.72	58.01	62.83	58.33	54.84	48.29	69.65	66.58	60.27	66.01	56.73
Decision S/N	Reject 16	Reject 17	Reject 18	Reject 19	Reject 20	Reject 21	Reject 22	Reject 23	Reject 24	Reject 25	Reject 26	Reject 27	Reject 28	Reject 29	Reject 30
χ^2_c	63.01	68.83	66.33	57.84	49.29	58.65	62.81	58.16	64.09	55.09	62.76	67.35	65.37	55.01	43.92
Decision S/N	Reject 31 52.61	Reject 32 61.81	Reject 33 50.82	Reject 34 61.81	Reject 35 53.98	Reject 36 62.85	Reject 37 58.11	Reject 38 64.50	Reject 39 54.83	Reject 40 38.72	Reject 41 43.87	Reject 42 61.87	Reject 43 54.98	Reject 44 65.21	Reject 45 68.09
χ^2_c	02.01	01.01	00.02	01.01	00.00	02.00	00.11	01.00	01.00	00.72	10.07	01.07	01.00	00.21	00.00
Decision S/N	Reject 46	Reject 47	Reject 48	Reject 49	Reject 50	Reject 51	Reject 52	Reject 53	Reject 54	Reject 55	Reject 56	Reject 57	Reject 58	Reject 59	Rejec 60
χ^2_c	44.23	43.99	62.39	59.98	60.96	63.32	49.71	52.75	62.70	47.97	50.34	69.01	63.89	65.08	42.53
Decision S/N	Reject 61	Reject 62	Reject 63	Reject 64	Reject 65	Reject 66	Reject 67	Reject 68	Reject 69	Reject 70	Reject 71	Reject 72	Reject 73	Reject 74	Reject 75
χ^2_c	55.98	61.97	49.32	65.98	68.07	61.32	46.87	68.99	50.69	42,12	48.18	62.19	60.06	53.78	53.97
Decision S/N	Reject 76	Reject 77	Reject 78	Reject 79	Reject 80	Reject 81	Reject 82	Reject 83	Reject 84	Reject 85	Reject 86	Reject 87	Reject 88	Reject 89	Reject 90
χ^2_c	41.76	54.97	66.97	63.01	49.09	58.45	52.87	51.09	49.32	67.71	67.21	59.54	59.12	67.71	45.90
Decision	Reject														
S/N	91	92	93	94	95	96	97	98	99	100					
χ^2_c	55.09	54.42	68.01	43.98	53.65	65.43	60.89	60.09	62.23	49.09					
Decision	Reject														

Table 4. Calculated chi-square for multiplicative model

(The critical values for s (m - 1) = 108 degree of freedom are 70.1 and 129.6)

For multiplicative model, the calculated value of the statistic is not expected to lie within the interval (70.1 and 129.6), otherwise, it will be concluded that the data admits mixed model. Ninety-eight (98) out of hundred (100) calculated values of the statistic from the stimulated series given in Table 2 lie outside the interval, suggesting that they do not admit the mixed model.

4. CONCLUDING REMARKS

This article has presented basic properties of the Buys-Ballot estimates for seasonal variances and choice of model for decomposition in time series. The properties of Buys-Ballot estimates of seasonal variances are shown in equations (5), (7), and (9) for linear trending curve under additive, multiplicative and mixed models. Results show that, seasonal variances of the Buys-Ballot estimates are for additive model (1) a product of trending parameter only (2) It is a product season j through the square of the

seasonal indices $\left(S_{j}^{2}\right)$ and parameters through

the square of the seasonal averages $\left(egin{array}{c} & 2 \\ X_{.j} \end{array}
ight)$ for

multiplicative model (3) A constant multiple of the square of the seasonal indices (S_j^2) for the mixed model. (4) the stimulated series identified the appropriate model for decomposition.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Chatfield C. The analysis of time Series: An introduction. Chapman and Hall,/CRC Press, Boca Raton; 2004.
- 2. Brockwell PJ, Davis RA. Time series theory and methods springer-verlag. New York; 1991. Available: https://doi.org/10.1007/978-1-4419-0320-4
- 3. Puerto J, Rivera MP. Descriptive analysis of time series applied to housing prices in Spain, Management Mathematics for

European Schools 94342-CP-2001- DE – COMENIUS – C21; 2001.

- Iwueze IS, Nwogu EC. Framework for choice of models and detection of seasonal effect in time series. Far East Journal of Theoretical Statistics. 2014;48(1):45–66
- 5. Dozie KCN. Buys-Ballot estimates for mixed model in descriptive time series. International Journal of Theoretical and Mathematical Physics. 2020;10(1):22-27
- Nwogu EC, Iwueze IS, Dozie KCN, Mbachu HI. Choice between mixed and multiplicative models in time series decomposition. International Journal of Statistics and Applications. 2019;9(5):153-159.
- Dozie KCN, Nwogu EC, Nwanya JC. Buys-Ballot technique for analysis of time Series model. International Journal of Scientific Research and Innovative Technology. 2020;7(1):63-78.
- 8. Dozie KCN, Ijomah MA. A comparative study on additive and mixed models in descriptive time series. American Journal of Mathematical and Computer Modelling. 2020;5(1):12-17.
- 9. Dozie KCN, Nwanya JC. Comparison of mixed and multiplicative models, when trend cycle components is linear. Asian Journal of Advance Research and Reports. 2020;12(4):32-42.
- 10. Iwueze IS, Nwogu EC, Johnson O, Ajaraogu JC. Uses of the Buys-Ballot table in time series analysis. Applied Mathematics. 2011;2(05):633.
- 11. Dozie KCN, Uwaezuoke MU. Procedure for estimation of additive time series model. International Journal of Research and Scientific Innovation. 2021;8(2):251-256.
- 12. Dozie KCN, Ibebuogu CC. Road traffic offences in Nigeria: an empirical analysis using buys-ballot approach. Asian Journal of Probability and Statistics. 2021;12(1):68-78.
- 13. Dozie KCN, Ihekuna SO. Additive seasonality in time series using row and overall sample variances of the buys-ballot table. Asian Journal of Probability and Statistics. 2022;18 (3):1-9.

© 2023 Dozie and Ibebuogu; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/93199