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Abstract 
The present paper is based on the observations that 1) there is reported varia-
tion in the specificities according to the type of tumor targeted (target) by 
FDG PET and 2) that while one can posit that the sensitivity of the tracer de-
pends on the avidity for glucose and the plasma supply of the target, even so 
that the targeting cannot influence the avidity of unrelated tissues or lesions. 
The hypothesis to be tested is twofold: 1) patients imaged for different types 
of lesions could have a different prevalence of FDG avid tissues or lesions 
different from the target and 2) that the target lesions could be generally lo-
cated in body location (sites) more likely to contain unrelated foci of in-
creased uptake. Variance analysis shows that the sensitivity varies according 
to the target (p = 0.022), but not according to the location (p = 0.34); the spe-
cificity varies with the location (p = 0.0012) and the target (p = 0.05). Speci-
ficities are significantly different in different primary targets and target loca-
tions. The former is assumed to be due to different comorbidities in patients 
with different targets, the latter to the different locations of unrelated glucose 
avid organs or structures. Conclusion: When specificities are recorded or de-
fined, the patient population characteristics and the organ or pathology of the 
false positives should also be described. 
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1. Introduction 

In 2001 Sam Gambhir et al. published a supplement to the Journal of Nuclear 
Medicine reviewing the operating characteristics of Positron emission tomogra-
phy with fluorine-18 Fluorodeoxyglucose (FDG-PET) in oncology. The article [1] 
is organized around tumors in large categories (e.g. Lung cancer rather than 
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NSCLC, colorectal cancer); each in a tabulated form. In each table, for each can-
cer surveyed, the reference of the reviewed paper is given in column 1. Column 3 
specifies the context (e.g. diagnose masses or nodules) and eventually a specific 
location (e.g. Mediastinum or lung or lymph nodes). The relevant columns for this 
paper are columns 8 and 10 which were the reported sensitivity and specificity of 
the FDG PET in the reference is noted. All quoted references do not necessarily 
have both sensitivities and specificities, and in that case the reference is not used. 

The present paper is based on the observation that 1) there is a variation in 
the specificities according to the type of tumor targeted (target); 2) that while 
one can posit that the sensitivity of the tracer depends on the avidity glucose and 
the plasma flow to the target, and 3) that the targeting cannot influence the avid-
ity of unrelated tissues or lesions. Why then the variations in specificity accord-
ing to the target? 

The hypothesis to be tested is twofold that: 1) patients imaged for different 
types of lesions could have a different prevalence of FDG avid tissues or lesions 
different from the target and 2) the target lesions could be generally located in 
body location more likely to contain unrelated foci of increased uptake. In short, 
one can show that specificities are significantly different in different primary 
targets and target locations, but not as a function of the nature of the target. 

In a lapidary term, the injected FDG does not know what the target is. The 
expectations are that: 

1) Even if the FDG is in general use for cancer detection, the sensitivities 
would generally be high (by selection) and variable as a function of the target. 

2) Specificities could be different for different targets either because certain 
targets are associated with a higher prevalence of other lesions, or because some 
locations contain more structures (normal or abnormal) with high FDG uptake. 

2. Method 

The plan was to review the survey paper (1) and look at the first five tumors re-
viewed. Lymphoma was not included because of the wide range of phenotypes in 
lymphomas and specific locations could not be deduced (see below). In addition, 
we included the first ten references from the top of the tables that included both 
sensitivity and specificity. In this way we reviewed: Lungs [2]-[9], Colon [10] [11] 
[12] [13] [14], Melanoma [15]-[24], Head and Neck (H & N) [25]-[32], and 
Breast cancer [33]-[38] for the data on the targets. 

Second, from all the references above we deduced the site scanned e.g. the site 
for a colon cancer recurrence was assumed to be the colon. For this step we 
broke the rule in the case of melanomas because to collect 3 defined sites we had 
to reach to the second page of the table. The sites are: Breast [33]-[38], Colon [10] 
[11] [12] [14], H & N [27] [29] [31], Liver [10] [12] [14], Lung [2] [3] [4] [5] [7] 
[8] [9] [13] [14], Lymph nodes [13] [16] [19] [23] [25] [26] [28]-[38] and Me-
diastinum [2] [6] [8]. 

The analysis of variance (ANOVA) compares the sensitivities and specificities for 
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specific targets (tumor type Table 1 & Table 2) and sites (locations Table 3 & Table 4) 
In ANOVA the variation (within) specific targets or locations is compared to 

the variation between groups (targets or sites). 

3. Results 

In the type of target (tumor), the lowest sensitivity is for the H&N cancers (80%), 
but the range is narrow (94 - 80 Table 1). The difference between groups (targets) 
is significant at the p = 0.022 levels. The specificities vary between 74% and 94% 
(Table 2), and there is a weak but significant difference between targets (p = 
0.052). However, patient specific prevalence’s of lesions or tissues in different 
patient types, that could be (falsely) positive are not likely to be very high, even if 
variable for different types of patients. 

For the sites, the sensitivity range is narrow (Table 3) and location (site) has 
no effect on the sensitivities (p = 0.39), but a strong one (Table 4) for the speci-
ficities (p = 0.0012). 

4. Discussion 

The operating characteristics of diagnostic tests (sensitivity and specificity) are 
generally synoptically reflected in Bayes theorem expressed as1: 

 
Table 1. Sensitivities by targeted tumors. 

Groups Count Sum Average Variance 

Lung CA 10 901 90.1 116.5 

Colorectal CA 10 933 93.1 64.2 

Melanoma 10 865 86.5 150.7 

H&N 10 808 80.8 93.3 

Breast CA 10 938 93.8 31.3 

The table shows the number of observations included in each target group. The analysis of variance shows 
that the differences in sensitivity between different targets (between), are significantly larger (p = 0.022) 
than within identical targets. 

 
Table 2. Specificities by targeted tumors. 

Groups Count Sum Average Variance 

Lung CA 10 737 73.7 531.8 

Colorectal CA 10 911 91.1 306.1 

Melanoma 10 858 85.8 183.5 

H&N 10 845 84.5 122.7 

Breast CA 10 937 93.7 48.5 

The table shows the number of observations included in each target group. The analysis of variance shows 
that the differences in specificitiy between different targets (between), are significantly larger (p = 0.056) 
than within identical targets. 

 

 

1 ( )|P D S+ +  is the positive predicted value , ( )|P S D+ +  is the sensitivity, ( )P D+  is the preva-

lence , ( )|P S D+ −  is the non-specificity and ( ) ( )1P D P D− += −  is the prevalence of no disease. 
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Table 3. Sensitivities by location. 

Groups Count Sum Average Variance 

Breast 6 558 93 34.4 

Colon 4 387 96.7 11.6 

H&N 3 256 85.3 8.33 

Liver 3 283 94.3 36.3 

Lung 9 824 91.6 43.8 

Lymph nodes 15 1287 85.8 158.6 

Mediastinum 3 267 89.0 363.0 

The differences of sensitivities between the inspected site or organ is not significantly greater (p = 0.39) 
than within locations. 

 
Table 4. Specificity by location. 

Groups Count Sum Average Variance 

Breast 6 558 93 34.4 

Colon 4 387 96.7 11.6 

H&N 3 256 85.3 8.33 

Liver 3 283 94.3 36.3 

Lung 9 824 91.6 43.8 

Lymph nodes 15 1287 85.8 158.6 

Mediastinum 3 267 89.0 363.0 

The differences of specificities between different locations (site or organ) is significantly greater (p = 0.0012) 
than within locations. 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

|
|

| |
P S D P D

P D S
P S D P D P S D P D

+ + +
+ +

+ + + + − −

⋅
=

⋅ + ⋅
 

The denominator in the equation is the prevalence of positive symptoms in 
the population tested (P(S+)). This expression is misleading, because it assumes 
that the world is binary; it is not. An abnormal ejection fraction response to ex-
ercise could indicate ischemia, but also valvular disease. Gallium 67 citrate im-
aging is positive for multiple benign lung diseases [39]. 

A better expression for P(S+) would be [ ] ( )1 |i n
i ii P D P S D=

=
⋅∑ , where S is the 

symptom (e.g. positive FDG uptake) for the lesion “i” and P(Di) represents the 
prevalence of all the possible lesions or structures that could lead to the symp-
tom. ( )| iP S D  then represents the sensitivity of a positive finding for lesion 
“i”. Written in this way the equation points out to the fact that the 
non-specificity (and therefore the positive predictive value), is the function of 
the prevalence of lesions or tissues that could come out positive either in the pa-
tient or at the imaged site. 

The proper expression for Bayes’ theorem should then be: 

 ( ) ( ) ( )
[ ] ( )1

|
|

|
m m

m i n
i ii

P S D P D
P D S

P D P S D

+ +
+

+ =

=

⋅
=

⋅∑
 where S is the general symptom (e.g. 
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FDG uptake) and mD+  is the targeted disease.  ( )| iP S D  is the sensitivity of 

the test for all (including the targeted lesions) or tissues from i to n and [ ]iP D  
is their prevalence (including the targeted lesions). 

5. Conclusion 

The thesis of this paper is that the prevalence of falsely positive findings varies 
with the targeted disease, because of the association with comorbidities, and with 
the search location because of adjacent structures, and not because of the differ-
ences in target. Publications reviewing operating characteristics should be en-
couraged to give information on the population with the targeted disease, with 
the location and nature of positive but non-target lesions. 
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Appendix: Deriving Bayes’ Theorem 

 
 

B B=                             (1) 

B A B
A
× =                           (2) 

B C B
C
× =                           (3) 

B BA C
A C

=                           (4) 

B A B C
A U C U
× = ×                         (5) 

1) Is a tautology, since B on both sides is the same area. 
2) In effect, B is multiplied by A/A, which is 1. 
3) In effect, B is multipled by C/C, which is 1. 
4) This only rewrites 1. 
5) Both sides are divided by U. 
In this representation U represents all the patients the universe of patients. A 

is the set of patients who have a particular symptom (e.g. high FDG uptake in a 
location where there should not be high uptake). C is the set of patients who 
have the disease one is looking for (e.g. a lung cancer). B is the set of patients 
who have the symptom and the disease. Redefining the terms, A/U is the 
prevalence of the symptoms or the prevalence of the symptom in the general 
population [P(S+)]. C/U is the prevalence of the disease in this population 
[P(D+)]. In the same way, B/A is the conditional probability of having the 
disease if one has the symptom [P(D+|S+)] and B/C is the conditional 
probability of having the symptom, if one has the disease[P(S+|D+)]. P(D+|S+) 
is the positive predictive value and P(S+|D+) is the sensitivity. 

Rewriting Equation (5): 

( ) ( ) ( ) ( )| |P D S P S P S D P D+ + ⋅ + = + + ⋅ +              (6) 

( ) ( ) ( )
( )

|
|

P S D P D
P D S

P S
+ + ⋅ +

+ + =
+

                (7) 
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