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Abstract
Aims/ objectives: Today, the interest in brain and computer interfaces has rapidly grown owing
to the possibility of providing disabled subjects with new communication channels. Despite these
interests, there are some obstacles in providing applicable BCIs. One of these obstacles is the
non-stationary nature of brain signals varying from trial-to-trial and subject-to-subject. To overcome
this problem, we need to design dynamic systems to adapt them to this data.
Methodology: In this paper, we propose a dynamic classifier-based brain emotional learning
(DCBEL) for P300 based BCIs. This algorithm, by inspiration of brain emotional learning system,
provides a dynamic system which is able to deal with non-stationary nature of brain signals.
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The application of the proposed method in P300 based BCIs is done for the first time. We test this
system, on 4 able-bodied and 4 disabled subjects.
Results: The results showed classification accuracy of 95.39 for disabled and 93.27 for able-bodied.
Conclusion: The comparison of our results with two other algorithms multilayer perceptron and
fuzzy inference system proves the superiority of our proposed algorithm.

Keywords: Brain and Computer Interface, P300, Disabled subjects, Classification, Brain emotional
learning, EEG signals

1 Introduction
Since the discovery of the electrical nature of the brain, the idea of the possibility to communicate
persons with external devices only through the use of brain signals, was formed [1, 2].

Brain and computer interfaces (BCIs) enable subjects to send commands to an electronic device
through brain signals. Such systems can be considered as suitable tools of communication for people
by severe physical impairment such as neurological diseases [3].

Recently, the interest in brain and computer interfaces has rapidly grown. The possibility to
assist disabled subjects with new communication channels (such as BCI spellers) and new mobility
channels (such as BCI driven wheel chairs or BCI controlled mechanical prostheses) makes this a
very attractive research field [4].

Despite the applicability of current BCI systems, it is still limited by a number of obstacles. One of
these obstacles is the presence of non-stationarities in the data [5]. These non-stationarities cause
the patterns associated with each task during the training of the BCI to be distinct in the test phase,
leading to poor performance.

Different approaches have been suggested to overcome this problem [4, 5, 6, 7]. Some of these
approaches belong to the preprocessing methods and some others are machine learning, signal
processing and classifier techniques. In this paper, we propose a new dynamic classifier for EEG
signal processing in P300-based brain and computer interface.

The P300 event-related potential is a positive deflection in the EEG signals, appearing approxima-
tely 300ms after the presentation of rare or surprising, task-relevant stimuli [8]. The P300 were
employed as a control signal by Farwell and Donchin for the first time [9]. They presented the
P300 speller system, with which subjects were able to spell words by sequentially choosing letters
from the alphabet. After the Farwell’s work, much of the research in the area of P300-based BCI
systems has concentrated on development of new application scenarios (see for example [10, 11]),
and on the development of new algorithms for the detection of P300 of noisy data (see for example
[12, 13, 14, 15, 16, 17, 18, 19].

Furdea and his colleagues [20] used two different scenarios in their experiment, visual and
auditory speller. Their visual speller was like the Farwell’s, but the matrix size was smaller in order
to reduce the experiment time. Fifteen healthy participants were present in the experiment, and they
used sixteen electrodes to record the EEG signals. They also applied SWLDA as classifier. Two
participants were excluded from the study since the algorithm was unable to detect the P300 peak
properly. Finally their average classification accuracy in visual scenario was 94.6 percent and 65
percent in auditory scenarios. Note that the amplitude of this accuracy was among 75- 100 percent
in visual scenario and 0100 percent in auditory,which is a deterrent for real-world application.

Rivet and his colleagues [15] offered another developed P300 speller. Their experiment had 20
healthy participants, and they used thirty two electrodes to record the EEG signals. After recording
EEG signals, xDAWN algorithm was used for filtering and BLDA for classification. They also used
an adaptive training method. At the end their average classification accuracy was approximately 86
percent.
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Recently, several studies have been published in which P300 based BCI systems were tested
with disabled subjects (see for example [21, 22, 23, 24].

Spuler and his colleagues [16]applied a developed P300 speller by a different scenario. Their
experiment included three groups of participants: First group consists of nine healthy participants, the
second group consists of eight elderly subjects with motor impairments, and the third group consists
of six disabled participants. The EEG signals were recorded through 16 electrodes and SWLDA were
used in the first training part. In this study, the average classification accuracy for the first group was
81 per cent, and 79 per cent and 74 per cent for the second and third group, respectively.

In another study in 2014 [25], the P300 speller that was developed and tested on 25 disable
participants. 16 electrodes were used to record EEG signals, and the SWLDA was used as classifier.
Finally, the classification accuracy results were divided into two groups: The first group consisted of
eight participants, which had classification accuracy of less than 40 per cent. The second group was
the rest, who had classification accuracy of higher 70 per cent. In this case the average classification
of these 17 participants was 93 per cent by application of 8 electrodes and 95 per cent for 16
electrodes.

In this research, we also present a novel classification algorithm for detection of P300 signals.
Our algorithm is based on brain emotional learning, which provides a dynamic classifier for EEG data
with non-stationary nature. This algorithm can perform classification with high accuracy even with low
volume of data (by application of just 4 electrodes). It is also able to perform classification by high
accuracy for each participant. Our algorithm has been tested both on disabled and healthy subjects.

After this introduction, a brief review of the brain emotional learning literature will come in section
2. Section 3, fully describes the data, preprocessing steps, and the proposed algorithm. Section 4
and 5 introduce two other classification algorithms: multilayer perceptron neural network and fuzzy
inference system. Section 6 provides the results.

2 Brain Emotional Learning

Recently, there has been a great trend toward behavioral approaches in decision making problems.
Behavioral architecture has been widely used and admired in the fields such as soft computing and
artificial intelligence[26, 27, 28].

Emotions are thought to be concerned with activity in brain areas that manage our attention,
motivate our behavior, and specify the significance of what is occurring around us. Papez [29] and
MacLean [24] stated that emotion is related to the limbic system, a group of structures in the center of
the brain. The limbic system plays significant role in the emotional reaction. It includes several main
parts, such as orbitofrontal cortex, thalamus, and amygdala. The amygdala is the center of the limbic
system, a small area like almond, which is responsible for making emotional response [30]. There
is abundant evidence that learning does occur in the amygdala[31]. The assumption here is that the
amygdala reacts to stimuli that are either emotionally charged or to the stimuli that are novel, i.e. that
have not been encountered before and that have not been associated with a charged stimuli. When
such a stimulus occurs, a charged stimuli or a primary reward will be learned.

Orbitofrontal is another important part of the limbic system that reacts to improper responses. In
fact, it evaluates the activity of the amygdala. The orbitofrontal cortex is a region of association cortex
of the human brain involved in cognitive processes such as decision making. This part of a brain
is among the least understood regions of the human brain but has been proposed to be involved
in sensory integration, in demonstrating the effective value of reinforcers, and in decision making
and setting expectation[28]. Particularly, the human orbitofrontal is believed to govern planning
behavior associated with sensitivity to reward and punishment. In the event of an omitted reward
or punishment, it will inhibit areas of the amygdala, as well as other areas [32], thereby inhibiting the
associations responsible for the expectation of a reward or punishment [33, 34].

132



Razavi & Ebadati; BJMCS, 7(2), 130-142, 2015; Article no.BJMCS.2015.109

3 Materials and Methods

In this research, we used the EEG data of Hoffman’s work [21] which was downloaded in 2013 [35].
The data include a six-choice P300 paradigm, which was tested on a population of four healthy and
five disabled subjects. Six distinct images were flashed randomly with a stimulus interval of 400ms.
Electrode configuration was composed of four electrodes. Multilayer perceptron, fuzzy inference
system and DCBEL were tested for classification.

3.1 EEG data acquisition

During the test, each user was facing a laptop screen on which six images were displayed. The
images consisted of a television, a lamp, a telephone, a door, a window, and a radio. The images were
flashed in random sequences according to an application scenario. Each flash of an image lasted
for 100ms and during the 300ms that followed none of the images were flashed. The EEG signals
were registered at 2048Hz sampling rate from 32 electrodes placed in the standard positions of the
10-20 international system. Signal processing and machine learning algorithms were implemented in
MATLAB software. The participants were five disabled and four able-bodied subjects. The disabled
participants were all wheelchair-bound but had varying communication and limb muscle control abilities.
The characteristics of disabled subjects were described in Hoffman’s paper[18]. These subjects were
numbered from 1 to 5. Subjects 6 to 9 were Ph.D. students of the laboratory. They were all men, and
their average age was 30 years. Each subject was tested during four sessions. The first two sessions
were performed on one day and the rest of the two sessions on another day. For all subjects, the
time between the first and the last session was less than two weeks. Each session consisted of six
sub-sessions, one run for each of six images. The following protocol was used in each of the runs.

I Participants were asked to count how often a defined image was flashed.

II The six images were displayed on the screen and a warning tone was sounded.

III A random sequence of flashes was started 4 seconds after the warning tone, and the EEG was
registered. The sequence of flashes was arranged by the application scenario in the way that
after six flashes each image was flashed once, after twelve flashes each image was flashed
twice, etc.. The number of blocks was chosen randomly between 20 to 25. Each block consisted
of six different images. The counting image was called target and the others non-target image.

IV By the means of a classifier the target image was inferred from the EEG signals in the second,
third and the fourth session.

V After each run, participants were asked what their counting result was.

The execution time of one run was approximately one minute [21]. The aim of this research is
detection of the target image from a sequence of EEG trails based on the difference between the
waveform of the target and non-target trials by means of an efficient classifier. In other words, we are
going to predict the picture, which the participant is counting.

In fact, subjects show a P300 peak in the target condition which is not present in the non-target
condition. Figure 1 shows the P300 peak of a healthy and a disabled person. The picture at the top
of Figure 1 belongs to a disabled subject, and the picture at the bottom belongs to a healthy one. The
latency of the P300 is higher for the disabled subject when compared with the one from able-bodied
subject. The amplitude at the P300 peak is smaller for the disabled subject than for the healthy one.

133



Razavi & Ebadati; BJMCS, 7(2), 130-142, 2015; Article no.BJMCS.2015.109

Figure 2 presents the four electrodes configuration which were used for EEG acquisition.

3.2 Signal preprocessing
Before applying a classifier, several preprocessing steps were applied to the data. These steps were
as follows.

I Referencing
The average EEG signal of the two electrodes was used for referencing.

II Filtering
For filtering the data, a 6th order forward-backward Butterworth band pass filter was used. Cutoff
frequencies were set to 1 Hz to 12 Hz. The MATLAB function butter was applied in computing
the filter coefficients and the function filtfilt was applied for filtering.

III Downsampling
The EEG signals were downsampled from 2048 Hz to 32 Hz by selecting each 64th sample from
the band pass-filtered data.
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IV Single trial extraction
Single trials of 1000ms duration were extracted from the data. Single trials started at the beginning
of the intensification of an image and ended 1000ms later. Because of the ISI of 400ms, the last
600ms of each trial were overlapping with the first 600ms of the next trial.

V Windsorizing
Subject movement, muscle activity, eye blinks, and eye movements can cause large amplitude
outliers in the EEG signals. To decrease the effects of such outliers, the data from each electrode
was windsorized. To do so, the 10th percentile and the 90th percentile of each sample were
computed. Then the amplitude values lying below the 10th percentile or above the 90th percentile
were then replaced by the 10th and the 90th percentile, respectively.

VI Scaling
The samples of each electrode were scaled to the interval of -1 to 1.

3.3 Proposed algorithm
In this paper, we provided a computational model as a dynamic classifier for P300-based brain and
computer interface. This model was inspired from brain emotional learning system. The proposed
model is a new version of Morens computational model [36]. The model structure consists of three
main modules which try to accomplish their tasks to provide the correct answer. The name of modules
is like the name of limbic system parts. Figure 3 illustrates the input, output, and connections between
modules.

The DCBEL works in two phases: the amygdala learns to react and predict a given reinforcer.
This part will never unlearn a connection; once learned, it is stable, giving the system an ability to
retain emotional connections for as long as necessary. The orbitofrontal system tracks mismatches
between prediction and actual reinforcement signals and inhibits the output in proportion to the
mismatch.

These subsystems take different inputs. The amygdala receives the stimuli coming from thalamus
and sensory cortex and an abstract reinforcer. The orbitofrontal takes the same inputs; but in addition,
it receives a prediction from the amygdala. The amygdala is then inhibited by the orbitofrontal as
proper in the current state. Here, the power of the model comes not from the learning system within
each component, but from the way they are interconnected.

The function of different parts of DCBEL is described as follows:

• Thalamus: It receives the initial inputs, I, and prepares the desired inputs of sensory cortex
and amygdala. Some simple preprocessing such as noise reduction or filtering could be done
on the initial inputs. In fact, it extracts the strongest emotional stimuli as the input of the
amygdala. Although, this structure is a simple model of real thalamus.

Th = max(I)
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• Sensory cortex: This module provides the input of the amygdala and orbitofrontal. The inputs
of our system are EEG signals which enter the thalamus as raw data. This raw data, I, will
turn to information, S, after the preprocessing steps in thalamus and sensory cortex. Then it
is transferred to amygdala and orbitofrontal; after passing training processes, it inverts to our
desired knowledge to recognize among target and non-target stimuli.

• Amygdala: It receives the outputs of thalamus and sensory cortex. Then it provides two
different outputs, first it does its initial prediction and prepares the initial response of the
input,Ea and sends it to orbitofrontal. Second, it receives the orbitofrontal correction and
provides the final response,E. Ea(n) is the amygdala output in the nth iteration for orbitofrontal,
and V is the weight vector.

An = S.V

Ea(n) = Ea(n− 1) + ΣiAn(i)

Our input after doing preprocessing steps is matrix S. This matrix includes the EEG data of
a session, which consists of six runs and is applicable as a training session. S is a three
dimensional matrix, which is as follow:

S = a× b× c

Here, a represents the number of electrodes, which is equal to 4 in our experiment. b is related
to the data samples and is equal to 32 according to the downsampling part in preprocessing,
and c is the number of pictures that were shown in 6 runs. Furthermore, v and w are the weight
vectors by length of a b . Finally, A and O are our prediction vectors and have length c. These
vectors indicate the results of the problem under consideration. Each entry of these vectors is
related to the response of a participant to a special image. The value of each entry is between
-1 to 1. The value of -1 to 0 represents the response to non-target image and the value of 0 to
1 represents the response to target image.
The weight of the amygdala is updated by the following formula:

∆vn = α(S.max(RnEa(n), 0))

Rn = Σjwjrj

The learning procedure is based on a reinforcement signal, presented by R. Where rj are the
factors of the reinforcement agent, and wj are the related weights. Here α is the learning rate
of amygdala and is in the interval of 0 to 1. This parameter is usually set at low value.

• Orbitofrontal: it receives the amygdala and sensory cortex and provides its correction for the
amygdala.

On = S.W

Eo(n) = Eo(n− 1) + ΣjOn(j)

The weight of W is updated in proportion to the sensory cortex output and internal reinforcement
signal of orbitofrontal, Ro:

∆Wn = β.S.Ro

β is the learning rate of orbitofrontal.

Ro =

{
max(Ea(n)−Rn, 0)− Eo(n) if Rn 6= 0
max(Ea(n)− Eo(n), 0) otherwise
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The internal reinforcer of orbitofrontal does a bit more work than the one in the amygdala. The
above expression says: If there is reinforcing signal (RO 6= 0), then the reinforcer is calculated
to be the difference between the amygdala output and reinforcer R, minus the orbitofrontal
output. Thus, the orbitofrontal output is adjusted to minimize the difference of amygdala output
and the reinforcer.
When the reinforcer R is not present, then Ro becomes the difference between the amygdala
output and the orbitofrontal output, if it is positive.

• The final output: eventually, the output is provided by the following formula:

E(n) = Ea(n)− Eo(n)

The value of E is between -1 to 1. such that the negative values represent the response to
non-target image and positive ones represent the response to target image.

4 Multilayered Perceptron Neural Networks
After Rosenblatt presentation of single layer perceptron and perceptron learning rule [37], Minsky and
Papert pointed out that many problems of our world do not fall into this simple framework [38]. They
showed that while this was not possible with a perceptron network, it can be done with a multilayer
perceptron.

Figure 4 shows the structure of two-layer perceptron. It consists of a set of source nodes forming
the input layer, one hidden layer, and an output layer of nodes. The computational formula of this
network is as follows:

Y = F (X) = Bf(AX + a) + b

Where Y is a vector of outputs and X a vector of inputs. A is the matrix of weight of first layer and
a is the bias vector of this layer. Similarly, B is the matrix of weight of the second layer and b is the
bias vector of this layer. is the activation function and can be any non-linear function.

In this paper, we applied the generalized back-propagation algorithm with variable learning rate
and momentum as training procedure. Our network was a two-layer neural network with 15 nodes in
the hidden layer. The activation function of hidden layer was tansig and the output layer was purelin.
We also used the mean squared error for measuring the misclassification.
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5 Fuzzy Inference System

Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy
logic. A fuzzy inference system is composed of five functional parts: a rule base, a database, a
decision-making unita fuzzification interface, and a defuzzification interface [39].

Several types of fuzzy reasoning have been offered in the literature [40]. Accordingly, there are
several types of fuzzy inference system. Mamdani and Sugeno are the most common among them.
In this paper, we applied the Sugeno fuzzy inference system [41]. In this model the output of each
rule is a linear combination of input variables plus a constant term. The final output is the weighted
average of each rules output. The main formula of the Sugeno fuzzy inference system is as follows:

ŷ =

M∑
i=1

fiφi(u)

Where

fi = wi0 + wi1u1 + wi2u2 + + wipup

Where ui is the jth element in the data vector, hence representing the value of the jth channel.
The fi values are consequent functions of m rules.

φi(u) = µi(u)

M∑
i=1

µi(u)

The φi values are called basis functions, which normalize the degrees of rule fulfillment by
application of product t-norm, i.e.

µi(u) =

p∏
j=1

µij(uj)

The membership degree of uj to the fuzzy set, µij describes the jth part of the ith rule.

6 Results

The research data were obtained from 9 participants during 4 sessions. The data from three recording
sessions was used to train the classifier and the data from the last session was used for the test. We
also repeated the algorithm for four iterations, to use a distinct session as the test session. Table 1
shows Minimum, Maximum and average of classification accuracy of Multilayered perceptron, Fuzzy
inference system, and DCBEL among for iteration for all participants.
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The data for 5 subjects is not included in our results. This is because it was not clear whether the
subjects understood the instructions given before the experiments. Furthermore the level of alertness
of the subjects fluctuated strongly and rapidly during the experiments. As we see in table 1, MLP and
FIS show similar results in different cases, but the results of DCBEL were greatly better than the
others. The reinforcing structure of the DCBEL algorithm was one of the crucial factors in its success.
The difference of average classification accuracy of three algorithms can be seen in figure 5.

Table 2 shows the average of classification accuracy for abled-bodied and disabled subjects by
each algorithm.
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In this research, we applied the methods, both on able-bodied and disabled subjects. According
to the results of tables 1 and 2, DCBEL could gain not only the highest classification accuracy in all
subjects but also higher classification accuracy improvement of disabled subjects than the healthy
ones. This improvement in classification accuracy of disabled subjects will be an important factor in
implementation of BCI systems for disabled.

7 Conclusions

The selection of an appropriate classifier for a BCI is a crucial factor in its success due to the non-
stationary nature of brain signals. To cope with such complex data, we proposed dynamic classifiers
to adapt themselves to this data structure. This model is based on brain emotional learning for P300-
based brain and computer interface was presented. After the acquisition of EEG data, we performed
several preprocessing steps, and then the proposed classifier, DCBEL, was applied. We tested the
method for healthy as well as disabled subjects. Finally, the results were compared with two other
algorithms, multilayer perceptron and fuzzy inference system. The comparison proves the efficiency
of the proposed algorithm with higher accuracy.
Future works will deal with the use of this method in another kind of BCI systems or BCI scenarios.
Moreover, it might be useful to apply this method in online BCIs.
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