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The integrated energy system with electric vehicles can realize multi-energy

coordination and complementarity, and effectively promote the realization of

low-carbon environmental protection goals. However, the temporary change

of vehicle travel plan will have an adverse impact on the system. Therefore, a

multi-layer coordinated optimization strategy of electric-thermal-hydrogen

integrated energy system including vehicle to grid (V2G) load feedback

correction is proposed. The strategy is based on the coordination of three-

level optimization. The electric vehicle charging and discharging management

layer comprehensively considers the variance of load curve and the

dissatisfaction of vehicle owners, and the charging and discharging plan is

obtained through multi-objective improved sparrow search algorithm, which is

transferred to the model predictive control rolling optimization layer. In the

rolling optimization process, according to the actual situation, selectively enter

the V2G load feedback correction layer to update V2G load, so as to eliminate

the impact of temporary changes in electric vehicle travel plans. Simulation

results show that the total operating cost with feedback correction is 4.19%

lower than that without feedback correction and tracking situation of tie-line

planned value is improved, which verifies the proposed strategy.
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1 Introduction

In order to solve global environmental problems, it is necessary to build a clean and

low-carbon new energy system. The integrated energy system effectively improves the

energy utilization efficiency and promotes the consumption of renewable energy through

the multi energy coupling mechanism, thereby reducing carbon emissions (Ding et al.,

2018; Yang et al., 2018; Cheng et al., 2019). The interaction between electric vehicle (EV)

and integrated energy system can further tap flexible resources and promote the carbon
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reduction operation of the system (Zhou et al., 2021; Li et al.,

2022). EVs can be connected to the power grid as mobile loads,

and they have the characteristics of energy storage (Hu et al.,

2015; Cheng et al., 2021). In order to take advantages of its

characteristics, the vehicle to grid (V2G) mode has been

proposed in recent years (Wang et al., 2015). Peak shaving

and valley filling of load curve can be achieved by managing

the charge and discharge of electric vehicles. However, the

temporary change of EV travel plan will have an adverse

impact on the economic and stable operation of the system.

In practice, EV travel plans are uncertain, and the

photovoltaic power, wind power and predicted load power of

electric-thermal-hydrogen integrated energy system (ETH-IES)

also have randomness and volatility. Considering the

characteristics that the prediction accuracy improves with the

reduction of time scale, multi-time scale strategy is often used in

energy management of integrated energy system (Yin et al., 2020;

Tang et al., 2021; Wang et al., 2021). On the larger time range, the

unit combination and the base value of operation plan is

formulated based on the forecast data. On the smaller time

range, the deviation left by the superior is corrected based on

the real-time data. On this basis, according to the relationship

between different nodes in the optimization process, the energy

management is divided into static scheduling and dynamic

scheduling. Static scheduling is the optimization of single

section, and there will be a large power deviation in actual

operation (Qi et al., 2022). Static optimization can be solved

by nonlinear programming (Lv et al., 2016) and chance

constrained programming (Li et al.,. 2019). Dynamic optimal

scheduling considers the connections between different time

nodes, and has better robustness (Huang et al., 2014).

Generally, model predictive control (MPC) is used for

dynamic optimal scheduling. Based on the idea of rolling

optimization and feedback correction, it can well solve the

optimal control problems with many uncertain factors (Xiao

et al., 2016). In addition, unlike the day ahead optimal

scheduling, MPC has higher accuracy, because it can

continuously obtain real-time short-term power prediction

information. The results of each rolling optimization correct

the real-time state of the system, which can eliminate the

influence of uncertainties on the optimal scheduling scheme

to a greater extent (Zhang et al., 2017). At present, many

researches apply rolling optimization to the scheduling of

integrated energy system, but less to the joint optimal

scheduling of system and electric vehicles.

In recent years, more and more studies on the optimal

scheduling of integrated energy system with EVs have been

published. Reference (Wang et al., 2016) establishes a multi-

objective optimization model with optimal generation cost and

environmental benefit of microgrid with EVs. Reference (Chen

et al., 2020) proposes a fuzzy control algorithm to formulate EV

charging plan. The proposed strategy has good real-time

performance, but ignores the V2G machanism. Reference

(Hou et al., 2019) optimizes the microgrid and EVs according

to three levels, which can maximize the benefits. In (Jozi et al.,

2022), EV charging and discharging plans are optimally

scheduled to maximize parking profits and improve system

reliability; Reference (Hu et al., 2019) proposes a real-time

scheduling method to smooth photovoltaic power fluctuations

through the flexibility of charging and discharging of clustered

EVs; Reference (Zhao et al., 2016) motivates EV owners to

participate in the dispatching of microgrid by adjusting the

electricity price. The above references only formulate energy

management strategies from the perspective of micro network

operators, ignoring the interests of EV owners. Reference (Cheng

et al., 2022) establishes a stochastic optimal scheduling model

considering the forecast error of wind power output; Reference

(Jia and Kang, 2022) quantifies the uncertainty of wind and

photovoltaic output with the conditional value at risk of relative

disturbance. Although the above literatures consider the

uncertainty of distributed generators and load forecasting

power, they ignore the uncertainty of EV travel plans.

Reference (Wang et al., 2022) establishes a multi-stage

optimal energy management system for participating in the

deregulated electricity market. However, reference (Wang

et al., 2022) does not consider electric vehicles. In (Alireza

et al., 2021), a two-stage operation is presented according to

day-ahead and 5 min real time energy markets. However, it uses

non-layered architecture to optimize EV charging and

discharging and does not consider EV owners’ feeling.

Reference (Jia et al., 2022) proposes a hierarchical stochastic

optimal scheduling model and it uses stochastic programming to

deal with uncertainty. In real-time operation, when the number

of unplanned EVs suddenly increases, the strategy cannot make

corresponding corrections. Furthermore, reference (Jia et al.,

2022) adopts static optimal strategy and there will be a large

power deviation in actual operation.

For the adverse impact of temporary change in EV travel plan

on system operation, this paper establishes a multi-layer

coordinated optimization strategy of electric-thermal-hydrogen

integrated energy system including the feedback correction of

V2G load. On the basis of building the system model, EVs and

ETH-IES are optimized hierarchically and solved by multi-

objective improved sparrow search algorithm. Furthermore, in

order to reduce the impact of temporary changes in EV travel

plans, V2G load feedback correction layer is introduced. In the

process of rolling optimization of the system, EV unplanned

behaviors are identified and the charging and discharging plan is

adjusted in time. Finally, taking an electric-thermal-hydrogen

integrated energy industrial park as an example, the effectiveness

of the proposed strategy is verified. The contributions of this

paper are to:

1) Constructing multi-objective EV charging and discharging

management model and two-stage MPC rolling optimization

model to achieve accurate and economic formulation.
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2) Presenting a multi-layer coordinated optimal scheduling

model to improve the economy and stability of system

operation, and improves the tracking situation of tie-line

planned value.

3) Using the coupled Monte Carlo simulation and multi-

objective improved sparrow search algorithm to solve the

multi-scenario multi-objective optimal scheduling model.

4) Conducting simulation studies to verify the effectiveness of

V2G load feedback correction layer and discussing the effect

of the unplanned EVs’ proportion on scheduling results.

The rest of the study proceeds as follows: Section 2 introduces the

architecture of ETH-IES; Section 3 presents multi-layer coordinated

optimization framework based on feedback correction; Section 4

introduces the multi-layer coordinated optimization model in detail.

In Section 5, the multi-objective improved sparrow search algorithm

is proposed. Section 6 verifies the effectiveness of the V2G load

feedback correction layer and discusses the effects of the unplanned

EVs’ proportion on scheduling results. Finally, Section 7 draws the

main conclusions.

2 Architecture of electric-thermal-
hydrogen integrated energy system

As shown in Figure 1, the main equipment of ETH-IES includes

hydrogen storage device, electrolyzer, proton exchange membrane

fuel cell (PEMFC), thermal storage device, super capacitor, battery,

wind turbine, photovoltaic, ground source heat pump, absorption

machine andmicro gas turbine. Among them, micro gas turbine and

ground source heat pump unit belong to electrothermal coupling

equipment, while electrolyzer and PEMFC belong to electric-

thermal-hydrogen coupling equipment. Their introduction can

not only realize multi-energy coordination and complementarity,

but also improve the system operation flexibility and economy.

2.1 Conventional unit model

In the proposed electric-thermal-hydrogen integrated energy

system architecture, the mathematical models of micro gas

turbine, ground source heat pump and absorption refrigeration

unit can be referred to reference (Li et al., 2021), and the models

of wind turbine, photovoltaic and energy storage device can be found

in reference (Jia et al., 2022). Due to limited space, this paper only

introduces the models of electrolyzer, hydrogen storage device and

proton exchange membrane fuel cell in detail.

2.2 Proton exchange membrane fuel cell
model

The PEMFC output voltage is mainly influenced by the

concentration polarization, the ohmic polarization and the

active polarization, and it can be considered as the difference

between the Nernst voltage and the loss voltage caused by them

(Colleen, 2008). Activation loss can be expressed by Tafel

formula:

FIGURE 1
Electric-Thermal-Hydrogen integrated energy system architecture.
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Δvact � a + b ln i (1)
where, a � −RT

nF ln(i0);b � −RT
nF°

The loss voltage caused by the active polarization could be

calculated as:

vact � RT

nFα
ln( i

i0
)

anode

+ RT

nFα
ln( i

i0
)

cath

(2)

The loss voltage caused by the ohmic polarization could be

calculated as:

vohmic � −ir (3)

The loss voltage caused by the concentration polarization

could be calculated as:

vconc � α1iK ln(1 − i

iL
) (4)

To calculate the Nernst voltage, some pressure values of

oxygen, water and hydrogen are needed. Refer to (Colleen, 2008),

it can be expressed as:

ENernst � −Gf ,liq

2F
+ RTK

2F
ln⎛⎝ PH2O

PH2P
1
2
O2

⎞⎠ (5)

To sum up, the actual voltage can be expressed as:

V � ENernst + vact + vohmic + vconc (6)

2.3 Electrolyzer model

The electrolyzer consumes electric energy to produce heat

and hydrogen energy. The relationship between electricity

consumption and hydrogen production is approximately

linear, which can be expressed as follows:

PEL
t � λH2H

EL,t
2 (7)

2.4 Hydrogen storage device model

The hydrogen stored in the hydrogen storage device at the

current moment is related to the storage capacity, outgassing

volume and storage volume at the previous moment. Therefore,

the hydrogen stored in the device can be expressed as:

Hst,t
2 � Hst,t−1

2 +Hst,t−1
2,in −Hst,t−1

2,out (8)

PH2
sto,t �

Hst,t
2 RcK

Vsto −Hst,t
2 b

− (Hst,t
2 )2a
V2

sto

(9)

Sohct � PH2
sto,t

PH2
sto,rated

(10)

3 Multi-layer coordinated
optimization framework for
integrated energy system with
electric vehicles based on feedback
correction

As shown in Figure 2, the multi-layer coordinated

optimization framework of ETH-IES proposed in this paper

contains three layers altogether: EV charging and discharging

management layer, MPC rolling optimization layer and V2G

load feedback correction layer. First, the EV charging and

discharging management layer simulates EV travel scenarios

through Monte Carlo according to owners’ historical habit

data, optimizes the charging and discharging of EVs in each

scenario, and transmits the results to the MPC rolling

optimization layer. Secondly, the MPC rolling optimization

layer is divided into two stages. In the first stage, economic

scheduling is carried out with 24 h as the time window and 1 h as

the time step, and the results are passed into the second stage as

the reference value. The second stage takes 1 h as the time

window and 5 mins as the time step to coordinate the output

of each distributed generator according to the received real-time

prediction data, so that the tie-line power can track the superior

planned value. Finally, during the operation of MPC rolling

optimization layer, the number of EVs with temporary change in

their travel plan is identified in real time. If the proportion is

greater than the threshold, the V2G load feedback correction

layer is carried out and the EV charging and discharging plan is

re-established. The revised V2G equivalent load is fed back to the

MPC rolling optimization layer and the operation continues

from the breakpoint. The specific solution flow chart is shown in

Figure 3.

4 Multi-layer coordinated
optimization model of integrated
energy system with electric vehicles

4.1 Electric vehicle charging and
discharging management layer

By managing the charging and discharging of electric

vehicles, peak shaving and valley filling of the load curve can

be achieved. However, the large degradation of EVs battery will

greatly increase the dissatisfaction of EV owners. Thus, the

degradation cost should be considered in the proposed

optimization model.

4.1.1 Electric vehicle degradation cost model
High degradation cost will greatly increase the EV owners

dissatisfaction, which embodies in the reduction of cycle number
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and the actual full capacity (Smith et al., 2012). The times of

frequent charging and discharging, charging and discharging rate

and other factors will influence the EV degradation cost (Vetter

et al., 2005).

After the calculation of discharge of depth (DOD), the

degradation cost could be calculated as follows (Ju et al.,

2018):

CBde(t, DOD(Δt)) � CrePB(t)Δt
2LB(DOD(Δt))EBA(t)DOD(Δt)ηBcηBd

(11)
The cost of battery degradation within each time interval can

only be determined after the end of a charging or discharging

event. According to (Ju et al., 2018), the expression of the

operating cost considering the degradation effect of the

battery is shown in Eq. 12.

CB(t) � CBde(t, Ea(t)
EBA(t)) − (1 − g(t))CBde(t, Ea(t − 1)

EBA(t − 1))
(12)

4.1.2 Electric vehicle charging and discharging
optimization model

The dispersion of time and space and randomness of

charging behavior of EVs may greatly increase the peak-to-

valley effect of load curve, and the reduction of EV service life

will greatly increase the dissatisfaction of owners. On the

basis of this, this paper establishes a multi-objective

FIGURE 2
ETH-IES multi-layer coordinated optimization framework.
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optimization model aiming at minimizing the variance of the

load curve and minimizing the degradation cost of EVs.

Furthermore, the fuzzy membership function (Xu et al.,

2015) is used to select the compromise solution from

Pareto front as the final solution

1) Objective function 1:

minFEV
1 � ∑T

t�1
1
T
(Pload(t) −Mean(Pload))2 (13)

The first objective function is from the system operators’

point of view, which aims to decrease the variance of the load

curve.

2) Objective function 2:

minFEV
2 � ∑NEV

n�1 ∑T
t�1C

n
B(t) − CB

min

CB
max − CB

min
(14)

The second objective function is from the EV owners’ point

of view. It is a linear function of degradation cost, with a range

of 0–1.

3) Constraints:

SOC EV
min ≤ SOCEV

n (t)≤ SOC EV
max (15)

−Pcha
max ≤PEV

n (t)≤Pdis
max (16)

0≤ Ichan (t) + Idisn (t)≤ 1 (17)

The constraints mainly contain the charging and discharging

power limitation and EVs’ SOC limitation.

4.2 Model predictive control rolling
optimization layer

With the shortening of time step, the accuracy of prediction

data is improved. By adjusting the output of distributed power

supply, the scheduling economy can be improved and the tie-line

power can better track the superior planned value. In addition,

the battery is scheduled as a distributed generator, while

supercapacitors can stabilize unbalanced power and respond

quickly. Therefore, the rolling optimization can be divided

into two stages. The short-term optimization stage can

improve the operation economy of the system, and the ultra-

short-term optimization stage can ensure the safe and stable

operation of the system (Ju et al., 2018).

4.2.1 The first stage rolling optimization model
In the first stage, considering the maximum economic

benefit, an economic optimization model is established. Since

the capacity of the supercapacitor is relatively small compared

with other units and its response speed is fast, it is only used to

suppress the power prediction error in the second stage.

4.2.1.1 Objective function:

minF1 � Futility + Fom + Fmt + Fe (18)
Futility � ∑Nt

t�1[Cbuy(t) · PGrid buy(t) · Δt + Csell(t) · PGrid sell(t)
· Δt]

(19)
Fom � ∑Ni

i�1∑Nt

t�1[|Pi(t)| ·Kom.i · Δt] (20)
Fmt � ∑Nt

t�1[Cmt · fmt · Pmt(t) · Δt +max{0, S(t) − S(t − 1)}
· Cmts]

(21)
Fe � ∑Nt

t�1[CeSO2 · ESO2(t) + CeCO2 · ECO2(t) + CeNOx

· ENOx(t)] (22)

Equations 19–22 respectively represent the switching power

cost with the main network, the maintenance cost of distributed

power supply, the operation cost of micro gas turbine and the

pollution gas treatment cost.

4.2.1.2 Constraints:

1) Constraints on electrothermal power balance:

PBatt(t) + PMT(t) + PPV(t) + PWT(t) + PGrid(t) + PFC(t)
� PE(t) + PLoad(t) (23)

QAM(t) + QHP(t) + QCS(t) + QFC(t) + QE(t) � Qload(t) (24)

2) Constraints on distributed generator output power:

PDG.i. min ≤PDG.i ≤PDG.i. max (25)

FIGURE 3
ETH-IES multi-layer coordinated optimization flow chat.
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3) Constraints on micro gas turbine ramp rate:

{ PMT(t) − PMT(t − 1)≤Rup · Δt
PMT(t − 1) − PMT(t)≤Rdown · Δt (26)

4) Constraints on tie-line power:

|PGrid(t)|≤PGrid. max (27)

5) Mutual exclusion constraints of electricity purchase and sale

signs:

UBuy(t) + USell(t)≤ 1 (28)

6) Constraints on micro gas turbine start and stop time:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑Tmup

k�1 Ut−k+1 ≥Tmup∑Tmdown

k�1 (1 − Ut−k+1)≥Tmdown

(29)

7) Battery operation constraints:

SOC min ≤ SOC(t)≤ SOC max (30)
−Pch. max ≤PBatt(t)≤Pdis. max (31)
|SOC(Nt) − SOC(1)|≤ ε (32)
UBatt.ch(t) + UBatt.dis(t)≤ 1 (33)

8) Thermal storage device constraints:

λ minSES ≤ SES(t)≤ λ maxSES (34)
−Qch. max <QCS(t)<Qdis. max (35)

9) Operation constraints of electrolyzer:

P EL
min ≤P

EL
t ≤P EL

max (36)
ΔP EL

min ≤PEL
t − PEL

t−1 ≤ΔP EL
max (37)

10) Hydrogen storage device operation constraints:

0≤Hst,t
2,in ≤YH2

st,t ·Hst,max
2,in (38)

0≤Hst,t
2,out ≤ (1 − YH2

st,t) ·Hst,max
2,out (39)

0≤Hst,t
2 ≤Hst,rated

2 (40)

FIGURE 4
Monte Carlo-MISSA algorithm flow chat.
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TABLE 2 Other related parameters of EV.

Parameter Value Parameter Value

EB.rated/kWh 30 SOC min/SOC max 0.2/0.9

Cre/RMB 15 000 P char
max /P

dis
max /kW 7/−7

ηBc 0.9 ηBd 0.9

FIGURE 5
Winter electric optimization results of MPC rolling optimization layer. (A) The first stage rolling optimization results. (B) The second stage rolling
optimization results.

TABLE 1 Random parameters of various EV loads.

Random parameter Average Variance

SOC when category ② EVs leave 0.2 0.1

Initial SOC of category ③ EVs 0.3 0.05

Expected SOC of category ③ EVs 0.8 0.05

Departure time of category ② EVs 7:00 30 mins

Return time of category ② EVs 18:00 30 mins

Quantity of category ④ EVs 4 9

Frontiers in Energy Research frontiersin.org08

Jia et al. 10.3389/fenrg.2022.1008042

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1008042


4.2.2 The second stage rolling optimization
model

The optimization goal of the second stage is to balance the

influence of power prediction error on the basis of the output of

each unit obtained in the first stage. The constraint conditions are

the same as the first stage, and the objective function is as follows:

minF2 � Fsnd
utility +∑Nsnd

i�1 Fsnd
i + Fsnd

SC (41)
Fsnd
utility � ∑Nt

t�1σ
snd
utility(Psnd

utility(t) − Pfst
utility(t))2 (42)

Fsnd
i � ∑Nt

t�1σ
snd
i (Psnd

i (t) − Pfst
i (t))2 (43)

Fsnd
SC � ∑Nt

t�1Kom.SC · Psnd
SC (t) (44)

where σsndutility and σsndi are the cost weight coefficient of optimal

scheduling in the second stage; Kom.SC is the operation and

maintenance cost coefficient of supercapacitor; Nsnd is the number

of distributed power supply participating in adjustment in the second

stage. Equations 42–44 respectively represent the adjustment cost of

tie-line power, the adjustment cost of distributed generators, and the

operation and maintenance cost of supercapacitor.

4.3 Vehicle to grid load feedback
correction layer

When the proportion of EVs that temporarily change

travel plan increases, the error of the V2G equivalent load

FIGURE 6
Winter thermal optimization results of MPC rolling optimization layer. (A) The first stage rolling optimization results. (B) The second stage rolling
optimization results.
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corresponding to the original plan will also increase. If the

rolling optimization continues according to the original data,

it will deviate from the global optimal scheduling strategy,

which will make the operation economy worse, and the

scheduling power deviation caused by this is not conducive

to the safe and stable operation of the system. Therefore, it is

necessary to re-optimize its charging and discharging power

based on the actual EV travel plan. The objective of this layer

is to optimize the economy of EV charging and discharging

and minimize the dissatisfaction of EV owners. The specific

objective function is as follows:

1) Objective function 1:

minFcorrect
1 � ∑T

t�1price(t) · PV2G(t) (45)

2) Objective function 2:

minFcorrect
2 � ∑NEV

n�1 ∑T
t�1C

n
B(t) − CB

min

CB
max − CB

min
(46)

5 Multi-objective improved sparrow
search algorithm

In this paper, multi-objective improved sparrow search

algorithm (MISSA) is used to solve the EV charging and

FIGURE 7
Summer thermal optimization results of MPC rolling optimization layer.
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discharging management layer and V2G load feedback

correction layer, and CPLEX is used to solve the MPC rolling

optimization layer. Based on SSA (Xue and Shen, 2020), ISSA

introduces Levy flight strategy to make its step size obey heavy

tail distribution and improve global optimization ability (Jia

et al., 2022). Furthermore, in order to make it have multi-

objective optimization ability, this paper introduces elite

strategy, fast non-dominated sorting strategy, congestion and

congestion comparison operator.

In order to solve the mixed integer non-linear programming

problem in multiple random scenes, this paper combines the

Monte Carlo simulation method with the MISSA to obtain the

EV charging and discharging optimization strategy. The

algorithm flow chart is shown in Figure 4.

6 Simulation results and discussion

6.1 Parameter setting

It is assumed that there are 60 EVs connected to the system and

all EVs are divided into four categories. Category① EVs always have

no travel plans; Category② EVs travel on a fixed schedule; Category

③ EVs require emergency charging and Category ④ EVs

temporarily change travel plans. The basic information of the

above four types EVs is simulated by Monte Carlo.

According to the parameters in Table 1, different kinds of EV

loads are generated through Monte Carlo simulation. Other

parameters of EV are shown in Table 2. The predicted real-time

electricity price, wind power and photovoltaic power are referred in

(Ju et al., 2018). The pollutant treatment cost and pollutant emission

coefficient of micro gas turbine are referred in (Jia et al., 2022).

MISSA parameters are set as follows: population size n = 100,

maximum iterations iter max � 1000. In gamma function of Levy

flight strategy, β � 1.5. The number of Monte Carlo simulation

scenes is 500.

6.2 Result analysis

6.2.1 Scheduling results of model predictive
control rolling optimization layer

As shown in Figure 5A, from 4:00 to 7:00, the electric load is

low and the electricity price is relatively cheap. The excess electric

TABLE 3 Index comparison under different strategies.

Scheduling strategy Scheduling cost(RMB) Dissatisfaction
of EV owners

Load variance(kW2) Comprehensive satisfaction

1 5,517.66 1 5,273 0.501

2 7,212.41 0.0876 9,149 0.412

3 6,103.24 0.2467 6,511 0.659

FIGURE 8
Comparison of V2G equivalent load before and after running V2G load feedback correction layer.
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energy is stored in the battery, converted into hydrogen energy

and stored in the hydrogen storage tank. From 10:00 to 11:00 and

from 15:00 to 17:00, the electricity price is high, and the electric

energy will be released on the basis of meeting the power

demand, so as to sell electricity to the grid as much as

possible to maximize economic benefits. The coordination of

electric hydrogen thermal coupling equipment ensures the

economy of system operation.

As shown in Figure 5B, since the predicted power error is

superimposed on the wind power photovoltaic output and load

power, it is essential to coordinate each distributed generator to

balance the resulting power deviation in real-time scheduling. It

can be seen that supercapacitor and battery are preferred in the

dispatching process. If the power deviation is still not met, the

planned value of micro gas turbine and tie-line power will be

changed.

As shown in Figure 6A, From 3:00 to 7:00, the electricity price

is low, and the equivalent heat production cost is relatively low.

The excess heat energy is stored in the heat storage device while

meeting the heat load demand. From 10:00 to 17:00, the

electricity price is relatively high, and the heat storage device

outputs large power, reducing the output of electrothermal

coupling equipment, so as to reduce the power purchase of

the power grid and maintain the high economy of system

operation. As shown in Figure 6B, the output of each unit in

the heat network part is almost consistent with the first-stage

dispatch plan value, and the predicted power error is mainly

balanced by the thermal storage device.

As shown in Figures 7A,B, the thermal load characteristics in

summer are quite different from those in winter. The electricity

price is higher from 14:00 to 17:00. Thus, the heat storage device

releases as much as possible, reducing the output of

electrothermal coupling equipment, thereby reducing the

power purchase. During the whole dispatching period, the

thermal storage device stores heat in the low electricity price

period, and releases heat in the high electricity price period, so as

to reduce the system operation cost.

Compare and analyze three different strategies. Strategy 1 is

to reduce the variance of load curve at all costs only from the

operator’s own interests; strategy 2 only considers the wishes of

EV owners and charges and discharges EVs disorderly; strategy

3 comprehensively considers the interests of both sides. As

shown in Table 3, compared with strategy 1, the

dissatisfaction of EV owners decreased by 0.7533, the

scheduling cost of the proposed strategy increased by 10.61%,

and the load variance increased by 23.48%; Compared with

strategy 2, the scheduling cost decreased by 15.38%, the load

variance decreased by 28.83%, and the dissatisfaction of EV

owners increased by 0.1591. According to the fuzzy

membership function, the proposed strategy has the highest

comprehensive satisfaction, which indicates that it

comprehensively considers the interests of both sides, and

truly achieves a win-win situation.

6.2.2 Verification of the vehicle to grid load
feedback correction layer

Make 20% of category ① EVs temporarily change their

plans and leave at 8:00. Compare with the circumstances

without V2G load feedback correction layer. As shown in

Figures 8, 9, the revised V2G equivalent load shifts the load

from the period of higher electricity price to the lower period.

The total operating cost with feedback correction is

5,858.2 RMB, which is 4.19% lower than that of

6,114.3 RMB without feedback correction.

FIGURE 9
Hourly cost change of MPC rolling optimization layer.
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In order to further verify the effect of V2G load feedback

correction layer on the tracking situation of tie-line planned

value, 12 EVs are charged urgently during 10:00–2:00 and 18:

00–19:00. It can be seen from Figures 10A,B that the strategy with

feedback correction adjusts the tie-line planned value in the

scheduling process, ensuring the economic and stable

operation of the system after temporarily changes of EVs’

travel plan. Without feedback correction, the power relative

tracking deviation of tie-line planned value is 8.82%, while the

relative deviation with feedback correction is only 1.33%.

6.2.3 The effect of the unplanned Electric
vehicles’ proportion on scheduling results

As shown in Figure 11A, with the increase of the proportion

of unplanned EVs, the deviation of original EV charging and

discharging plan relative to the optimal plan in the actual

situation is farther, and the economic benefit of the system

operation after V2G load feedback correction is more obvious,

so the relative cost change will greatly increase.

As shown in Figure 11B, the increase in the proportion of

unplanned EVs will lead to the increase of source-load

FIGURE 10
Tie-line power tracking situation. (A) Tie-line power tracking situation without feedback correction. (B) Tie-line power tracking situation after
feedback correction.
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unbalanced power when operating according to the original plan.

At this time, in the second stage of MPC rolling optimization

layer, the output of other distributed generators is preferentially

adjusted to balance the power deviation. However, when the

unbalanced power is too high, the tie-line power has to be

changed to maintain the source-load balance relationship.

Therefore, with the increase of unplanned EVs’ proportion, the

relative tracking deviation of tie-line planned value without

feedback correction increases greatly, while the relative tracking

deviation with feedback correction is basically unchanged.

7 Conclusion

Aiming at the adverse effects of the temporary change

of EVs’ travel plan on the economic operation of the

system and the tracking situation of tie-line planned value,

this paper proposes a multi-layer coordinated optimization

strategy of ETH-IES with EVs, which includes the feedback

correction of V2G load. Taking an electric-thermal-hydrogen

integrated energy industrial park as an example for research

and analysis. The main conclusions are as follows:

FIGURE 11
Influence of unplanned EV ratio on Scheduling Results. (A) Relationship between unplanned EV proportion and operating cost. (B) Relationship
between unplanned EV proportion and relative deviation of tie-line power.
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1) The constructed multi-objective EV charging and discharging

management model and two-stage MPC rolling optimization

model can achieve accurate and win-win optimal scheduling.

2) Based on the two-layer optimization of EVs and ETH-IES,

V2G load feedback correction is introduced. This can

eliminate the adverse effect of EV unplanned behaviors,

which improves the system economy and improves the

tracking situation of tie-line planned value.

3) The coupled Monte Carlo simulation and multi-objective

improved sparrow search algorithm can efficiently solve

the proposed multi-objective optimal scheduling model

with uncertain parameters.

4) The effectiveness of V2G load feedback correction is verified.

In addition, as the proportion of unplanned EVs increases, the

economic benefit is more obvious and the relative tracking

deviation of tie-line planned value is basically unchanged.
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Nomenclature

α charge transfer coefficient

n protons exchanged per mole of reactant

F Faraday constant

PEL
t power consumption of electrolyzer at time t

λH2 power consumption coefficient of hydrogen production

HEL,t
2 hydrogen production of electrolyzer at time t

Hst,t
2 hydrogen stored at time t

Hst,t−1
2,in , Hst,t−1

2,out hydrogen stored and released at time t-1

Rc Avogadro constant

K Kelvin temperature

Sohct state of hydrogen charge of storage device at time t

Vsto volume of hydrogen storage tank

a, b proportional coefficients

PH2
sto,rated rated pressure of hydrogen storage device

Cre battery replacement cost

ηBc, ηBd charge and discharge efficiency coefficient

EBA actual full capacity of the battery

Pload load power value

Mean(Pload) average load power

FEV
1 the variance of load curve

NEV total number of EVs

CB
min, CB

max minimum and maximum affordable EV

degradation costs when signing the agreement

price real-time electricity price

PV2G V2G equivalent load

FEV
2 dissatisfaction of EV owners participating in V2G

mechanism

Ichan , Idisn the n − th EV’s charging and discharging signs

Pn
EV the n − th EV’s charging and discharging power

fmt fuel consumption factor

Cmt fuel cost factor of micro gas turbine

N total number of Monte Carlo simulation scenarios

Cmts start-up cost of micro gas turbine

S micro gas turbine’s start-stop state

CeSO2, CeCO2, CeNOx unit pollution gas control cost

ESO2, ECO2, ENOx pollution gas emission

PE electrolyzer’s output power

PEL
t , P EL

min , P
EL
max power of the electrolyzer and its upper and

lower limits

ΔP EL
min , ΔP EL

max upper and lower limits of the climbing rate of the

electrolyzer

SES rated capacity of thermal storage device

PFC PEMFC’s output power

QCS thermal storage device’s output power

Qch.max, Qdis.max maximum charging and discharging power of

thermal storage device

Qload thermal load power

ε maximum change range of battery SOC change after a

scheduling cycle

UBuy , USell status of purchasing and selling

Rup, Rdown MT’s maximum rising rate and falling rate

Ut−k+1 start-stop state of micro gas turbine at time t-k+1

Tmup, Tmdown minimum start time and stop time

UBatt.ch, UBatt.dis battery charge and discharge status

SOC min, SOC max allowable range of battery SOC in operation

Pch.max, Pdis.max battery’s maximum charging and discharging

power

YH2
st,t status of hydrogen storage equipment

Hst,max
2,in , Hst,max

2,out maximum storage and discharge volume of

hydrogen

Hst,rated
2 rated capacity of hydrogen storage equipment

λmin, λmax minimum and maximum capacity factor of thermal

storage device

Frontiers in Energy Research frontiersin.org17

Jia et al. 10.3389/fenrg.2022.1008042

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1008042

	Multi-layer coordinated optimization of integrated energy system with electric vehicles based on feedback correction
	1 Introduction
	2 Architecture of electric-thermal-hydrogen integrated energy system
	2.1 Conventional unit model
	2.2 Proton exchange membrane fuel cell model
	2.3 Electrolyzer model
	2.4 Hydrogen storage device model

	3 Multi-layer coordinated optimization framework for integrated energy system with electric vehicles based on feedback corr ...
	4 Multi-layer coordinated optimization model of integrated energy system with electric vehicles
	4.1 Electric vehicle charging and discharging management layer
	4.1.1 Electric vehicle degradation cost model
	4.1.2 Electric vehicle charging and discharging optimization model

	4.2 Model predictive control rolling optimization layer
	4.2.1 The first stage rolling optimization model
	4.2.1.1 Objective function:
	4.2.1.2 Constraints:
	4.2.2 The second stage rolling optimization model

	4.3 Vehicle to grid load feedback correction layer

	5 Multi-objective improved sparrow search algorithm
	6 Simulation results and discussion
	6.1 Parameter setting
	6.2 Result analysis
	6.2.1 Scheduling results of model predictive control rolling optimization layer
	6.2.2 Verification of the vehicle to grid load feedback correction layer
	6.2.3 The effect of the unplanned Electric vehicles’ proportion on scheduling results


	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Nomenclature


