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ABSTRACT 
 

Aims: The aim of this review is to present Rickettsioses sensu lato, with emphasis on 
their current and future clinical diagnosis. The review presents the conditions, the agents 
that cause them, and the current gold standards on their diagnosis in national and 
international reference centres. Additionally, this review covers the various emerging 
technologies available in the diagnosis of Rickettsioses and discusses their potential for 
future use as gold standards in the diagnosis of these diseases.  
Introduction: The introduction presents Rickettsioses sensu lato and gives a broad 
overview of the conditions they cause, the issues associated with their current diagnosis 
and the need for their improved, earlier and more accurate diagnosis, in order to prevent 
current issues with false negatives, misdiagnosis or delay in the diagnosis associated with 
these conditions, which often renders them grave or lethal.   
Main Body: The main body of the review presents in independent sections Rickettsias, 
Ehrlichia, Anaplasma, Bartonella and Coxiella and the conditions associated with each of 
these bacteria. Spotted fever, endemic typhus, human granulocytic anaplasmosis, human 
monocytic ehrlichioses, bartonellosis and Q-fever are some of the conditions associated 
with this group of proteobacteria. The emphasis is on the clinical diagnosis of these 
conditions and an overview of the current practice, gold standards in reference 
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laboratories and improvements in these methodologies is presented. The last part of the 
review focuses on novel technologies in bacterial detection and their application 
specifically on Rickettsioses sensu lato, demonstrating how these technologies are being 
applied in this field and how they could improve current standards and resolve issues 
associated with the clinical diagnosis of rickettsioses.  
Conclusion: Rickettsioses sensu lato are conditions associated with proteobacteria 
historically included in the Rickettsiaceae family, able to cause a number of conditions, 
often grave or lethal. One of the major issues associated with poor clinical outcome is the 
lack of early and accurate differential diagnostic methodologies. Current methods, 
including serological and molecular biology techniques have various advantages and 
disadvantages, which new technologies available or currently in development may be in a 
position to resolve and the issues associated with the institution of such technologies. 
 

 
Keywords: Rickettsia; Ehrlichia; Anaplasma; Bartonella; Coxiella; clinical diagnosis. 
 
1. INTRODUCTION  
  
Significant advances in bacterial detection and clinical diagnosis of bacterial diseases have 
been achieved in the last decade and have opened the path for future developments. 
However, a lot of bacterial diseases remain misdiagnosed and, despite advances in 
antibiotics and the availability of curative interventions, they can often lead to serious 
conditions and death, with diagnosis arriving in very late stages or even post-mortem. One 
such group of bacteria, where methods for accurate and early diagnosis remain necessary 
are the "rickettsias sensu lato", here referred to as proteobacteria historically included in the 
Rickettsiaceae family, before phylogenetics investigations that placed genera Bartonella and 
Coxiella in other taxonomic subdivisions [1,2]. Besides these, the genus Orientia, causing 
scrub typhus, has recently been removed from the genus Rickettsia and classified as a 
separate genus in the Rickettsiaceae family. Orientia is shown to be endemic in eastern Asia 
and western Pacific, and is transmitted by mites, and is thus not included in this review, as is 
not Neorickettsia and Wolbachia. 
  
Various diseases are attributed to "rickettsias sensu lato", including rickettsioses of the 
spotted fever group (SFG), recrudescent typhus, typhus transmitted by cat fleas, 
rickettsioses varicelliform, ehrlichiosis, Q fever and bartonellosis, transmitted by arthropods, 
like mites, ticks, lice and fleas, and are found in many parts of the world.  Rickettsia and 
Ehrlichia genus are -proteobacteria of the subgroup 1 and Bartonella of the subgroup 2, 
whereas Coxiella burnetii belongs to the -proteobacteria. Although initially the above 
species all belonged to the order Rickettsiales, family Rickettsiaceae, they are now 
reorganised and considered as individual families of bacteria. The family Bartonellaceae, as 
well as Coxiella burnetii, were removed from the order Rickettsiales, which includes now two 
families, the Anaplasmataceae and Rickettsiaceae. However, they are often still studied 
within the field of rickettsiology and for the purpose of this review we will consider them 
jointly, particularly due to the many common characteristics they present, both in the way 
they are transmitted and in many of the symptoms they cause [1,2].  
 
Rickettsioses, especially SFG, are often misdiagnosed for other endemic diseases, such as 
dengue fever or leptospirosis, in tropical countries and, thus, often result in grave or fatal 
outcome [3-5]. This in part is due to the similarity of symptoms with other common endemic 
diseases, but also in part due to the nature of the diagnostic assays currently employed as 
gold standards in the diagnosis of these conditions, based on serological assays for the 
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presence of patient antibodies against these bacteria. As patient antibodies, IgG or IgM, can 
take up to two weeks to appear, early serological examination may lead to false negative 
results and two evaluations are necessary. Yet, until the second evaluation takes place to 
confirm seropositivity, symptoms may have advanced significantly. Thus, in this review, we 
are looking at "rickettsias sensu lato", including, besides the genus Rickettsia, the Ehrlichia, 
Anaplasma, Bartonella and Coxiella genus with a focus on the current diagnostic standard 
and an evaluation of future trends and their applicability and viability as laboratory methods 
that could have a wider application in the early and accurate diagnosis of these bacterial 
infections. 
  
2. RICKETTSIOSES CAUSED BY THE GENUS RICKETTSIA AND THEIR 

DIAGNOSIS IN HUMANS  
 
Rickettsioses are zoonoses caused by obligate intracellular bacteria of the genus Rickettsia 
in the order Rickettsiales. Rickettsias are Gram-negative, non-motile bacteria, with 
endothelial cells as their primary target. Their life cycle involves arthropod vectors like ticks, 
fleas, lice and mites [6]. Members of this genus may be classified into four groups: (i) typhus 
group (TG), which includes Rickettsia typhi and Rickettsia prowazekii; (ii) spotted fever 
group (SFG), based mainly on phenotypic and serological features with more than 25 
different species including Rickettsia rickettsii, Rickettsia conorii, Ricketsia africae, and 
Rickettsia parkeri; (iii) ancestral Rickettsiae group, which includes Rickettsia belli and 
Rickettsia canadensis and (iv) transitional group, with Rickettsia akari, R. autralis and R. felis 
[7-10]. 
  
Rickettsial pathogens are widely distributed throughout the world, causing emerging and re-
emerging infectious diseases. These zoonoses are among the oldest known vector-borne 
diseases. Their global distribution varies according to the density and distribution of the 
arthropod vector and the population density of the reservoir hosts [6,11]. SFG are 
increasingly being identified among international travellers. Two percent of imported fevers 
are caused by rickettsioses and 20% of these patients are hospitalized [12]. 
 
The case definition of confirmed SFG includes both clinical evidence and laboratory 
confirmation. The clinical features of this rickettsiosis consist of an acute undifferentiated 
febrile illness, often accompanied by headache, myalgia and nauseas, and a maculopapular 
or vesicular rash may be observed a few days after the onset of illness [13-15]. When a 
patient develops a febrile illness, the suspicion for tick-borne illness should be high in those 
who live or travel to endemic areas. Outdoor activities, whether recreational or occupational, 
particularly in areas with high-uncut grass, weeds, and low brush, can increase the risk for 
tick bites and thus the chance for disease onset [16]. 
 
Clinical disease develops prior to an antibody response, so patients presenting clinical 
evidence of disease due to rickettsial infections, should be empirically treated with 
appropriate antibiotics, regardless of the outcome of initial laboratory testing [11]. 
Doxycycline is the treatment of choice for adults and children. Resistance to doxycycline has 
not yet been reported. Chloramphenicol may be used in cases of life-threatening allergy to 
doxycycline [17]. Rickettsial organisms are naturally resistant to many antimicrobial drugs 
routinely used as treatment for acute fevers, including -lactams. Fluoroquinolones and 
newer macrolides are useful options of treatment [12]. Several species of SFR have been 
confirmed as human pathogens and the number is rising. Some examples are: R. rickettsii, 
R. parkeri, R. conorii, R. africae, R. felis, R. japonica, R. helvetica, R. montanensis, R. 
rhipicephalis and R. sibirica.  
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Similar SFG, epidemic typhus, caused by Rickettsia prowazekii, is also usually associated 
with more severe symptoms, which typically begin suddenly, and high mortality in the 
absence of specific of treatment. Regarding to endemic typhus, caused by Rickettsia typhi 
and occasionally R. felis, its clinical manifestations are also similar to those of SFG, but are 
less severe and rarely lead to death [6,18]. 
 
Diseases caused by agents of the Rickettsia genus can be diagnosed in a number of 
different ways; each approach has its advantages and its limitations. The specific laboratory 
confirmation could be either detection of specific DNA by PCR, demonstration of the 
organism in cell culture, or a fourfold rise in antibody titres on paired samples taken 2-4 
weeks apart. 
  
Rickettsiae are isolated most commonly from blood, skin biopsy specimens and autopsy 
tissue fragments or arthropods, especially ticks. Rickettsiae culture must be performed only 
in biosafety level 3 facilities, which are limited to Reference Centers or few research 
laboratories in the world [19,20]. 
 
Rickettsial antibodies can be detected by complement fixation, latex agglutination, enzyme-
linked immunosorbent assay and immunofluorescence assay (IFA). IFA is the gold standard 
for serological diagnostic of rickettsial infections and it is performed worldwide [21]. 
Diagnostic criteria of recent infection by IFA test are either a 4-fold increase of 
immunoglobulin IgG or IgM titres in paired samples drawn > seven/10 days apart, or 
elevated IgG and/or IgM titres in single samples consistent with recent infection. A diagnostic 
IFA titre of < 64 is not considered positive. A titre of > 64 is considered exposure or probable 
acute infection without rising titre. Titres should be interpreted based on the background 
seroprevalence of endemic area [17]. The main limitation with serological diagnosis include 
a usually negative result in the acute phase when patients first seek medical care, poor 
sensitivity in cases treated with doxycycline, and an inability to distinguish among various 
rickettsial species caused by cross-reaction [12]. 
 
The greatest challenge to clinicians is not therapy but the difficult diagnosis during the early 
phase of infections [18]. The diagnosis of rickettsiosis can be missed because of these 
nonspecific initial clinical presentations and the absence of specific laboratory confirmation 
[22]. Serological diagnosis is usually retrospective; antibody increase takes 15-26 days, thus 
limiting the clinical impact of diagnosis [23]. 
  
Molecular diagnosis using polymerase chain reaction (PCR) targeting various rickettsial 
genes has been developed to accelerate the diagnosis of rickettsiosis and allow early 
species diagnosis. While some PCR target several species, others are designed to detect 
only a single rickettsial species. The five genes usually targeted by PCR for detection and 
diagnosis are citrate synthase gltA, gene D sca4, the 17kDa lipoprotein precursor antigen 
gene 17kDa, and genes for outer membrane proteins A and B ompA and ompB [21,24]. 
Other targeted genes include 16S ribosomal RNA 16S rDNA, serine peptidase htrA [20]. It 
should be noted that, in contrast to SFG rickettsiae, all rickettsiae belonging to TG (R. 
prowazekii and R. typhi) lack the ompA gene [25]. 
 
Rickettsial diagnosis based on PCR has been used extensively [20,24,26-31]. PCR primer 
sets, targeting various rickettsial genes, have been described and can be used in any 
laboratory with suitable facilities. Rickettsiae can be detected from clinical samples including 
skin biopsies, autopsy tissue fragments, blood and sera. Modifications of the PCR technique 
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led to its improvement and the development of the nested PCR (nPCR), which increased the 
sensitivity of PCR to the level of detecting 1-10 genomic equivalents per reaction [32]. 
  
Santibáñez and co-workers [20] evaluated the effectiveness of PCR methods to detect 
Rickettsiae from clinical samples. They determined the sensitivity and usefulness of 
molecular diagnosis targeting the 16S rDNA, htrA, gltA, ompA and ompB genes by PCR. 
They performed single and sequential (nested or semi-nested) PCR assays. The samples 
tested were collected from patients in the early phase of the illness before antibiotic therapy. 
For single PCR assays, the greatest sensitivity to detect rickettsial DNA in clinical samples 
was obtained using gltA (33.3%). Higher sensitivity was achieved using sequential ompB 
PCRs (83.3%). They recommend performing gltA and ompB PCR assays, followed in 
positive samples by ompA PCR and nucleotide sequence analysis for species identification. 
The ompB PCR detects a high percentage of positive samples and it is effective as a first 
screening. The ompA PCR assay is an accurate method to diagnose and to implicate a new 
Rickettsia species. Combination of three sequential PCR assays (ompA, ompB and gltA) 
achieved 100% sensitivity [20]. Similarly, Sekeyova et al. [33] monitored clinical samples for 
Rickettsia, Bartonella, Borrelia, Coxiella, Anaplasma, Franciscella and Diplorickettsia from 
patients from Slovakia. They evaluated the seroprevalence by multiple-antigen IFA and 
confirmed the results with PCR. Serum samples from 50 hospitalized patients with 
suspected tick-borne diseases were evaluated. As a result, 32% were positive by IFA for 
spotted fever group rickettsia, but only 10% were confirmed by PCR. The discrepancy 
between IFA and PCR might be due to the sensitivity linked to the time of collection of the 
serum samples [33]. Therefore, these assays can provide high accuracy and sensitivity and 
have been used for the molecular diagnosis of rickettsioses, as well as to identify Rickettsia 
species in new clinical patients. 
 
Newer molecular assays are also available. Pan et al. [18] evaluated the potential of loop-
mediated isothermal amplification (LAMP) targeting the ompB gene to detect SFG rickettsiae 
early infection. LAMP is a highly sensitive and specific technique that under isothermal 
conditions (60-65

o
C) can generate up to 10

9
-fold amplification in less than one hour. They 

compared the sensitivity of the ompB LAMP assay and general PCR. They found the limits 
of detection of LAMP and PCR for the ompB gene were 5 and 625 copies per reaction, 
respectively. Thus, the LAMP assay is 125-fold more sensitive than conventional PCR. They 
also evaluated the clinical applicability of the LAMP assay with clinical samples previously 
positive by serology or real-time PCR and compared the results of LAMP with nested PCR 
protocols. LAMP detected 8 of 10 confirmed cases while nested PCR detected none of the 
positive samples [18]. Thus, LAMP assay is a reliable test and could be an ideal choice for 
development as a rapid and cost-effective means of detecting SFG rickettsiosis. 
 
Renvoisé et al. [34] evaluated the widespread use of real-time PCR for rickettsial diagnosis. 
They reported two years of their experience at the French National Reference Center 
(FNRC) with molecular diagnosis for rickettsial diseases using real-time PCR. They 
designed a new set of primers and probes to detect TG Rickettsia, and SFG Rickettsia, such 
as R. conorii, R. slovaca, R. africae and R. australis. Specificity was tested in silico using 
blastN analysis on GenBank and in vitro using a panel of 30 rickettsial strains. Sensitivity 
was determined by 10-fold serial dilution. Primers and probes both sensitive and specific 
were routinely used for diagnosis of rickettsial infections at FNRC. Among the positive 
clinical samples, 68.9% (31/45) were cutaneous biopsies, 17.8% (8/45) were cutaneous 
swabs, 4.4% (2/45) were total blood samples and 8.9% (4/45) were serum samples [34]. 
Based on these findings, it appears that real-time PCR could also be an option that can be 
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easily implemented in laboratories that have molecular facilities and its widespread use is 
inexpensive and reduces the delay of rickettsial diagnosis. 
 
Angelakis et al. [35] performed a comparison between cell culture techniques and PCR for 
the diagnosis of Rickettsia infections. They analyzed skin biopsies and ticks collected from 
patients with suspected Rickettsia infections. They identified the presence of Rickettsia spp. 
in skin biopsies and ticks using molecular methods and cell culture. Culture methods were 
less sensitive than PCR. Culture sensitivity was low in patients under antibiotic treatment 
because of the high susceptibility of Rickettsia to antimicrobial agents. They found a positive 
correlation between the bacterial copies and the isolation success. Early antibiotic treatment, 
prior to skin biopsies, reduced the sensitivity of both methods tested [34]. As a result of 
these studies, it is suggested that PCR would be a much more promising as a reference 
laboratory technique than cell cultures that are less sensitive and much more demanding, 
and can also be affected by previous treatments. 
  
A duplex real-time PCR, targeting the DNA of any rickettsial species and TG Rickettsia in 
clinical samples (skin biopsies) has also been developed [23]. The test was sensitive for at 
least 10 DNA copies per reaction and exhibited good reproducibility. The results from clinical 
samples allowed an early diagnosis of spotted fever in two cases and recognition of murine 
typhus in another. Despite the limited number of samples tested, the clinical experience with 
the duplex real-time PCR assay is encouraging. The recognition of typhus group rickettsia is 
clinically and epidemiologically relevant, as these infections may be associated with worse 
prognosis than spotted fever. 
 
3. HUMAN GRANULOCYTIC ANAPLASMOSIS, HUMAN MONOCYTIC 

EHRLICHIOSIS AND THEIR DIAGNOSIS 
 
Intracellular bacteria of the Anaplasmataceae family cause ehrlichiosis and anaplasmosis. 
Ehrlichia and Anaplasma species are transmitted through the bite of an infected nymph, or 
adult tick vector that had been previously infected in larval or nymph stage while feeding on 
a rickettsemic animal, known as a reservoir host. Their agents are maintained in nature 
through enzootic ticks as well as wild and domestic animals [11,36]. 
  
The causative agents of human monocytic ehrlichiosis (HME) and human granulocytic 
anaplasmosis (HGA) are small, Gram-negative, obligate intracellular bacteria that have 
tropism for specific leukocytes. HME has an affinity for monocytes and HGA preferentially 
infects granulocytes. They replicate within vacuoles in these leukocytes forming 
microcolonies called morulae, which allows the organisms to avoid phagocytosis to facilitate 
their survival [11,37,38]. 
 
Clinical presentations of ehrlichiosis and anaplasmosis are similar and nonspecific. HGA and 
HME are acute febrile tick-borne diseases. Fever is followed by headache, myalgia and 
arthralgia. Less common symptoms include nausea, abdominal pain, diarrhoea and cough. 
A rash may be present in 10-30% of cases of HME but is uncommon in HGA, present in less 
than 10% of infected patients. Neurologic symptoms, including meningitis and 
meningoencephalitis, have been reported in approximately 20% of patients with HME. 
Laboratory findings include leukopenia, thrombocytopenia, elevated serum aminotransferase 
levels, and elevated creatinine levels [37,38,39]. 
 
The diseases are considered as emerging and the number of reported cases has been 
growing due to better diagnostic techniques and surveillance programs [36]. Accurate 
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diagnosis of many tick-borne diseases is hampered owing to similar clinical manifestations, 
overlapping geographical distributions and shared vectors. Laboratory confirmation can be 
carried out using a number of microbiological, serological and molecular techniques [37]. 
 
Direct visualization of bacterial inclusions, termed morulae, in the cytoplasm of infected 
circulating leukocytes can allow rapid diagnosis of Ehrlichia spp. and Anaplasma spp. 
[11,37,40]. Morulae detected in neutrophils are indicative of infection by Anaplasma 
phagocytophilum, while detection in monocytes delineates infection by Ehrlichia chaffeensis 
[37]. However, the low level of morulae, the short duration of rickettsemia, and the need of 
an experienced microscopist limit the utility of this approach. 
  
Recovery of E. chaffeensis and A. phagocytophilum in mammalian cell culture can also be 
used to diagnose infection. A. phagocytophilum is usually cultivated in the human 
promyelocytic leukemia cell line HL-60 and the canine histocytic cell line DH28 is employed 
for culturing E. chaffeensis [37,41,42]. Limitations of cell culture as a diagnostic tool include 
the need of an antibiotic-free environment for growing these cell lines and technical staff 
trained in cell culture techniques. Besides, with this approach, it can take several days to 
obtain a positive result. 
 
The indirect immunofluorescence assay (IFA) is the gold standard method proposed by the 
World Health Organization Collaborating Centre for Rickettsial Reference and Research. 
Antibodies in the serum bind to fixed antigens on a slide and are detected by a fluorescein-
labelled conjugate. The greatest limitation of IFA is the need of a pair of serum samples from 
both acute and convalescent stages of the illness; which is not applicable as an early test for 
infection [18]. Nonspecificity can occur in IFA due to cross-reactivity. The Centers for 
Diseases Control and Prevention recommend that diagnoses based on serological tests 
should be confirmed by molecular methods [40]. 
 
A number of European countries have been confirmed as a hotspot for HGA and rickettsial 
diseases. Thus, Cochez and co-workers [43] presented results from a 10 years (2000-2009) 
study of A. phagocytophilum sero-surveillance in Belgium. Serum samples from 1350 
patients were tested using an IFA IgG and IgM antibody test kit, according to the 
manufacturer’s specifications (Focus Diagnostic, CA, USA). In total, 111 confirmed cases 
were detected. All cases had a history of tick bite, fever, and initially showed a titre of at least 
64, which increased to 256 or higher in their follow-up sample. Based on these findings, the 
authors suggest that Belgium is a hot spot for HGA infections [43].  
 
A number of clinical samples were also evaluated in France and positive results were 
identified both with spp. and Ehrlichia spp. during acute infection. Several conserved genes 
have been employed as PCR targets, including the rrs (16S rRNA) and groESL (heat shock 
operon). Koebel and co-workers [44] highlight the PCR assay on EDTA-blood samples as 
the diagnostic test of choice during acute phase of diseases. A Taqman-based real-time 
PCR was applied to amplify a 73-bp fragment from the A. phagocytophilum msp2/p44 gene. 
They report confirmation of three consecutive clinical cases with HGA by Real-time PCR in 
eastern France [44]. Similarly, Edouard et al. [45] also reported five new human cases of A. 
phagocytophilum infection diagnosed by serology and Real-Time PCR. Serum specimens 
were tested with microimmunofluorescence assays using a large panel of antigens, including 
A. phagocytophilum. Serum samples were also screened with primers and probes targeting 
102-bp of DNA polymerase I of A. phagocytophilum. A positive result was confirmed using 
primers and probes targeting a 92-bp fragment of the glutamyl tRNA amidotransferase gene. 
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Clinical samples were obtained retrospectively (2000-2010) from the archives of the National 
Reference Centre for Rickettsioses, Marseille, France [45]. 
 
Weil et al. [46] described a tick-associated pathogen panel (TAPP) that includes a PCR 
assay for the detection of the organisms that cause HGA, other human ehrlichioses (A. 
phagocytophilum, E. chaffeensis, and E. ewingii), as well as Borrelia burgdorferi and 
Babesia microti, the causative agents of Lyme disease and babesiosis, respectively. The 
PCR targeted HSPD1, an open reading frame gene segment of the heat shock protein 
operon (groESL). From 692 samples tested, 33 presented an HGA-positive result. 
Serological assays were not included in this study [46]. The results of the authors would also 
suggest the potential of PCR for bacterial detection in the evaluation of more than one 
organism, even though they have not presented serological evidence for comparison.  
 
Other currently proposed molecular detection methods include LAMP to detect A. 
phagocytophilum in clinical samples [47]. They developed a LAMP assay based on a 
conserved region in the msp2 gene. The limits of detection of LAMP compared to PCR were 
25 copies of msp2 gene and 625 copies, respectively. Forty-two clinical samples were tested 
by LAMP and results were compared with nested-PCR and Real-time PCR. Twenty-six 
tested positive by LAMP assay while only one and three samples tested positive by nested-
PCR and Real-time PCR, respectively. Thus, as shown earlier for rickettsias, LAMP is a 
rapid, simple, sensitive, and cost-effective assay for detecting A. phagocytophilum in clinical 
samples. 
 
4. BARTONELLA AND ITS DIAGNOSIS 
 
Bartonella species are small, fastidious, intracellular, Gram-negative rod-shaped bacteria 

belonging to -Proteobacteria subgroup 2, with a worldwide distribution, which cause an 
increasingly large number of infectious diseases in humans and animals [48]. In 1993, 
Brenner and colleagues proposed to unify Bartonella and Rochalimaea genera and renamed 
some species as Bartonella quintana, B. henselae, B. vinsonii and B. elizabethae. As a 
result of this unification, the transfer of these organisms from the Rickettsiaceae family to the 
Bartonellaceae family was required and, at present, more than 31 species and subspecies 
are recognized [49]. 
  
Several hematophagous insects have been implicated in Bartonella transmission, including 
sand flies [50], the human body louse [51], the cat flea [52] and, potentially, ticks [53,54]. 
Bartonella infections have been encountered in all species surveyed, which extend to 
members of different orders of mammalian, including carnivores, primates, ungulates, 
rodents, and bats. It is believed that the vector preference for certain hosts can influence the 
transmission of these organisms and that is responsible for the association of a given 
Bartonella sp. with a specific host, i.e., B. henselae, B. clarridgeiae and B. koehlerae with 
cats, B. alsatica with wild rabbits, B. baciliformis and B. quintana with humans [55,56]. 
  
Bartonellae have been recognized as agents causing human disease, including B. 
bacilliformis (agent of Oroya fever and verruga peruana), B. henselae (agent of cat scratch 
disease CSD, bacillary angiomatosis, bacillary peliosis, endocarditis) and B. quintana (agent 
of trench fever, bacillary angiomatosis, bacteremia and endocarditis) and B. elizabethae 
(agent of endocarditis), among others [55]. The Bartonella spp. infection can cause great 
diversity of clinical manifestations in humans, including recurrent fever and fever of unknown 
origin, malaise, fatigue, insomnia, loss of memory, psychiatric disorders, lymphadenopathy, 
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splenomegaly, angiomatosis and bacillary peliosis, endocarditis, hepatitis, osteomyelitis, 
encephalitis, meningitis, and other neuroretinites [57,58]. 
 
The genus Bartonella has pathogenic characteristics, such as the ability to invade and lyse 
red blood cells. Besides erythrocytes, the endothelial cells represent another target of 
Bartonella in their mammalian hosts [56]. Current opinion is that these cells serve as a 
primary niche for bartonellae prior to them entering the bloodstream. After five days, these 
bacteria are released into the bloodstream and then are able to invade erythrocytes, where 
occurs their intracellular replication [59]. 
  
Antimicrobials have been used widely in the treatment of bartonellosis. A study using 
azithromycin in CSD showed a benefit in lymph node regression in 30 days, as compared 
with placebo [60]. In immunocompromised patients the antimicrobials indicated are 
erythromycin, clarithromycin, azithromycin, doxycycline, either co-administered or not with 
rifampicin, and the period of treatment ranges from 4-6 weeks [60,61]. In the acute febrile 
phase of Carrión’s disease the preferred treatment has been chloramphenicol [62], but oral 
ciprofloxacin has been increasingly and successfully used [61]. 
  
Several laboratory methods must be used in bartonellosis diagnostic to avoid false 
negatives; there is no gold standard [63]. Diagnostic techniques for infections with Bartonella 
spp. include serology by immunofluorescence (IFA) to detect antibodies against the bacteria 
in the patient’s serum, culture of the pathogen, histopathological examination of lymph nodes 
or tissue biopsy of skin, liver or other affected organs, and molecular biology techniques, 
especially PCR, to amplify Bartonella spp. genes from patient’s tissue fragments or blood 
[64,65].  
 
Serology is particularly important because it allows the rapid identification of Bartonella spp. 
[64,66]. But it is limited by cross-reactions between the different species of Bartonella, and 
also between genera such as Coxiella and Chlamydia [67,68]. Many studies have shown 
that serological differentiation between B. henselae and B. quintana through IFA is 
impossible, since cross-reactivity between these species is very high (95%). The 
heterogeneity among strains and genotypes of Bartonella spp., might result in differences 
between the parameters of laboratory analysis and subjectivity of the readings of the results 
of IFA, which could result in false positives [69,70]. Despite these limitations, IFA remains 
the gold standard for the diagnosis of infection [68,71]. 
  
 ELISA method has been proposed as an alternative to IFA. Several ELISA protocols use 
sonically disrupted B. henselae (whole cell-proteins) or the putative outer membrane 
proteins (OMPs) as the antigens [72,73]. However, studies have demonstrated low 
sensitivity of ELISA-based serodiagnosis when compared with IFA. Thus, researchers have 
focused their efforts on the improvement of the antigen preparation for use in IgG ELISA. 
Tsuruoka et al. [73] found that sarcosine-soluble proteins of B. henselae are significantly 
more specific than whole-cell or sarcosine insoluble proteins as antigens for IgG ELISA, 
indicating an improvement in accuracy of diagnosis of Bartonella infection [73]. 
 
The diagnosis of Bartonella infection should be confirmed by culturing the organism from 
aseptically obtained patient samples, including blood, CSF, lymph nodes, or other tissue 
aspiration samples, ocular exudates, and from surgical biopsies [58]. The liquid culture of 
Bartonella spp. is necessary to increase the sensitivity of detection of bacteraemia through 
molecular methods and is one of the most used methods of diagnosis worldwide [74,75,76]. 
The isolation of most species of Bartonella in blood agar plates requires a long incubation 
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period (6-8 weeks) at 35°C in a water saturated atmosphere containing 5% CO2. The 
development of a new liquid culture medium called BAPGM (Bartonella Alpha-
Proteobacteria Growth Medium) that allows the growth of at least seven Bartonella species 
enabled the improvement of this method as diagnosis. It is now widely used as a pre-
enrichment stage and, combined with molecular methods, increased the success and 
sensitivity of culture for diagnosis in both animals and humans [74-77]. However, to date, 
there is no consensus regarding the best culture medium or best antigen to be used in the 
diagnosis of bartonellosis. 
  
Likewise, a consensus has not been achieved on the best gene to be used for primer 
development and optimal conditions to be used in PCR. Species-specific PCR has been 
useful, especially when a particular diagnosis is already suspected. Thus, several studies 
describe regions of the 16S rRNA gene, the 16S-23S rRNA intergenic spacer region-
encoding gene (ITS), citrate synthase gene (gltA), the riboflavin synthase (ribC), the 60-kDa 
heat shock protein gene (groEL), the N-terminal region of the cell division protein gene 
(FtsZ) or gene of the beta subunit of RNA polymerase (rpoB) as the most efficient and 
promising primer targets for detection of different species of Bartonella [48,74]. 
   
Besides the set of primers that determine the region to be amplified and therefore the 
sensitivity of the reaction, the type of PCR also influences the success of the diagnosis. The 
nested PCR can greatly increase the sensitivity of detection, as does the real-time PCR 
[76,78]. A semi-nested PCR has also been designed to amplify the gene of a 31-kDa major 
protein (Pap31) associated with the bacteriophage harboured in B. henselae [79]. The main 
advantages of this technique are that it is easy and reliable, culture independent and almost 
all bacteria can be detected in a single reaction [67]. A limitation of the system is the quality 
of DNA of some clinical materials, high host DNA concentrations that interferes with DNA 
amplification of the Bartonella target and potential DNA contamination [64]. 
 
An important study conducted by La Scola et al. [80] using sequences available in the 
GeneBank database, compared seven gene targets, specifically the 16S rDNA, gltA, groEL, 
rpoB, ftsZ, ribC and the internal transcribed spacer 16S-23S (ITS). This comparison 
demonstrated the relative discriminatory power of each gene examined, and only two genes 
– gltA and rpoB – were able to clearly differentiate all species and subspecies of Bartonella 
analysed [80]. 
  
Newer molecular approaches in microbiology are available for characterization and typing of 
Bartonella genotypes [81]. The most widely used are pulse field gel electrophoresis (PFGE) 
[82], multilocus sequence typing (MLST) [83,84], multispacer typing (MST) and multilocus 
variable number tandem repeat analysis (MLVA) [81]. 
 
5. Q FEVER AND COXIELLA BURNETII DIAGNOSIS IN HUMANS 
 
Coxiella burnetii is a small, obligate intracellular, gram-negative, pleomorphic bacterium of 
the order Legionellales and is the cause of Q fever. Coxiella burnetii is very stable in the 
environment in its sporoid form. In natural infections, Coxiella has a tropism for cells of the 
mononuclear phagocytic class, such as lung alveolar macrophages, Kupffer cells of the liver 
and, more rarely, pneumocytes, fibroblasts and endothelial cells [85]. 
 
Coxiella burnetii exists in two antigenic phases, called phase I and phase II. In nature, the C. 
burnetii phase I expressed antigen is observed in humans, infected animals and arthropods 
and it is the infectious form of the bacterium. The phase II variant is obtained after several 
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passages in embryonated eggs or cell cultures and is less virulent [86]. The abnormally high 
resistance against chemical and physical factors, due to endosporous formation, is one of 
the most impressive attributes of C. burnetii. It enables this organism to persist in the 
environment for long periods of time and remain infectious. The surviving ability of the 
organism, its resistance to heat, desiccation and many disinfectants, justifies its high 
infectivity, a fact that makes this proteobacteria a possible weapon of bioterrorism and an 
agent classified as category B. Studies show that a single inhaled organism may produce 
clinical disease [87,88].  
 
Cattle, sheep and goats are the primary reservoirs of C. burnetii. Infection is known in a wide 
variety of other animals, including other species of ruminant domestic animals as well as wild 
animals [2,89]. The reservoirs of C. burnetii include mammals, birds and arthropods, 
especially ticks [90]. Coxiella burnetii does not usually cause clinical symptoms in these 
animals, although abortion in goats and sheep may be related to infection by this 
microorganism that is excreted in the milk, urine and feces of infected animals. During the 
time of birth of the animals, C. burnetii is present in great quantity in the amniotic fluid and 
placenta. Transmission to humans usually occurs through inhalation of contaminated 
aerosols from urine, feces, milk, amniotic fluid, placenta, abortion products, wool, or less 
commonly by drinking raw milk from infected animals [89]. This broad spectrum of unique 
reservoirs and resistance of C. burnetii to environmental factors makes, as mentioned 
previously, tracing the source of infection very difficult [91]. 
 
Infection with C. burnetii may present clinical manifestations of acute or chronic Q fever, a 
disease with a wide spectrum of clinical manifestations, ranging from limited febrile illness, 
pneumonia, hepatitis and other forms of infections, such as endocarditis, and 
meningoencephalitis [92,93]. The acute Q fever in humans is asymptomatic in almost 60% of 
infected people. Among the 40% of symptomatic patients, the majority (38% of 40%) 
undergo a mild disease without requiring hospitalization. In symptomatic patients, the onset 
is usually abrupt, with high fever, fatigue, chills and headaches. The most frequent clinical 
manifestation of acute Q fever is probably a self-limiting febrile disease associated with 
intense headache. Atypical pneumonia is also a frequent clinical presentation and clinical 
symptoms can vary from asymptomatic pneumonia, diagnosed by chest radiography, and 
rarely severe pneumonia resulting in acute respiratory failure. Hepatitis is another common 
presentation of acute Q fever detected biochemically by increased levels of aspartate 
aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase. 
Hepatomegaly may be clinically detectable, but jaundice is rare [2].  
 
Q fever can be considered chronic with the persistence of clinical manifestations for more 
than 6 months after the beginning of the symptoms. It occurs in approximately 5% of patients 
infected with C. burnetii and may develop insidiously over months to years after the acute 
illness. Patients with cardiovascular abnormalities are at higher risk of developing chronic 
infection. Normally, the heart is the organ most commonly involved, followed by arteries, 
bones and liver. Endocarditis usually occurs in patients with previous valvular lesions, or 
those who are immunocompromised, months or years later, and primarily with the 
involvement of the aortic valve [86]. Granulomatous hepatitis with a more protracted course 
can also be observed in some patients and the diagnosis is only possible by liver biopsies. 
Renal involvement with glomerulonephritis has also been described in Q fever [91,94,95]. 
Thus, endocarditis, vascular infections, osteoarticular infections, chronic hepatitis, chronic 
lung infections, chronic fatigue syndrome, prematurity in pregnancy and abortion are some 
of the clinical presentations that result from chronic infection. Coxielemia event results in 
permanent production and hence very high levels of antibodies in the circulation. 
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The difference in clinical presentation of Q fever can be explained by: (i) the route of 
infection by C. burnetii, including aerosol, or gastrointestinal tract, (ii) the dose of inoculation 
of C. burnetii, (iii) the variant of infective C. burnetii, and (iv) host factors, including immune 
status of the infected patient [2]. 
  
In contrast to acute Q fever in human, animal infection with C. burnetii is in most cases so 
amazingly asymptomatic. This fact implies that the term coxiellose is considered a more 
appropriate than animal Q fever. In animals during acute phase, C. burnetii can be found in 
the blood, lungs, spleen and liver, while during the chronic phase C. burnetii is presented as 
a persistent release of the organism in feces and urine [96]. 
  
The reservoirs of C. burnetii are numerous, including mammals, birds and biological vectors 
(ticks). Forty species of ticks or more are naturally infected with C. burnetii, but are not 
important in the maintenance of infections in domestic animals and in humans [2]. Coxiella 
burnetii multiplies in intestine cells of ticks and a large number of viable organisms are 
eliminated through feces. Contaminated leather and wool become vehicles to transmission 
to people either by direct contact or through the dry feces, inhaled as dust particles 
suspended in the air [96]. Although it appears that wild rodents are an important reservoir, 
the most commonly identified source of human infection is farm animals such as cattle, 
goats and sheep. Pets, including cats, dogs and rabbits can also be potential sources of 
urban outbreaks. It is suspected that cats are a major reservoir of C. burnetii in urban areas. 
In Canada, studies have shown that 6-20% of cats have anti-C. burnetii antibodies [86]. 
  
Infected animals eliminate C. burnetii through urine, feces and milk products. The 
occurrence of infection reactivation in female mammals during pregnancy can result in 
abortions in goats and, to a lesser extent, in sheep, and cause reproductive problems in 
cattle. C. burnetii is located in the uterus and mammary glands of infected animals. High 
concentrations of C. burnetii (up to 10

9
 bacteria per g of tissue) have been found in 

placentas, as well as in the milk of infected animals, although this form is probably less 
effective in spreading Q fever [2,86,96]. 
  
Q fever is a major public health problem in many countries especially in France [97] but also 
in Spain [98] and the Netherlands, where more than 3,500 cases were reported in the last 
three years [99-103]. Coxiella burnetii is responsible for 5-8% of cases of infective 
endocarditis in the south of France and Q fever cases occur in 50 per 100,000 inhabitants in 
this area [2,66,90,104,105,106]. More recent data show that throughout the French territory, 
the annual incidence of acute Q fever and endocarditis is 2.5/100,000 and 0.1/100,000 
persons, respectively [97]. 
  
Since the first publication on the emergence of Q fever in the Netherlands, thousands of 
cases have been reported [101,107-115] and the study of small ruminants demonstrated that 
the same genotype C. burnetii identified in these animals was responsible for the epidemic 
of Q fever in the Netherlands [101]. Yet another study, conducted by Klaassen et al. [116], 
identified five genotypes of C. burnetii in six patients and six animals from three different 
regions of the Netherlands [116]. Based on the Q fever epidemic occurred in the 
Netherlands, the application and importance of an efficient surveillance system, aimed at 
early identification, has been emphasized [101,113]. 
  
The first case of Q fever in Brazil was described in 1953, and, despite being a worldwide 
zoonosis, remains neglected. Q fever is not a notifiable disease, perhaps because of the 
lack of human and animal clinical histories. Incidence and epidemiology remains unknown 
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and the scarce information on the serological evidence in humans and animals is restricted 
to the states of Bahia, Minas Gerais, Rio de Janeiro and São Paulo [117-123]. The first case 
of Q fever in Brazil, confirmed by molecular analysis, was reported in the rural area of 
Itaboraí, Rio de Janeiro State, in 2008, when the patient reported a contact with products of 
goats' abortion [124]. Further study confirmed the presence of the antigen in the milk of 
goats and the serum of two dogs that had been fed non-pasteurized milk from these goats, 
confirming the origin of the source of infection of the patient [125]. According to Rozental et 
al. [126], the occurrence of Q fever in urban areas confirms the need to include its diagnosis 
in clinical cases compatible with a history of contact with childbirth or abortion material of 
pets like dogs and cats [126]. 
  
As with all zoonotic diseases, the animal disease control will influence the level of disease 
observed in humans. Appropriate strategies of tick control and good hygiene practices can 
reduce environmental contamination. Fluid and foetal membranes infected, aborted foetuses 
and contaminated bedding materials should be incinerated or buried after disinfection. 
Furthermore, manure must be treated with lime or calcium cyanide 0.4% before being 
spread on the fields, which must be done in the absence of wind to prevent the spread of the 
microorganism over long distances. Treatment of animals with antibiotics may be performed 
to reduce the number of abortions and the releasing C. burnetii in offsprings. Although it can 
be expensive, infected animals should be removed from or placed in confinement herds 
separated at birth. Workers from the animal industry should be fully informed about the risk 
factors for contracting Q fever and laboratories should be provided with adequate safety 
devices and equipment [96].  
 
In relation to animals, the antibiotic treatment using tetracycline during the last month of 
pregnancy can reduce the number of abortions and the number of released C. burnetii in 
offspring. The efficacy of this treatment has never been assessed accurately but has not 
been proven to prevent abortion or completely eliminate the release of C. burnetii in new-
borns [127]. Similarly, regular pasteurization at 72°C for 15 seconds or sterilization of milk 
from infected flocks is recommended, even though oral is not the major route of transmission 
of C. burnetii [128]. 
  
As it has become clear above, the main characteristic of Q fever is its clinical polymorphism, 
and thus diagnosis can only be made by systematic tests. Clinically, it is likely that factors 
such as the route of infection and the size of the inoculum determine, in humans, the 
expression of infection by C. burnetii. In fact, the airway is associated with pneumonia, and 
the gastrointestinal tract with hepatitis [96], while high inoculations are associated with 
myocarditis [2].  
 
With respect to laboratory diagnosis, Q fever may be detected by serological or molecular 
methods as well as isolation and histopathology associated with immunohistochemistry 
techniques. In cases of acute Q fever, antibody levels of phase II are usually higher than 
those of phase I, often by several orders of magnitude, and usually are first detected during 
the second week of infection. In the chronic phase the situation is reversed and antibodies to 
phase I antigens of C. burnetii have higher titres, requiring long time to appear and thus 
indicate continued exposure to the bacteria. In this context, high levels of antibodies to 
phase I samples later on, in combination with constant or falling levels of phase II antibodies 
and other signs of inflammatory disease may suggest chronic Q fever. It is known that 
antibodies against antigens of phase I and II persist for months or years after initial infection 
[2,96]. Since the clinical diagnosis is difficult, in most cases the diagnosis of Q fever depends 
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on serological tests. A variety of serological techniques are available, but the indirect 
microimmunofluorescence test became the reference technique [96].  
 
A real-time PCR assay for the detection of C. burnetii DNA in serum samples, targeting the 
IS1111 transposase sequences (also known as htpAB-associated repetitive element) [129], 
was used in the Netherlands and in Brazil to diagnose acute Q fever early in infection to 
avoid delay in treatment that can lead to increased hospital admission rates and prolonged 
morbidity. Researchers found the latest time point after onset of disease in which C. burnetii 
could be detected by PCR of serum samples was day 17 [126,130]. During the last years, 
several PCR-based diagnostic assays were developed to detect C. burnetii DNA in cell 
cultures and in clinical samples. These assays used conventional PCR, nested PCR or real-
time PCR conditions with Light-Cycler, SYBR Green or TaqMan chemistry [96,131]. The 
Light-Cycler Nested PCR (LCN-PCR), a rapid nested PCR assay that uses serum as a 
specimen and the Light-Cycler as a thermal cycler, targeting a multicopy 20-copy htpAB-
associated element sequence, has been adapted for the diagnosis of both acute and chronic 
Q fever [96,132]. The LCN-PCR assay may be helpful in establishing an early diagnosis of 
chronic Q fever [90, 96]. Due to its high sensitivity and specificity, the repetitive element 
IS1111 is the best target gene for the detection of C. burnetii in patients with active Q fever 
[132], although the complete sequences of the genome of C. burnetii have recently become 
available, allowing a large choice of DNA targets. 
  
Recently developed techniques such as MLVA and SNP typing have shown promise and 
improved the discrimination capacity and utility of genotyping methods for molecular 
epidemiologic studies of this challenging pathogen [133].  
 
Initial typing systems described were based on plasmid types. Restriction fragment length 
polymorphisms (RFLP) were analyzed with SDS-PAGE, pulsed-field gel electrophoresis 
(PFGE), and sequence studies of single genome targets like 16s/23s, com1, mucZ, and icd. 
They showed different levels of discriminatory power and epidemiological significance, but 
all suffered with problems of inter- and intra-laboratory reproducibility, hampering their 
widespread use [133]. Other techniques that are used for plasmid typing (four different 
plasmids QpH1, QpRS, QpDV, and QpDG are utilized) include Multispacer Sequence 
Typing (MST), a method based on the analysis of the intergenic regions of genomes, Single 
Nucleotide Polymorphism (SNPs), Infrequent Restriction Site-(IRS)-PCR, Microarray-Based 
Whole-Genome Comparisons/Typing and the IS1111-insertion sequence, coding for a 
transposase seen in up to 56 copies in C. burnetii genomes [133].  
  
6. ALTERNATIVE AND NOVEL APPROACHES TO BACTERIAL DETECTION 
 
6.1 Bacterial Imaging 
   
One method that has been growing in the detection of bacterial infections is the use of 
imaging. This has been achieved by the use of various imaging techniques and includes 
nuclear medicine approaches, nuclear magnetic resonance (NMR), optical probes, 
fluorescent and near-infrared imaging. A number of probes have been developed for the 
imaging of inflammation, including labelled monoclonal and polyclonal antibodies, cytokines, 
liposomes, leucocytes, antimicrobial peptides and antimicrobial agents among others 
[134,135]. The advantage of using nuclear medicine approaches is the differentiation 
between bacterial and viral infections, or inflammation due to infection with microbial 
pathogens (bacteria, fungus etc.) and inflammation due to immune response where no 
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microbial invasion is present, as is the case for example in autoimmune disorders [135]. This 
is achieved through the radiolabelling of antibiotics or other antimicrobial agents and their 
subsequent use as imaging agents. The advantage of using labelled antimicrobial agents as 
the localising agent for infection is the selective toxicity of these agents for microbial rather 
than human targets and the ability to bind selectively to those, offering the potential to rapidly 
distinguish a particular type of infection and differentiate it from others, thus influencing 
clinical decisions and therapeutic approaches [135]. Various antibiotics of broad-spectrum 
activity have been labelled to date, all or most of them with the radionuclide technetium 99m 
(
99m

Tc), a radionuclide widely used in nuclear medicine. These antibiotics include 
ciprofloxacin (also known as 

99m
Tc-Infecton), sparfloxacin, enroflaxacin and ceftizoxime. 

Other agents used in bacterial imaging that are not antibiotics include 
99m

Tc-ubiquicidin, a 
cationic synthetic peptide [136,137] and [

125
I] FIAU 1-(2´-deoxy-2´-fluoro-b-D-

arabinofuranosyl)-5-[
125

I] iodouracil, a substrate for bacterial thymidine kinase present in 
most bacteria [138,139]. 
    
Magnetic resonance imaging (MRI) is another imaging technique that offers the ability to 
visualise in real time the bacterial infections in vivo and study the impact of antibiotics on the 
bacterial proliferation and viability.  The majority of MRI applications are in the detection of 
bacterial-associated conditions, such as bacterial meningoencephalitis [140], bacterial 
pyomyositis [141] or bacterial abscesses [142]. However, labelling of MRI probes has led to 
the development of MRI imaging directly for bacteria. Thus, Bifidobacterium longum and 
Clostridium novyi-NT were labelled with super paramagnetic iron oxide nanoparticles and 
they were subsequently followed by MRI [143]. Similarly, P. aeruginosa was labelled with 
green fluorescent protein (GFP) and was followed in vivo with magnetization transfer 
contrast MRI with excellent results, as it was shown able to be used to track bacterial 
proliferation and potentially gene expression in vivo [144]. 
 
Optical imaging of bacterial infection has also been developed, but it is primarily focused on 
the use of generic reporters, such as light-emitting enzymes (luciferase) and fluorescent 
proteins such as GFP. However, more specific probes offer the advantage of specific 
bacterial recognition. As molecular probes, in similar approaches to those described in 
nuclear medicine techniques, antibodies, sugars, bacteria-binding peptides and antibiotics 
have been used with varying results.  In addition, a synthetic zinc (II) dipicolylamine (Zn-
DPA) coordination complex has been used as affinity group in bacterial imaging studies 
labelled with a carocyanine dye. The complex has been able to stain the periphery of both 
Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, 
giving clear images of the infection site and with no obvious side effects to the host. This 
technique would be easy to use and could have applications in infections at sites within the 
tissue penetration limit of the NIR light, such as skin, throat, urinary tract etc. Furthermore, 
altering the probes could offer more specific bacterial imaging [145]. 
  
Bacterial imaging has already been used in the area of rickettsioses, and in particular in the 
diagnosis of bartonelloses and cat scratch disease (CSD). It is known that ocular 
manifestations occur in 5%-10% of patient with CSD and several imaging modalities can be 
used to assist in the diagnosis and management of ocular CSD. They include colour fundus 
photography that allows the clinician to monitor the fundus changes in this disease, 
fluorescein angiography that demonstrates leakage at the optic nerve in CSD neuroretinitis 
and optical coherence tomography to provide confirmation in early stages of neuroretinitis 
before the formation of a macula star [146].  
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6.2 Bacterial Identification using Spectroscopic and Spectrometric 
Techniques 

 
Mass spectrometry has found a number of applications in the identification of bacteria. Some 
have been used coupled with molecular biology techniques for bacterial typing [147,148], 
whilst others have been used for the detection of pathogens. MALDI time of flight (TOF) 
mass spectrometry can offer a robust automated methodology for bacterial analysis, based 
on the detection of patterns of protein masses and potentially genotyping of single nucleotide 
polymorphisms for additional accuracy of identification [149]. 
 
Eshoo et al. [150] developed a multilocus PCR and electrospray ionization mass 
spectrometry (PCR/ESI-MS) method for the detection of bacterial tick-borne pathogens, 
including Ehrlichia and Anaplasma, in blood specimens. The role procedure of PCR/ESI-MS 
assay can be completed within six hours. The assay employs 16 primer pairs, including four 
broad-range primer pairs targeting the 16S and 23S genes of all bacteria. The other primers 
were selected based on their coverage groups of known tick-borne bacteria. Following PCR, 
the amplicons are analysed in an electrospray ionization mass spectrometer. Two hundred 
and thirteen clinical specimens from suspected ehrlichiosis patients were included in the 
study. This demonstrated the ability of PCR/ESI-MS to correctly diagnose the pathogen 
responsible for ehrlichiosis and identify it to species level [150]. 
 
Fourier transform infrared (FTIR) spectroscopy is another spectroscopic technique that has 
found extensive use in bacterial detection. It has been used for bacterial analysis since the 
1980s, and a lot of different types of bacteria have been investigated by FTIR, including 
Listeria, Bacillus, Staphylococcus, Clostridium, E. coli and Lactobacillus [151]. The authors 
presented the differential discrimination of Listeria innocua, Listeria welshimeri, Escherichia 
coli K12, Escherichia coli ATCC 29181, Salmonela cholerasuis, Salmonella subterranean, 
Enterobacter sakazakii and Enterobacter aerogenes. They have managed to accurately 
identify the microorganisms, even in complex backgrounds containing other bacterial 
populations, and differentiate bacteria even within the same genotype independently of 
growth phase [151]. 
  
Several groups have been specialising on the FTIR detection of pathogens and bacteria in 
particular. Such works were characterised by the detection and characterisation of particular 
molecular groups of the bacteria, such as lipopolysaccharides from E. coli strains [152], to 
the identification of bacteria such as E. coli O157:H7 and Salmonella typhimurium [153]. 
Additionally, bacteria have been detected by FTIR in complex media, such as E. coli 
O157:H7 in fruit juices [154], ground beef [155] and Salmonella enterica serovars in chicken 
breast [156]. 
  
In addition to the ability to differentiate between different bacterial cells in complex 
environments, FTIR has provided the possibility to identify treated and un-treated, or live and 
dead cells of the same bacteria [157]. Bacterial typing and subtyping at the haplotype level 
has also been described for Listeria monocytogenes [158] and E. coli O157:H7 isolates 
[159]. Finally, FTIR detection has been used in sensor development [160,161], amongst a 
number of other detection techniques, some of which will be briefly mentioned below on the 
biosensor section for bacterial detection. 
  
FTIR remains a promising methodology that could be of interest in the detection of 
rickettsiosis, but so far it has been limited to applications in food borne pathogens. However, 
wider exploitation of this methodology could also offer a rapid and accurate detection and 
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typing methodology. Detection limit mentioned is 4.8-5.8 log CFU/ml. (about 100,000-
500,000 bacteria/ml), when upper acceptable limit for bacteria in milk is 200.000/ml. That 
would, for example be of potential interest in the detection of Coxiella in milk. 
  
6.3 Microarrays 
 
One interesting approach to bacterial detection, and rickettsial detection in particular, that 
may offer differential diagnostic and simultaneous analysis of various samples, could be with 
the use of microarrays. A number of microarrays have been developed so far, based on the 
printing of a recognition element on a slide and subsequent detection of a signal. The 
recognition element can be protein, antibodies, carbohydrates or nucleic acids and different 
types of arrays have been resulted from the use of the above elements, with different scales 
of success. Thus, carbohydrate arrays have been described [162], where five different 
aminofunctionalised monosaccharide derivatives have been printed onto glass slides and 
the specific binding of fluorescently labelled E.coli ORN178 to mannose was observed. 
Furthermore, the array was shown to be able to differentiate between different strains of E. 
coli with differential affinity to mannose, and a detection limit of 10

5
-10

6
 cells. On a similar 

approach, Wang et al. [163] have developed a carbohydrate microarray with 48 microbiol 
polysaccharides for the specific recognition of carbohydrate-binding antibodies in the serum 
of patients. They were able to identify the particular type of infection based on the detection 
of patient antibodies with unique affinity for a specific pathogen polysaccharide, and with this 
methodology they successfully identified infections from E. coli and Pneumococcus and can 
be extended to a number of other pathogenic bacteria [163]. 
  
A similar, but somewhat reverse approach is the use of microarrays with lectins, to capture 
specific carbohydrate chains on the surface of bacterial cells. Most pathogenic bacteria 
possess cell surface polysaccharide or lipopolysaccharide shells, with crucial functions for 
their protection from the immune system and host invasion. Exploiting the natural affinity of 
lectins for bacterially expressed polysaccharides, lectin microarrays have been produced 
and utilised for bacterial detection. Lectins have been printed on glass slides and incubation 
with fluorescently labelled bacteria offered profiling of the diverse glycan structures 
[164,165,166] according to the specific binding of lectin to the lipopolysaccharide. As 
bacteria can specifically and reproducibly bind to certain lectins, such arrays can offer the 
potential to specifically differentiate bacterial species, or strains of the same bacterium with 
differential affinities to the specific lectin [164,167]. 
  
Protein microarrays have also been reported and, using antibodies as recognition agents, 
microarrays were able to detect E. coli and Renibacterium Salmoninarum [168]. One of the 
important characteristics of this work was the signal detection by scanning probe microscopy 
(SPM), whose high resolution imaging demonstrated the high binding selectivity of the 
antibodies for the specific bacteria, compared to signal from non-specific, control ones [168].  
However, the most widely applied microarrays remain DNA microarrays. This has been 
primarily due to the technological developments that allow synthesis of oligonucleotides on 
the surface of the array directly and high-density printing. A number of commercial arrays 
are currently available, such as those available from Agilent, which allow up to a million 
oligonucleotide probes printed on a single slide. Other commercially available arrays include 
those from Affymetrix, NimbleGen, CombiMatrix, Oxford Gene Technologies, etc. Bacterial 
detection based on oligonucleotide arrays has been an active field of research and 
development for more than one decade, with reports of bacterial detection of a conserved 
bacterial gene in 2001 [169], species identification [170] and genotyping of bacterial 
pathogens using epidemiological markers [171-173]. 
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Oligonucleotide arrays have been used in bacterial detection in a number of formats and for 
a number of applications. In rickettsial diseases, there has been use of microarrays in two 
different forms. First of all, based on the whole genome sequence of R. prowazekii, the 
Rickettsial Diseases Division of the U.S. Naval Medical Research Center constructed the 
first rickettsial microarray with all predicted ORFs. The genomic compositions of virulent 
strain and attenuated strain were studied by co-hybridization on this DNA microarray [174]. 
They have also deposited a patent for the detection and diagnosis of R. prowazekii infection, 
but this time by measuring the increased or decreased expression of specific human genes 
following infection, using DNA microarrays and PCR. This method permits the detection of 
the rickettsial infection and diagnosis of epidemic typhus earlier than other available 
methods [175]. Another DNA array for R. prowazekii has also been generated, which was 
the first DNA microarray for the analysis of global gene expression changes in R. prowazekii 
under stress conditions [176]. In addition to R. prowazekii, other Rickettsia microarrays are 
available based on rickettsial genomic information. The Rickettsia Genome microarray from 
Agilent Technologies, comprising probes specific to all genes and spacers from R. 
prowazekii, was used by Bechah et al (2010) for the genomic, proteomic and transcriptomic 
analysis of R. prowazekii [177]. The genome of R. rickettsii str. ‘Sheila Smith’ has also been 
provided and used for the development of a database containing 3205 oligonucleotides that 
represent the R. rickettsii ‘Sheila Smith’ transcriptome [178]. Within the same database for 
pre-designed oligonucleotide microarray probes, available to the research community, are 
included the sequences for specific strains of R. rickettsii, R. africae, R. akari, R. bellii, R. 
canadensis, R. conorii, R. felis, R. massiliae, R. peacockii, R. prowazekii, and R. typhi [178]. 
   
Finally, even this very year there has been a further development in bacterial detection by 
microarrays by Ballarini et al. [179] with the creation of the BactoChip microarray. Whereas 
the majority of microarrays use the 16S rRNA gene for diagnosis, the BactoChip uses 60-
mer probes against an in silico identified set of genes. In so doing, BactoChip has been able 
to distinguish successfully among bacterial species from 21 different genera and determine 
the species-level relative abundances of 37 clinically relevant bacteria in complex bacterial 
communities and with a low detection limit of 0.1% [179]. Although "rickettsias sensu lato" 
are not included in this microarray, it is only a matter of time until an array containing 
rickettsias, either alone or amongst other bacteria with similar clinical manifestations, is 
created.  
  
Apart from changing the probes on the microarrays and using a variety of molecules that 
have affinity for different bacterial parts, or using oligonucleotide probes against bacterial 
genes, there is significant development on signal detection and enhancement. The majority 
of microarrays are based on fluorescent detection. However, we already saw above the use 
of SPM for improved signal detection [168]. Other such techniques for improved detection 
include Resonance-Light Scattering (RLS), Planar-Waveguide Technology (PWT) [180], 
Infrared detection [181,182] and electrical or electrochemical detection [183]. 
  

6.4 Biosensors 
 
Biosensor technology holds great promise for the health care market, environmental 
diagnostics, the food industry and the veterinary sector; harnessing the specificity and 
sensitivity of biological-based assays packaged into portable and low cost devices which 
allow the rapid analysis of complex samples in out-of-laboratory environments. Numerous 
biosensors have been described for bacterial identification, based on a number of detection 
technologies and recognition elements. Thus, bacterial sensors have been characterised 
based on their transducer properties, which include surface plasmon resonance (SPR), 
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amperometric, potentiometric, and acoustic wave sensors [184]. These sensors have been 
independently reviewed in Zourob, Elwary and Turner (2008) [185] in individual chapters, 
including SPR [186], Evanescent Wave-based Fluorescent biosensors [187], Fiber Optic 
biosensors [188], Integrated Deep-Probe Optical Waveguides [189], Interferometric 
biosensors [190], Luminescence sensors [191], Porous and planar silicon sensors [192], 
Acoustic wave biosensors [193], Amperometric biosensors [194], Field Effect Transistors 
[195], Impedance-based sensors [196], Molecular Nanowire transducer-based sensors 
[197], Magnetic sensors [198], Cantilever sensors [199], Raman spectroscopy [200], and 
others. 
 
The main biological sensing materials used in biosensor development are the couple 
antibody/antigen [201]. Yet, a number of other recognition elements are currently used, 
which include nucleic acid diagnostics [202], aptamers [203], molecularly imprinted polymers 
[204], phage display methods [205], bacteriophages [206,207]. An excellent representation 
of bacterial sensors and a review of progress of bacteriophage use in bacterial sensors are 
presented by Singh et al. [208], where the majority of types of sensors, including that of 
nucleic acids and antibodies are presented, in addition to bacteriophages, and tables of 
sensors available for specific microorganisms. Part of nucleic acid based sensors utilise a 
number of the techniques available in common molecular detection assays, such as PCR or 
real-time PCR amplification and subsequent detection of amplification products, but in a lab-
on-chip format with integrated microfluidic platform systems and various 
transducer/detection methodologies, reviewed by Lui et al. [209]. 
 
There have not, as yet, appeared specific sensors for rickettsial diseases in the literature. 
However, a number of the currently available sensor methodologies would apply to the 
detection of rickettsias as well as the organisms they were originally designed for, or have 
used as exemplars. To that effect, a number of patents on sensor development for bacterial 
detection have already included rickettsias in their list of pathogenic organisms potentially 
detected by the patented sensor technology. Two such examples are the design of 
electrochemical sensors including electrode systems with increased oxygen generation 
[210,211], where the invention describes the development of systems and methods for 
electrochemical analyte detection based on increased oxygen generation. Though the initial 
idea is to measure glucose, the patent proposes to cover a number of other ‘contemplated 
analytes’, one of which is rickettsia. In a similar case, a transcutaneous analyte sensor is 
described by Brister et al. [212], for measuring analytes in a host. In that invention, it is 
specified that the analyte is used in a broad sense, to include, without limitation, reaction 
products, naturally occurring substances, artificial substances, metabolites and/or reaction 
products and it subsequently specifies an extensive, but not limiting list of chemicals, 
products and microorganisms that the sensor could be applied for, including rickettsia, and 
thus protecting the use of such sensors in rickettsial diseases.  
 
There are, however, two specific references to rickettsial pathogen detection. One is on a 
document from the US Office of Scientific and Technical Information (OSTI) of the 
Department of Energy (DOE), where Andy Hatch describes the development of the first 
ultrasensitive microanalytical diagnostic method for rickettsial pathogens [213]. In the 
published summary of his report, he states the use of in situ polymerised porous polymer 
monoliths as size exclusion elements for capture and processing of rickettsial infected cells 
from a sample and as a photopatternable framework for grafting high densities of 
functionalised antibodies and fluorescent particles. With this, they have achieved selective 
capture and identification of bacterial cells with at least an order of magnitude improvement 
in the detection limits of currently available methodologies and reduced detection times 
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[213]. The second direct reference to the development of rickettsial sensors is again from the 
US, with the award of a programme for the development of ‘Handheld Aptamer-Magnetic 
Bead-Quantum Dot Sensor for Rickettsiae’ from the US Department of Defence (Small 
Business Innovation Research SBIR website) [214]. In this programme, they have proposed 
to use a previously developed sensor format for Campylobacter jejuni developed by 
Operational Technologies, that uses a rapid and ultrasensitive one-step plastic adherent 
DNA aptamer-magnetic bead plus aptamer-quantum dot sandwich assay to detect the 
bacteria in a handheld battery operated fluorimeter sensor that can be operated under field 
conditions. The group has now proposed to develop aptamers against a mixture of isolated 
rickettsias and substitute those used for the Campylobacter detection on the same sensor. 
No further data have been found to date regarding the outcome of this project. 
  
The existence of these two efforts clearly demonstrates the applicability of sensor 
development for rickettsial diseases and it may prove to be a practical route to an 
economically viable and rapid diagnostic approach that would offer definitive response 
without the need for extensive laboratorial work and long waiting times for patient immune 
response, at least as a first approach, prior to confirmation by molecular techniques. 
 
6.5 Aptamers 
 
Aptamers offer an interesting and promising new approach for the detection of bacteria and 
the development of new assays that could offer a more rapid and accurate detection. They 
are, in effect, recognition elements that can be selected against any target of interest, 
bacterial proteins, DNA or entire bacterial cells, and be integrated into any of the potential 
new methodologies described above. Thus, aptamers have been used in molecular imaging 
techniques, labelled with radionuclides [215,216] for the diagnostic imaging of disease. 
Similarly, aptamers have been used in a number of microarray formats and in conjunction 
with various detection methodologies. For example, RNA aptamers have been used in 
conjunction with enzymatically amplified surface plasmon resonance imaging for the 
detection of protein biomarkers [217]. Similarly, aptamers have been used in microarrays for 
the capture of biomarkers in serum to be analysed and identified by Mass Spectrometry 
[218]. Aptamers have also been described in biosensor applications, as seen earlier on [203, 
219]. In addition to their use in such more novel approaches to detection, they have directly 
substituted antibodies in more traditional approaches, such as ELISA, and have been used 
in conjunction with antibodies in sandwich ELISAs [220] and in the bacterial detection of 
Francisella tularensis in what is described as an aptamer-linked immobilized sorbent assay - 
ALISA [221]. 
   
Aptamers have been utilised extensively in the development of sensors for bacterial 
detection and there is an extensive list of bacteria that have been used as targets of 
aptamers and aptamer sensor development for detection and bacterial typing. Some 
examples include Salmonella species [222-224], E. coli [224,225], Staphylococcus aureus 
[224,226], Bacillus anthracis and Bacillus thuringiensis [227], Pseudomonas aeruginosa 
[228], Listeria monocytogenes [229], Francisella tularensis [221], among others. 
  
Despite the number of bacterial targets, both those used in diagnostic sensor development, 
as those mentioned above, and others used in the development of riboswitches, there have 
not been as yet any aptamers reported against rickettsias. However, B. henselae has been 
used as negative control, to show that aptamers were specific for F. tularensis but they did 
not bind to the related Bartonella [221] and, finally, they have appeared as the target in the 
development of the first rickettsial sensor by Jonh Bruno [214]. And as aptamers can be 
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applied in a variety of formats and can substitute antibodies in the more established and 
well-accepted ELISA and immunofluorescence assays, as well as in the variety of sensor 
development and microarray approaches, they show a great promise for bacterial diagnosis 
and detection of rickettsial infections in particular. 
 
7. CONCLUSION 
 
It is a big challenge for clinicians to offer an accurate diagnosis of rickettsial diseases during 
the early phase of infection. The gold standard serodiagnostic, immunofluorescence assay, 
is usually retrospective. The sensitivity of this method range from 84 to 100%, but it is limited 
by cross-reactivity. Antibodies increase takes more than 10 days, thus limiting the clinical 
impact of diagnosis. The isolation of rickettsia organisms in cell culture also take several 
days. Besides this, laboratory facilities with biosecurity level 3 are required. Molecular 
methods, based on PCR, for the diagnosis of human rickettsiosis allow rapid detection at the 
acute phase of infection and identification of bacterial species, even in small amount of the 
agent. Multiplex or Real-Time PCR can combine the detection of two or more agents of tick-
borne infection into a single diagnostic test. Blood, serum, autopsy tissue fragments and skin 
biopsies specimens can be used as clinical samples to detect the rickettsial infection in 
molecular methods. The sensitivity of molecular method assays is linked to time of collection 
of clinical samples, the rickettsiemia level and is limited by the use of antibiotic therapy. 
 
Various new approaches to the traditional assays have offered improvements to serologic 
and molecular diagnostic methods, which prove to be more sensitive than previous 
conventional methods. Thus, a novel enrichment liquid culture medium promotes the growth 
of Bartonella species in a shorter period, increasing the bacterial detectable level for PCR 
detection. The test double amplification (nested PCR), when compared with culture and 
simple PCR, is a more sensitive and faster method to detect bacteremia in both humans and 
animals. The use of combined approaches is also often necessary to minimize the chance of 
negative false results. Emphasizing that there is no gold standard for the diagnosis of 
bartonellose and the difficulty of detecting bacteremia caused by Bartonella spp. increases 
the need to use different and complementary methods to increase the sensitivity and 
accuracy of diagnosis. 
 
Various novel methodologies have for a long time being developed by research laboratories 
on the area of biosensors, microarrays, imaging methods or spectroscopic techniques, but 
most of them have not yet made it to the market, or at least they have not been accepted as 
techniques used in reference laboratories worldwide. According to Jeanne Moldenhauer 
[230], industry has been reluctant to follow scientific and technological advancements in the 
development of rapid/alternative microbiological methods due to two major reasons. One 
was the concern that regulators would not recognise or accept these methods in place of 
traditional methods. The other was that companies would not be allowed to change test 
limits based upon the test method, i.e. they would use a superior method that was likely to 
detect more organisms and not be allowed to adjust the limits to accommodate for the 
sensitivity of the new method [230]. Yet, it is likely that these inhibitions will necessarily be 
overcome, due to the limitations to current methodologies. Thus, DNA and aptamer 
microarrays could offer simultaneous detection of multiple parasites with similar broad 
clinical manifestations, and thus avoid misdiagnosis and wrong treatment, often detrimental 
for the patient. Similarly, direct ELISA or ALISA (aptamer-based ELISA type assay), if 
available, could eliminate the time necessary in rickettsioses for the detection of patient 
antibodies, and the need for double measurements to confirm infection. Finally, biosensor 
and aptasensor technologies could offer the possibility of early detection with cheap and 
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approachable diagnostic assays at the clinic or the field, rather than the need for all material 
to be analysed only at national reference centres. Thus, aptamers and sensor technologies 
that are currently in development could play a pivotal role in the detection and early 
treatment of rickettsial disease, thus significantly reducing the death toll associated with 
these infections and contributing to public health improvement.  
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