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Abstract 
 
Aims: The aim of this paper is to investigate interval-valued hesitant multiplicative preference 
relations and their application to multi-criteria decision making. 
Study Design: Based on pseudo-multiplication, we define some basic operations for the 
interval-valued hesitant multiplicative sets (IVHMSs) and develop several aggregation operators 
for aggregating the interval-valued hesitant multiplicative information. Some desired properties 
and special cases of the developed operators are also investigated. Furthermore, we present a 
new preference structure named as the interval-valued hesitant multiplicative preference relation 
(IVHMPR), each element of which is an IVHMS, denoting all the possible interval 
multiplicative preference values offered by the decision makers for a paired comparison of 
alternatives. 
Place and Duration of Study: Interval-valued hesitant fuzzy set (IVHFS), recently introduced 
by Chen et al., permits the membership degree of an element to a set to be represented as several 
possible interval values. However, it is noted that IVHFS uses 0.1–0.9 scale, which is 
inconsistent with some practical problems (e.g. the law of diminishing marginal utility in 
economics).  
Methodology: We use the unsymmetrical 1–9 scale instead of the symmetrical 0.1–0.9 scale to 
express the membership degree information in the IVHFS and introduce the concept of interval-
valued hesitant multiplicative set (IVHMS). 
Results: An approach for multi-criteria decision making based on the interval-valued hesitant 
multiplicative preference relations (IVHMPRs) is developed and some numerical examples are 
provided to illustrate the developed approach. 
Conclusion: We compare the IVHMPR with the interval-valued hesitant preference relation 
(IVHPR) and the interval multiplicative preference relation (IMPR), and show the effectiveness 
and practicality of the IVHMPR. 
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1 Introduction 
 
Hesitant fuzzy set (HFS), originally proposed by Torra [1], is an efficient tool for representing 
situations in which people hesitate between several numerical values to define the membership 
degree of an element to a set. Compared to some classical extensions of fuzzy set, such as 
interval-valued fuzzy set [2], intuitionistic fuzzy set [3], interval-valued intuitionistic fuzzy set [4] 
and type-2 fuzzy set [5], HFS can depict the human’s hesitation more objectively and precisely. 
Since its introduction, HFS has attracted increasing interest in different areas and has been 
successfully applied to many practical fields, especially in decision making [6–23]. However, it 
should be noted that hesitant fuzzy set permits the membership of an element to be a set of several 

possible values. All these possible values are crisp real numbers that belong to [ ]0,1 . However, in 

a lot of cases, no objective procedure is available for people to select the crisp membership 
degrees of elements in a set. It is suggested to specify an interval-valued membership degree to 
each element of the universe. To deal with such cases, Chen et al. [24] introduced the notion of 
interval-valued hesitant fuzzy set (IVHFS), which generalizes the HFS and permits the 
membership degree of an element to be a set of several possible interval values. The IVHFS can 
incorporate all possible opinions of the group members and, correspondingly, provides an 
intuitive description on the differences among the group members [24]. 
 
It is noted that both HFS and IVHFS use the balanced scale, i.e., 0.1–0.9 scale, to express the 
membership degree information. The 0.1–0.9 scale is a symmetrical distribution around 0.5 and 
assumes that the grades between “Extremely preferred” and “Extremely not preferred” are 
distributed uniformly and symmetrically, but in real life, the information are often asymmetrically 
distributed [25,26]. Take the law of diminishing marginal utility in economics as an example 
[27,28]. When given the same resources, a company with bad performance enhances more quickly 
than a company with good performance; that is, the gap between the grades expressing bad 
information should be smaller than the one between the grades expressing good information 
[27,28]. As an asymmetrically distributed scale, Saaty’s 1–9 scale is more appropriate to deal with 
such a situation than the 0.1–0.9 scale (see Table 1 for more details [27,28]), motivated by which, 
we use the 1–9 scale instead of the 0.1–0.9 scale to express the membership degree information in 
the HFS and the IVHFS, and develop the concept of interval-valued hesitant multiplicative set 
(IVHMS), which permits the membership of an element to be a set of several possible interval 
multiplicative values. Then, based on pseudo-multiplication, we give some operational laws for 
the interval-valued hesitant multiplicative sets (IVHMSs), based on which, we further develop 
some interval-valued hesitant multiplicative aggregation operators, which can overcome the 
limitations of the interval-valued hesitant fuzzy aggregation operators [24]. 
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Table 1. The comparison between the 0.1-0.9 scale and the 1-9 scale 
 
1-9 scale 0.1-0.9 scale Meaning 
1 9 0.1 Extremely not preferred 

1 7 0.2 Very strongly not preferred 

1 5 0.3 Strongly not preferred 

1 3 0.4 Moderately not preferred 

1 0.5 Equally preferred 
3  0.6 Moderately preferred 
5  0.7 Strongly preferred 
7  0.8 Very strongly preferred 
9  0.9 Extremely preferred 
other values between 
1 9 and 9  

other values between 0  
and 1 

Intermediate values used to present 
compromise 

 
In a group decision making (GDM) problem, preference relations are a powerful tool to describe 
the decision makers’ preference information when they perform a paired comparison of 
alternatives. There are some different formats of preference relations, such as multiplicative 
preference relations [29], fuzzy preference relations [30], interval fuzzy preference relations [31], 
interval multiplicative preference relations [32], intuitionistic fuzzy preference relations [33,34], 
intuitionistic multiplicative preference relations [27,28], and so on. However, in some processes 
of decision making, due to time pressures and lack of knowledge, the decision makes (DMs) 
cannot provide their preference information with single numerical value, a margin of error or 
some possibility distribution values, but with several possible interval numbers. The 
aforementioned preference relations have difficulty in dealing with such situations. To solve this 
issue, Chen et al. [24] introduced the concept of interval-valued hesitant preference relation 
(IVHPR). Each element of the IVHPR is an interval-valued hesitant fuzzy element (IVHFE), 
which denotes all the possible interval preference values to which one alternative is preferred to 
another alternative. However, it is noted that the IVHPR uses the 0.1–0.9 scale to express the 
interval preference information. As mentioned before, the 0.1–0.9 scale has some disadvantages. 
Thus, we use the 1–9 scale instead of the 0.1–0.9 scale to describe the preference information in 
the IVHPR and define a new concept of interval-valued hesitant multiplicative preference relation 
(IVHMPR), each element of which is an interval-valued hesitant multiplicative element (IVHME) 
denoting all the possible interval multiplicative values to which one alternative is preferred to 
another alternative. Moreover, based on interval-valued hesitant multiplicative aggregation 
operators, we develop an approach to multi-criteria decision making with IVHMPRs and give 
some examples to illustrate the developed approach. Finally, we make a comparison analysis with 
the interval multiplicative preference relation (IMPR) and the IVHPR. 
 
To do this, this paper is structured as follows. Section 2 recalls some concepts of hesitant fuzzy 
sets (HFSs) and interval-valued hesitant fuzzy sets (IVHFSs). In Section 3, we define the 
IVHMSs and give some operational laws for them. Section 4 presents several aggregation 
operators for interval-valued hesitant multiplicative information and examines some properties of 
the new operators. Section 5 develops an approach to multi-criteria decision making based on the 
IVHMPRs. In the sequel, the application of the developed approach is shown in Section 6. Some 
comparison analysis with the IVHPR and IMPR are also made in this section. The final section 
offers some concluding remarks. 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(10), 1390-1426, 2014 
 
 

1393 
 

2. Preliminaries 
 
In this section, some basic concepts of hesitant fuzzy sets [1] and interval-valued hesitant fuzzy 
sets [24] are briefly introduced. 
 
Definition 2.1 [1]. Let X  be a fixed set, a hesitant fuzzy set (HFS) on X  is in terms of a 

function that when applied to X  returns a subset of [ ]0,1 . 

 
To be easily understood, we express the HFS by a mathematical symbol: 
 

( ){ }, EE x h x x X= ∈                                                                                   (1) 

 

where ( )Eh x  is a set of some values in [ ]0,1 , which denotes the possible membership degrees of 

the element x X∈  to the set E . For convenience, Xia and Xu [35] called ( )Eh h x=  a hesitant 

fuzzy element (HFE) and H  the set of all HFEs. 
 
Considering that the precise membership degrees of an element to a set are sometimes hard to be 
specified, Chen et al. [24] proposed the concept of interval-valued hesitant fuzzy set, which 
permits the membership of an element to be a set of several possible interval values. 
 

Definition 2.2 [24]. Let X  be a reference set, and [ ]( )0,1D  be the set of all closed subintervals 

of [ ]0,1 . An interval-valued hesitant fuzzy set (IVHFS) on X  is expressed by 

 

( ){ },
A

A x h x x X= ∈%
%%                                                                            (2) 

 

where ( )A
h x%
%  is a set of some interval values in [ ]( )0,1D , denoting all possible interval-valued 

membership degrees of the element x X∈  to the set A% . For convenience, Chen et al. [24] called 
% ( )A
h h x= %

%  an interval-valued hesitant fuzzy element (IVHFE) and H%  the set of all IVHFEs. If 

%hγ ∈% , then γ%  is an interval and it can be denoted by ,L Uγ γ γ =  % % % . 

 

Definition 2.3 [24]. Let { }1 2, , , nX x x x= L  be a fixed set. An interval-valued hesitant preference 

relation (IVHPR) on X  is denoted by a matrix ( )ij n n
R r X X

×
= ⊂ ×% % , where 

{ }1,2, ,
ij

s
ij ij rr r s l= = %
% % L  is an IVHFE, indicating all possible degrees to which ix  is preferred to 

jx , and 
ijrl %  represents the number of intervals in an IVHFE. Moreover, ijr%  should satisfy 

 

( ) ( ) ( ) ( )1 1
inf sup sup inf 1r rij ij

l s l ss s
ij ji ij jir r r r

σ σσ σ− + − +
+ = + =% %

% % % % , [ ]{ }1,1iir =% , , 1,2, ,i j n∀ = L            (3) 
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where the elements in ijr%  are arranged in an increasing order, ( )s
ijr σ
%  denotes the sth smallest value 

in ijr% ,  and ( )inf s
ijr σ
%  and ( )sup s

ijr σ
%  denote the lower and upper limits of ( )s

ijr σ
% , respectively. 

 

Definition 2.4 [36]. The pseudo-multiplication  is defined as: , 

where g  is a strictly decreasing function such that ( ) ( ): 0, 0,g ∞ → ∞ . 

 

3. Interval-valued Hesitant Multiplicative Sets (IVHMSS) 
 
Chen et al. [24] proposed some aggregation operators for aggregating interval-valued hesitant 
fuzzy information. Among them, the interval-valued hesitant fuzzy weighted averaging 
(IVHFWA) operator is the basic one, based on which, other aggregation operators have been 
developed. 

Definition 3.1 [24]. Let ih%  ( 1,2, ,i n= L ) be a collection of IVHFEs, and let 

( )1 2, , ,
T

nw w w w= L  be the weight vector of ih%  ( 1,2, ,i n= L ) with [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ . 

An interval-valued hesitant fuzzy weighted averaging (IVHFWA) operator is a mapping 
nH H→% %  such that 

( ) ( ) ( ) ( )1 2 1 1 2 2
1

1 1

IVHFWA , , , 1 1 ,1 1 , , ,% % % % % % %% % % % %L L
i i

n nn w wL U
n i i i i n n

i
i i

h h h w h h h hγ γ γ γ γ
= = =

   = ⊕ = − − − − ∈ ∈ ∈  
   

∏ ∏  (4) 

 
However, the IVHFWA operator has a drawback that is shown as follows: 
 

Example 3.1. Let [ ]{ }1 1,1h =% , [ ]{ }2 0,0h =% , [ ]{ }3 0,0h =% , [ ]{ }4 0,0h =% , [ ]{ }5 0,0h =% , and 

[ ]{ }6 0,0h =%  be six special IVHFEs, and 
1 1 1 1 1 1

, , , , ,
6 6 6 6 6 6

T

w
 =  
 

 be their weight vector, then by 

the IVHFWA operator, we have 
 

 ( ) [ ]{ }1 2 3 4 5 6IVHFWA , , , , , 1,1h h h h h h =% % % % % %  

 
which is somewhat inconsistent with our intuition. In the following, we will try to address this 
issue by using other scales to express the interval-valued hesitant fuzzy information. 
 
In Definition 3.1, if we use the 1-9 scale instead of the 0.1-0.9 scale to express the membership 
degree, then a new concept can be introduced as below: 
 
Definition 3.2. Let X  be a reference set. A interval-valued hesitant multiplicative set (IVHMS) 
on X  is defined as 

( ){ }, MM x h x x X= ∈                                                                      (5) 
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where ( ) ( ){ },L U
M Mh x h xγ γ γ γ = = ∈   denotes all possible interval-valued membership 

degrees of the element x X∈  to the set M , with the condition: 
 

1
9

9
L Uγ γ≤ ≤ ≤ ,   x X∀ ∈ , ( ),L U

Mh xγ γ γ ∀ = ∈                    (6) 

 

For convenience, we call ( )Mh h x=  an interval-valued hesitant multiplicative element 

(IVHME) and H  the set of all interval-valued hesitant multiplicative elements (IVHMEs). 
 

Example 3.2. Let { }1 2 3, ,X x x x= , 

[ ] [ ] [ ] [ ]{ }1 2 3

1 1 1 1 1
, , , , , , ,1 , 1,3 , 2,3 , , 6,7 , 8,9

8 6 4 3 2
M x x x

          =                     
, and 

[ ] [ ]1
,1 , 1,3 , 2,3

2
h

  =     
. Then, M  is an IVHMS on X , and h  is an IVHME. 

 

Given three IVHMEs expressed by h , 1h , and 2h , we define some basic operations on them as 

below: 
 

(1) { }1 ,1c U Lh hγ γ γ = ∈  ;                                                                                               (7) 

(2) { }1 2 1 2 1 2 1 1 2 2, ,L L U Uh h h hγ γ γ γ γ γ = ∨ ∨ ∈ ∈ U ;                                                                 (8) 

(3) { }1 2 1 2 1 2 1 1 2 2, ,L L U Uh h h hγ γ γ γ γ γ = ∧ ∧ ∈ ∈ I .                                                                 (9) 

 
To compare the IVHMEs, we define the following comparison laws: 

Definition 3.3. For an IVHME { },L Uh hγ γ γ = ∈  , ( ) ( )( )
1

2 h
L U l

h
s h

γ
γ γ

∈
= ⋅∏  is called 

the score function of h , where 
h

l  is the number of the elements in h . For two IVHMEs 1h  and 

2h , if ( ) ( )1 2s h s h> , then 1 2h h> ; if ( ) ( )1 2s h s h= , then 1 2h h= . 

 
Based on the pseudo-multiplication, motivated by the work of Xia and Xu [15], we further define 
some operations about IVHMEs as below: 
 

(1)  ( ) ( )( ) ( ) ( )( ){ }1 1
1 2 1 2 1 2 1 1 2 2, ,L L U Uh h f f f f f f h hγ γ γ γ γ γ− − ⊕ = ⋅ ⋅ ∈ ∈

 
;          (10)  

(2)  ( ) ( )( ) ( ) ( )( ){ }1 1
1 2 1 2 1 2 1 1 2 2, ,L L U Uh h g g g g g g h hγ γ γ γ γ γ− − ⊗ = ⋅ ⋅ ∈ ∈

 
;            (11) 

(3) ( )( )( ) ( )( )( )1 1,L Uh f f f f h
λ λ

λ γ γ γ− −  = ∈    
, 0λ > ;                              (12) 
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(4) ( )( )( ) ( )( )( )1 1,L Uh g g g g h
λ λλ γ γ γ− −  = ∈    

, 0λ > .                                       (13) 

where g  is a strictly decreasing function such that ( ) ( ): 0, 0,g ∞ → ∞ , and ( ) 1
f t g

t
 =  
 

. 

Theorem 3.1. For three IVHMEs h , 1h , and 2h , we have the following properties: 
 

(1) 1 2 2 1h h h h⊕ = ⊕ ; 

(2) 1 2 2 1h h h h⊗ = ⊗ ; 

(3) ( )1 2 1 2h h h hλ λ λ⊕ = ⊕ ,  0λ > ; 

(4) ( )1 2 1 2h h h h
λ λ λ⊗ = ⊗ ,  0λ > ; 

(5) ( )1 2 1 2h h hλ λ λ λ⊕ = + ,  1 2, 0λ λ > ; 

(6) 1 2 1 2h h hλ λ λ λ+⊗ = ,  1 2, 0λ λ > . 

 
Proof. It can be easily derived from Eqs. (10), (11), (12) and (13). 
 

4.  Aggregation Operators for Interval-valued Hesitant 
Multiplicative Information 

 
In the current section, we will propose several operators for aggregating the interval-valued 
hesitant multiplicative information and investigate some properties and special cases of these 
operators. 
 
4.1. The GIVHMWA and IVHMWA Operators 
 
Definition 4.1. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and let ( )1 2, , ,

T

nw w w w= L  

be the weight vector of ih  ( 1,2, ,i n= L ) with [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ . Then, a generalized 

interval-valued hesitant multiplicative weighted averaging (GIVHMWA) operator is a mapping 
nH H→ , where 

                                           ( ) ( )
1

1 2
1

GIVHMWA , , ,
n

n i i
i

h h h w h
λ

λ
λ =

 = ⊕ 
 

L                               (14) 

with 0λ > . 
 
Especially, if 1λ = , then the GIVHMWA operator reduces to the interval-valued hesitant 
multiplicative weighted averaging (IVHMWA) operator: 

                                           ( ) ( )1 2
1

IVHMWA , , ,
n

n i i
i

h h h w h
=

= ⊕L                                            (15) 
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Theorem 4.1. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), where iw  indicates the importance degree of ih , 

satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , then the aggregated value by using the GIVHMWA operator 

is also an IVHME, and 

     ( )
( )( )( )

( )( )( )

1

1 1 1

1

1 2 1 1 2 21

1 1 1

1

,

GIVHMWA , , , , , ,L L

i

i

wn
L

i
i

n n n
wn

U
i

i

g g f f g g

h h h h h h

g g f f g g

λ
λ

λ λ
λ

γ

γ γ γ

γ

− − −

=

− − −

=

                           = ∈ ∈ ∈ 
                           

∏

∏


 
 
  
 
 
 
 
  

  (16) 

 
Proof. First, we will prove the following equation: 
 

         ( )
( )( )( )
( )( )( )

1 1

1

1 1 2 2
1

1 1

1

,

, , ,

i

i

wn
L

i
n i

i i n nwi n
U
i

i

f f g g

w h h h h

f f g g

λ

λ

λ

γ

γ γ γ

γ

− −

=

=
− −

=

                  ⊕ = ∈ ∈ ∈  
     
            

∏

∏
L            (17) 

 
By using mathematical induction on n : For 2n = , since 
 

( )( )( ) ( )( )( )1 1

1 1 1 1
1 1 1 1 1 1,

w w
L Uw h f f g g f f g g h

λ λλ γ γ γ− − − −
            = ∈                           

 

( )( )( ) ( )( )( )2 2

1 1 1 1
2 2 2 2 2 2,

w w
L Uw h f f g g f f g g h

λ λλ γ γ γ− − − −
            = ∈                           

 

we have 
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( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

1 1

2 2

1 1 2 2

1 1 1 1
1 1 1 1

1 1 1 1
2 2 2 2

,

,

w w
L U

w w
L U

w h w h

f f g g f f g g h

f f g g f f g g h

λ λ

λ λ

λ λ

γ γ γ

γ γ γ

− − − −

− − − −

⊕

              = ∈                              

           ⊕ ∈                          

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

1 2

1 2

1 1 1 1 1
1 2

1 1 1 1 1
1 2

,
w w

L L

w w
U U

f f f f g g f f f g g

f f f f g g f f f g g

λ λ

λ λ

γ γ

γ γ

− − − − −

− − − − −

  
  

              ⋅                                =
            ⋅                           

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

1 2

1 2

1 1 2 2

1 1 1
1 2

1 1 2 2

1 1 1
1 2

,

,

,

w w
L L

w w
U U

h h

f f g g f g g

h h

f f g g f g g

λ λ

λ λ

γ γ

γ γ

γ γ

γ γ

− − −

− − −

  
  
     ∈ ∈ 
   
         

        ⋅                 = ∈ ∈ 
        ⋅                 


 
  
 
 
 
  

 

 
That is, the Eq. (17) holds for 2n = . Suppose that the Eq. (17) holds for n k= , i.e., 
 

( ) ( )( )( ) ( )( )( )1 1 1 1
1 1

1
1 1

, , ,L
i iw wk kk

L U
i i i i k k

i
i i

w h f f g g f f g g h h
λ λ

γ γ γ γ− − − −

= = =

            ⊕ = ∈ ∈                            
∏ ∏  

 
then, when 1n k= + , we have 

( )
( ) ( )

( )( )( ) ( )( )( )

( )( )( ) 1

1

1

1 1
1

1 1 1 1
1 1 2 2

1 1

1 1
1

, , , ,L

i i

k

k

i i
i

k

i i k k
i

w wk k
L U

i i k k
i i

w
L

k

w h

w h w h

f f g g f f g g h h h

f f g g

λ λ

λ

γ γ γ γ γ

γ
+

+

=

+ +=

− − − −

= =

− −
+

⊕

 = ⊕ ⊕ 
 

              = ∈ ∈ ∈                             

   ⊕        

∏ ∏

( )( )( )

( )( )( ) ( )( )( )
( )( )( )

1

1

1 1
1 1 1

1 1 1 1 1
1

1

1 1 1

,

,

k

i k

w
U
k k k

w wk
L L

i k
i

U
i

f f g g h

f f f f g g f f f g g

f f f f g g

λ

λ λ

λ

γ γ

γ γ

γ

+

+

− −
+ + +

− − − − −
+

=

− − −

        ∈               

                 ⋅                             

=


∏

( )( )( )

( )( )( ) ( )( )

1

1 1
1

1

1 1 2 2 1 1

1 1 1
1

1

, , , ,L

i k

i

w wk
U
k

i

k k k k

wk
L L

i k
i

f f f g g

h h h h

f f g g f g g

λ

λ

γ

γ γ γ γ

γ γ

+
− −

+
=

+ +

− − −
+

=

  
  
  
   
                   ⋅                                  
 ∈ ∈ ∈ ∈ 

   ⋅  
  

=

∏

∏ ( )
( )( )( ) ( )( )( )
( )( )( )

1

1
1 1 2 2 1 1

1 1 1
1

1

1
1 1 1

1

,

, , , ,

,

L

k

i k

i

w

k k k kw wk
U U
i k

i

wk
L

i
i

h h h h

f f g g f g g

f f g g f

λ

λ λ

λ

γ γ γ γ

γ γ

γ

+

+
+ +

− − −
+

=

+
− − −

=

                  ∈ ∈ ∈ ∈  
         ⋅                    

   =        

∏

∏ ( )( )( )1
1

1 1 2 2 1 1
1

, , , ,L

iwk
U
i k k k k

i

f g g h h h h
λ

γ γ γ γ γ
+

−
+ +

=

       ∈ ∈ ∈ ∈             
∏

 

 
i.e., Eq. (17) holds for 1n k= + . Thus Eq. (17) holds for all n . 

Furthermore, by Eq. (13), we have 
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( ) ( )

( )( ) ( )( )

( )( )

1

1 2
1

1

1 1 1 1
1 1 2 2

1 1

1 1 1

GIVHMWA , , ,

, , , ,

L

L

i i

n

n i i
i

w wn n
L U

i i n n
i i

L
i

h h h w h

f f g g f f g g h h h

g g f f g g

λ
λ

λ

λ

λ λ

λ

γ γ γ γ γ

γ

=

− − − −

= =

− − −

 = ⊕ 
 

                 =   ∈ ∈ ∈                                  

  
 
 

=

∏ ∏

( )( )

1

1

1 1 2 21

1 1 1

1

,

, , ,L

i

i

wn

i

n n
wn

U
i

i

h h h

g g f f g g

λ

λ
λ

γ γ γ

γ

=

− − −

=

                                ∈ ∈ ∈  
                                     

∏

∏

 

 

In addition, because ( ) ( ): 0, 0,g ∞ → ∞  is a strictly decreasing function and ( ) ( )1f t g t= , 

( ) ( ): 0, 0,f ∞ → ∞  is a strictly increasing function. Accordingly, ( ) ( )1 : 0, 0,g− ∞ → ∞  is a 

strictly decreasing function and ( ) ( )1 : 0, 0,f − ∞ → ∞  is a strictly increasing function. Moreover, 

for any ,L U
i i i ihγ γ γ = ∈   ( 1,2, ,i n= L ), we have 

1
9

9
L U

i iγ γ≤ ≤ ≤ . Therefore, 

 

( )( )( )

( )( )( )

1
1

1 1 1 1 1 1

1 1

1 1 1

1 1

9 9

i
i

w
wn n

L
i

i i

U
i

g g f f g g g g f f g g

g g f f g g

λ
λλ

λ

λ

γ

γ

− − − − − −

= =

− − −

                                  = ≤                                               

 ≤  
 

∏ ∏

( )( )( )( )
1 1

1 1 1

1 1

9 9
i i

w wn n

i i

g g f f g g

λ λ
λ− − −

= =

                    ≤ =                                

∏ ∏

 

 
This completes the proof of Theorem 4.1. 
 
Based on Theorem 4.1, when 1λ = , the following theorem can be easily obtained: 
 

Theorem 4.2. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), where iw  indicates the importance degree of ih , 

satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , then the aggregated value by using the IVHMWA operator is 

also an IVHME, and 
 

( ) ( )( ) ( )( )1 1
1 2 1 1 2 2

1 1

IVHMWA , , , , , , ,L L
i i

n nw w
L U

n i i n n
i i

h h h f f f f h h hγ γ γ γ γ− −

= =

      = ∈ ∈ ∈     
      
∏ ∏ (18) 
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Especially, if 
1 1 1

, , ,
T

w
n n n

 =  
 

L , then the GIVHMWA operator reduces to the generalized 

interval-valued hesitant multiplicative averaging (GIVHMA) operator: 

  

( )

( )( )( )

( )( )( )

1

1 2
1

1
1

1 1 1

1

1
1

1 1 1

1

1
GIVHMA , , ,

,

n

n i
i

n n
L

i
i

n n
U
i

i

h h h h
n

g g f f g g

g g f f g g

λ
λ

λ

λ

λ

λ

λ

γ

γ

=

− − −

=

− − −

=

  = ⊕  
  

                             =
                         

∏

∏

L

1 1 2 2, , , n nh h hγ γ γ

 
 
 
 
  ∈ ∈ ∈  
  
  
  
   

L

    (19) 

If 
1 1 1

, , ,
T

w
n n n

 =  
 

L , then the IVHMWA operator reduces to the interval-valued hesitant 

multiplicative averaging (IVHMA) operator: 

( )

( )( ) ( )( )

1 2
1

1 1
1 1

1 1 2 2
1 1

1
IVHMA , , ,

, , , ,

n

n i
i

n n
L Un n

i i n n
i i

h h h h
n

f f f f h h hγ γ γ γ γ

=

− −

= =

 = ⊕ 
 

      = ∈ ∈ ∈        
       

∏ ∏

L

L

                (20) 

 
Then, we can investigate some desirable properties of the IVHMWA operator as follows: 
 

Theorem 4.3. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , if h  is an IVHME, 

then 
 

( ) ( )1 2 1 2IVHMWA , , , IVHMWA , , ,n nh h h h h h h h h h⊕ ⊕ ⊕ = ⊕L L             (21) 

 
Proof. Based on Eq. (10), for any 1,2, ,i n= L , 

( ) ( )( ) ( ) ( )( ){ }1 1
1 2 , ,L L U U

i i i i ih h h h f f f f f f h hγ γ γ γ γ γ− − ⊕ = ⊕ = ⋅ ⋅ ∈ ∈
 

 

 
According to Theorem 4.2, we have 
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( ) ( )( )( )( )
( ) ( )( )( )( )

( ) ( )( ) ( ) ( )( )

1 2

1 1

1

1 1 2 2

1 1

1

1 1
1 1 2 2

1 1

IVHMWA , , ,

,

, , , ,

, , ,

L

L

L

i

i

i i

n

n w
L L

i
i

n nn w
U U
i

i

n nw w
L L U U

i i
i i

h h h h h h

f f f f f

h h h h

f f f f f

f f f f f f h h

γ γ
γ γ γ γ

γ γ

γ γ γ γ γ γ

− −

=

− −

=

− −

= =

⊕ ⊕ ⊕

   ⋅   
    = ∈ ∈ ∈ ∈    ⋅       

    = ⋅ ⋅ ∈ ∈    
    

∏

∏

∏ ∏ , ,n nh hγ γ
  ∈ ∈ 
  

 

  
By Theorem 4.2 and Eq. (10), we can obtain 

( )

( )( ) ( )( ) { }

( )( ) ( )

( )( ) ( )

1 2

1 1
1 1 2 2

1 1

1 1

1

1 1

1

IVHMWA , , ,

, , , , ,

,

L

L
i i

i

i

n

n nw w
L U L U

i i n n
i i

n w
L L

i
i

n w
U U
i

i

h h h h

f f f f h h h h

f f f f f

f f f f f

γ γ γ γ γ γ γ γ

γ γ

γ γ

− −

= =

− −

=

− −

=

⊕

      
 = ∈ ∈ ∈ ⊕ ∈       

      

     ⋅         = 
    ⋅       

∏ ∏

∏

∏

( ) ( )( ) ( ) ( )( )

1 1 2 2

1 1
1 1 2 2

1 1

, , , ,

, , , , ,

L

L
i i

n n

n nw w
L L U U

i i n n
i i

h h h h

f f f f f f h h h h

γ γ γ γ

γ γ γ γ γ γ γ γ− −

= =

 
 
  ∈ ∈ ∈ ∈ 
 
  

  

      = ⋅ ⋅ ∈ ∈ ∈ ∈     
      

∏ ∏

 

 
This completes the proof of Theorem 4.3. 
 

Theorem 4.4. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , if 0r > , then 

     ( ) ( )1 2 1 2IVHMWA , , , IVHMWA , , ,n nrh rh rh r h h h=L L                     (22) 

 
Proof. Since for any  1,2, ,i n= L , 

( )( )( ) ( )( )( )1 1,
r r

L U
i i i i irh f f f f hγ γ γ− −  = ∈    

 

 

Based on Theorem 4.2, we have 

( )

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

1 2

1 1 1 1
1 1 2 2

1 1

1 1
1 1 2 2

1 1

IVHMWA , , ,

, , , ,

, , , ,

L

L

L

i i

i i

n

w wn nr r
L U

i i n n
i i

w wn nr r
L U

i i
i i

rh rh rh

f f f f f f f f h h h

f f f f h h

γ γ γ γ γ

γ γ γ γ

− − − −

= =

− −

= =

            = ∈ ∈ ∈                           

    
= ∈ ∈    

    

∏ ∏

∏ ∏ n nhγ
  ∈ 
  
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According to Eq. (12), we can obtain 
 

( )

( )( ) ( )( )

( )( ) ( )( )

1 2

1 1
1 1 2 2

1 1

1 1 1 1

1 1

IVHMWA , , ,

, , , ,

,

L

L
i i

i i

n

n nw w
L U

i i n n
i i

r r
n nw w

L U
i i

i i

r h h h

r f f f f h h h

f f f f f f f f

γ γ γ γ γ

γ γ

− −

= =

− − − −

= =

       
 = ∈ ∈ ∈             

                =                            

∏ ∏

∏ ∏

( )( )( ) ( )( )( )

1 1 2 2

1 1
1 1 2 2

1 1

, , ,

, , , ,

L

L
i i

n n

w wn nr r
L U

i i n n
i i

h h h

f f f f h h h

γ γ γ

γ γ γ γ γ− −

= =

 
   ∈ ∈ ∈ 
    

      = ∈ ∈ ∈     
      
∏ ∏

 

 
This completes the proof of Theorem 4.4. 
 
According to Theorems 4.3 and 4.4, we can easily obtain Theorem 4.5: 
 

Theorem 4.5. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , if 0r >  and h  is 

an IVHME, then 
 

     ( ) ( )1 2 1 2IVHMWA , , , IVHMWA , , ,n nrh h rh h rh h r h h h h⊕ ⊕ ⊕ = ⊕L L          (23) 

 

Theorem 4.6. Let ih  and il  ( 1,2, ,i n= L ) be two collections of IVHMEs, 

( )1 2, , ,
T

nw w w w= L  be their weight vector with [ ]0,1iw ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

w
=

=∑ , then 

 

( ) ( ) ( )1 1 2 2 1 2 1 2IV H M W A , , , IV H M W A , , , IV H M W A , , ,L L Ln n n nh l h l h l h h h l l l⊕ ⊕ ⊕ = ⊕         (24) 

 
Proof. According to Eq. (10), we have 
 

( ) ( )( ) ( ) ( )( ){ }1 1, ,L L U U
i i i i i i i i i ih l f f f f f f h lγ ξ γ ξ γ ξ− − ⊕ = ⋅ ⋅ ∈ ∈

   

 
According to Theorem 4.2, we have 
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( )

( ) ( )( )( )( )
( ) ( )( )( )( )

( ) ( )( )

( ) ( )( )

1 1 2 2

1 1

1

1 1 1 1

1 1

1

1

1

1

1

IVHMWA , , ,

,

, , , , ,

,

i

i

i

i

n n

n w
L L

i i
i

n n n nn w
U U
i i

i

n w
L L

i i
i

n w
U U
i i

i

h l h l h l

f f f f f

h h l l

f f f f f

f f f

f f f

γ ξ
γ γ ξ ξ

γ ξ

γ ξ

γ ξ

− −

=

− −

=

−

=

−

=

⊕ ⊕ ⊕

   ⋅   
    = ∈ ∈ ∈ ∈     ⋅      

  ⋅  
 =

  
 ⋅ 
  

∏

∏

∏

∏

L

L L

1 1 1 1, , , , ,n n n nh h l lγ γ ξ ξ

 
 
  ∈ ∈ ∈ ∈ 
 
  

L L

 

 
On the other hand, according to Theorem 4.2 and Eq. (10), we have 
 

( ) ( )

( )( )

( )( )

( )( )

( )( )

1 2 1 2

1 1

1 1

1 1 2 2 1 1 2 2

1 1

1 1

IVHMWA , , , IVHMWA , , ,

, ,

, , , , , ,

L L

L L

i i

i i

n n

n nw w
L L

i i
i i

n n n nn nw w
U U
i i

i i

h h h l l l

f f f f

h h h l l l

f f f f

γ ξ
γ γ γ ξ ξ ξ

γ ξ

− −

= =

− −

= =

⊕

        
        

       = ∈ ∈ ∈ ⊕ ∈ ∈ ∈                          

∏ ∏

∏ ∏

( )( ) ( )( )

( )( ) ( )( )

1 1 1

1 1

1 1 1 1

1 1 1

1 1

,

, , , , ,L L

i i

i i

n nw w
L L

i i
i i

n n n
n nw w

U U
i i

i i

f f f f f f f

h h l l

f f f f f f f

γ ξ
γ γ ξ ξ

γ ξ

− − −

= =

− − −

= =




 


 
 
 

         
 ⋅                   = ∈ ∈ ∈ ∈  

        ⋅                  

∏ ∏

∏ ∏

( )( ) ( )( )

( )( ) ( )( )

( ) ( )( )

( ) ( )( )

1

1 1

1 1 1 1

1

1 1

1

1

1 1

1

1

,

, , , , ,

,

, ,

L L

L

i i

i i

i

i

n nw w
L L

i i
i i

n n nn nw w
U U
i i

i i

n w
L L

i i
i

nn w
U U
i i

i

f f f

h h l l

f f f

f f f

h

f f f

γ ξ
γ γ ξ ξ

γ ξ

γ ξ
γ γ

γ ξ

−

= =

−

= =

−

=

−

=





   ⋅   
   = ∈ ∈ ∈ ∈     ⋅       

  ⋅  
  = ∈ ∈

  
 ⋅  
   

∏ ∏

∏ ∏

∏

∏
1 1, , ,Ln n nh l lξ ξ

 
 
 ∈ ∈ 
 
 
 

 

which completes the proof of Theorem 4.6.   
 
If the multiplicative generator g  is assigned different forms, then some specific aggregation 
operators can be obtained as follows: 

Case 1. If ( ) 1 t
g t

t

+= , then the GIVHMWA operator reduces to the following form: 
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( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )

1 2

1

1 1

1

1 1 1

1

1 1

1 1

GIVHMWA , , ,

1 1

,

1 1 1

1 1

1 1 1

L

i
i

i
i i

i
i

i i

n

n n wwL L L
i i i

i i

n n n ww wL L L L
i i i i

i i i

n n wwU U U
i i i

i i

n nw wU U U
i i i

i i

h h hλ

λ
λ λ λ

λ
λ λ λ

λ
λ λ λ

λ λ

γ γ γ

γ γ γ γ

γ γ γ

γ γ γ γ

= =

= = =

= =

= =

 + − + − 
 

   + − + − + −   
   =

 + − + − 
 

 + − + − + − 
 

∏ ∏

∏ ∏ ∏

∏ ∏

∏ ∏ ( )( )

1 1 2 2

1

1

, , ,L

i

n n

n w
U
i

i

h h h

λ
λ

γ γ γ

=

  
  
  
  
  
   ∈ ∈ ∈  
  
  
  
   
   
     

∏

 (25) 

 
Furthermore, if 1λ = , then the Eq. (25) is transformed to 
 

( ) ( ) ( )1 2 1 1 2 2
1 1

IVHM W A , , , 1 1, 1 1 , , ,L L
i i

n nw wL U
n i i n n

i i

h h h h h hγ γ γ γ γ
= =

   = + − + − ∈ ∈ ∈  
   
∏ ∏      (26) 

Case 2. If ( ) 2 t
g t

t

+= , then the GIVHMWA operator reduces to the following form: 

( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 2

1

1 1

1

1 1 1

1 1

GIVHMWA , , ,

2 2 3 2

4 2 3 2 2

2 3 2

L

i i

i i i

i i

n

n nw w
L L L L

i i i i
i i

n n nw w w
L L L L L L

i i i i i i
i i i

n nw w
L L L L

i i i i
i i

h h hλ

λ
λ λ λ λ

λ
λ λ λ λ λ λ

λ λ λ λ

γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ

= =

= = =

= =

    + + − + −    
    

    + − + + + − + −    
    

 − + + − + − 
 

=

∏ ∏

∏ ∏ ∏

∏

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

1

1 1

1

1 1 1

1 1

,

2 2 3 2

4 2 3 2 2

2 3 2

i i

i i i

i i

n nw w
U U U U
i i i i

i i

n n nw w w
U U U U U U
i i i i i i

i i i

n nw w
U U U U
i i i i

i i

λ

λ
λ λ λ λ

λ
λ λ λ λ λ λ

λ λ λ λ

γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ

= =

= = =

= =

  
  

  

    + + − + −    
    

    + − + + + − + −    
    

  − + + − + − 
  

∏

∏ ∏

∏ ∏ ∏

∏ ∏
1

1 1 2 2, , ,L n nh h h

λ

γ γ γ

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   
    

   
 ∈ ∈ ∈ 

  (27) 

 
Furthermore, if 1λ = , then the Eq. (27) is transformed to 
 

( )
( ) ( )

1 1
1 2 1 1 2 2

1 2 1 1 2 1

IVHMWA , , , , , , ,
2 2

L L

i i
n nw wL U

i i
i i

n n nh h h h h h

γ γ
γ γ γ= =

     + − + −     
     = ∈ ∈ ∈       

∏ ∏
 (28) 

Case 3. If ( ) t
g t

t

θ += , 0θ > , then the GIVHMWA operator reduces to the following form: 
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( )

( ) ( )( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( )( )( ) ( )

1 2

1

2

1 1

1

2 2

1 1 1

2

1

GIVHMWA , , ,

1

1

1

L

i i

i i i

i

n

n nw w
L L L L

i i i i
i i

n n nw w w
L L L L L L

i i i i i i
i i i

n w
L L L

i i i
i

h h hλ

λ
λ λ λ λ

λ
λ λ λ λ λ λ

λ λ λ

θ θ γ θ γ θ γ γ

θ θ γ γ θ γ θ γ θ γ γ

θ γ θ γ θ γ

= =

= = =

=

    + + − − + −    
    

    + − + − + + − + −    
    

 − + + − − + − 
 

=

∏ ∏

∏ ∏ ∏

∏ ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )( )

1

1

1

2

1 1

1

2 2

1 1 1

2

1

,

1

1

1

i

i i

i i i

i

n w
L

i
i

n nw w
U U U U
i i i i

i i

n n nw w w
U U U U U U
i i i i i i

i i i

n w
U U
i i

i

λ
λ

λ
λ λ λ λ

λ
λ λ λ λ λ λ

λ λ

γ

θ θ γ θ γ θ γ γ

θ θ γ γ θ γ θ γ θ γ γ

θ γ θ γ

=

= =

= = =

=

  
  

  

    + + − − + −    
    

    + − + − + + − + −    
    

 − + + − − 
 

∏

∏ ∏

∏ ∏ ∏

∏ ( ) ( )( )
1

1

1 1 2 2, , ,L

in w
U U
i i

i

n nh h h

λ
λ λ

θ γ γ

γ γ γ

=

  
  
  
  
  
  
  
  
  
  
   
  
  
  
  
  
  
  
    + −    

    
 

∈ ∈ ∈  

∏

         (29) 

 
Furthermore, if 1λ = , then the Eq. (29) is transformed to 
 

  ( )
( ) ( )

1 1
1 2 1 1 2 2

1 1 1 1

IVHMWA , , , , , , ,L L

i i
n nw wL U

i i
i i

n n nh h h h h h

θγ θγ
γ γ γ

θ θ
= =

     + − + −     
     = ∈ ∈ ∈ 
  
    

∏ ∏
 (30) 

 
Especially, if 1θ = , then the Eqs. (29) and (30) reduce to Eqs. (25) and (26), respectively; if 

2θ = , then Eqs. (29) and (30) reduce to Eqs. (27) and (28), respectively. 
 

Example 4.1. Assume that [ ] [ ] [ ]{ }1 1 4,1 3 , 1 2,1 , 1 5,1 3h = , [ ] [ ]{ }2 6,8 , 5,6h =  and 

[ ] [ ]{ }3 4,5 , 6,7h =  are three IVHMEs, and their weight vector is ( )0.2,0.5,0.3
T

w= . Let 

( ) 1 t
g t

t

+= , then from Eq. (25), we have 

( ) ( )
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ]

1 1 2 3 1 2 3GIVHMWA , , IVHMWA , ,

3.4836,4.4394 , 3.9598,4.9297 , 3.1510,3.7971 , 3.5918,4.2295 , 3.6501,4.8989 ,

4.1439,5.4306 , 3.3051,4.2024 , 3.7624,4.6713 , 3.4471,4.4394 , 3.9194,4.9297 ,

3.1172,3.7971 , 3.5545,4.2295

h h h h h h=



=


 
 
 
 

 

( )
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ]

6 1 2 3GIVHMWA , ,

4.3765,5.5510 , 4.9633,6.1446 , 3.9168,4.6771 , 4.4885,5.2351 , 4.3790,5.5830 ,

4.9659,6.1781 , 3.9192,4.7073 , 4.4910,5.2664 , 4.3764,5.5510 , 4.9632,6.1446 ,

3.9167,4.6771 , 4.4884,5.2351

h h h

 
 

=  
 
 

 

 
Example 4.2. If we use the corresponding IVHMEs of the IVHFEs in Example 3.1 to express the 

input arguments, then we have [ ]{ }1 9,9h = , [ ]{ }2 1 9,1 9h = , [ ]{ }3 1 9,1 9h = , 
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[ ]{ }4 1 9,1 9h = , [ ]{ }5 1 9,1 9h =  and [ ]{ }6 1 9,1 9h = . Therefore, by the IVHMWA operator 

(Eq. (18)), we can get 
 

( ) [ ]{ }1 2 3 4 5 6IVHMWA , , , , , 0.6025,0.6025h h h h h h =  

 
which is consistent with our intuition. Therefore, the IVHMEs can contain more original 
information than the IVHFEs in the aggregation process, which leads to the result that the 
IVHMEs are more reasonable and reliable than the IVHFEs in dealing with such a situation. 
 
4.2 The GIVHMWG and IVHMWG Operators 
 
Based on the GIVHMWA operator and the geometric mean, we next define a generalized 
interval-valued hesitant multiplicative weighted geometric (GIVHMWG) operator as: 
 

Definition 4.2. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and let ( )1 2, , ,
T

nw w w w= L  

be the weight vector of ih  ( 1,2, ,i n= L ) with [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ . Then, a generalized 

interval-valued hesitant multiplicative weighted geometric (GIVHMWG) operator is a mapping 
nH H→ , where 

                                              ( ) ( )1 2
1

1
GIVHMWG , , ,

i
n w

n i
i

h h h hλ λ
λ =

 = ⊗ 
 

L                           (31) 

with 0λ > . 
 
Especially, if 1λ = , then the GIVHMWG operator reduces to the interval-valued hesitant 
multiplicative weighted geometric (IVHMWG) operator: 
 

                                                  ( )1 2
1

IVHMWG , , , i

n
w

n i
i

h h h h
=

= ⊗L                                         (32) 

 

Theorem 4.7. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), where iw  indicates the importance degree of ih , 

satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , then the aggregated value by using the GIVHMWG operator 

is also an IVHME, and 

     
( )

( )( )( )

( )( )( )

1

1 1 1

1

1 2 1 1 2 21

1 1 1

1

,

GIVHMWG , , , , , ,L L

i

i

wn
L

i
i

n n

wn
U
i

i

f f g g f f

h h h h h

f f g g f f

λλ

λ

λλ

γ

γ γ γ

γ

− − −

=

− − −

=

  
                        
  = ∈ ∈                              

∏

∏

nh

 
 
 
 
 

∈ 
 
 
 
 
 

       (33) 
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Based on Theorem 4.7, when 1λ = , the following theorem can be easily obtained: 
 

Theorem 4.8. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), where iw  indicates the importance degree of ih , 

satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , then the aggregated value by using the IVHMWG operator is 

also an IVHME, and 
 

  ( ) ( )( ) ( )( )1 1
1 2 1 1 2 2

1 1

IVHM W G , , , , , , ,L L
i i

n nw w
L U

n i i n n
i i

h h h g g g g h h hγ γ γ γ γ− −

= =

      = ∈ ∈ ∈     
      
∏ ∏   (34) 

 

Especially, if 
1 1 1

, , ,
T

w
n n n

 =  
 

L , then the GIVHMWG operator reduces to the generalized 

interval-valued hesitant multiplicative geometric (GIVHMG) operator: 

   

( ) ( )

( )( )( )

( )( )( )

1

1 2
1

1
1

1 1 1

1

1
1

1 1 1

1

1
GIVHMG , , ,

,

n
n

n i
i

n n
L

i
i

n n
U
i

i

h h h h

f f g g f f

f f g g f f

λ

λ
λ

λ
λ

λ
λ

γ

γ

=

− − −

=

− − −

=

 
= ⊗ 

 

  
     

                      
 =

  
    

                    
 

∏

∏

L

1 1 2 2, , , n nh h hγ γ γ

 
 
 
 
 
  ∈ ∈ ∈ 

 
  
  
  
   

L

             (35) 

If 
1 1 1

, , ,
T

w
n n n

 =  
 

L , then the IVHMWG operator reduces to the interval-valued hesitant 

multiplicative geometric (IVHMG) operator: 

( )

( )( ) ( )( )

1

1 2
1

1 1
1 1

1 1 2 2
1 1

IVHMG , , ,

, , , ,

n
n

n i
i

n n
L Un n

i i n n
i i

h h h h

g g g g h h h

λ

γ γ γ γ γ

=

− −

= =

 
= ⊗  

 

      = ∈ ∈ ∈        
       

∏ ∏

L

L

                  (36) 

In what follows, we investigate some desirable properties of the IVHMWG operator. 
 

Theorem 4.9. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , if h  is an IVHME, 

then 

           ( ) ( )1 2 1 2IVHMWG , , , IVHMWG , , ,n nh h h h h h h h h h⊗ ⊗ ⊗ = ⊗L L   (37) 
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Theorem 4.10. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , if 0r > , then 

    ( ) ( )( )1 2 1 2IVHMWG , , , IVHMWG , , ,
r

r r r
n nh h h h h h=L L                   (38) 

 
According to Theorems 4.9 and 4.10, we can easily obtain Theorem 4.11: 
 

Theorem 4.11. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , if 0r >  and h  is 

an IVHME, then 
 

( ) ( )( )1 2 1 2IVHMWG , , , IVHMWG , , ,
r

r r r
n nh h h h h h h h h h⊗ ⊗ ⊗ = ⊗L L        (39) 

 

Theorem 4.12. Let ih  and il  ( 1,2, ,i n= L ) be two collections of IVHMEs, 

( )1 2, , ,
T

nw w w w= L  be their weight vector with [ ]0,1iw ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

w
=

=∑ , then 

 

( ) ( ) ( )1 1 2 2 1 2 1 2IVHMWG , , , IVHMWG , , , IVHMWG , , ,L L Ln n n nh l h l h l h h h l l l⊗ ⊗ ⊗ = ⊗     (40) 

 
In what follows, we will investigate the relationship between GIVHMWA operator and 
GIVHMWG operator. 
 

Theorem 4.13. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , then we have 

(1)  ( ) ( )( )1 2 1 2GIVHMWA , , , GIVHMWG , , ,
c

c c c
n nh h h h h hλ λ=L L                      (41) 

(2)  ( ) ( )( )1 2 1 2GIVHMWG , , , GIVHMWA , , ,
c

c c c
n nh h h h h hλ λ=L L                    (42)  

Proof. (1) According to Eqs. (7), (16), and (33), we can get 
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( )

( )( )( )

( )( )( )

1 2

1

1 1 1

1

1 1 2 21

1 1 1

1

GIVHMWA , , ,

1 ,

, , ,

1

i

i

c c c
n

wn
U
i

i

wn
L

i
i

h h h

g g f f g g

h h

g g f f g g

λ

λ
λ

λ
λ

γ

γ γ γ

γ

− − −

=

− − −

=

                           = ∈ ∈ 
                           

∏

∏

L

L

( )( )( )

( )( )( )

1

1 1 1

1

1

1

1 1 1

1

1
,

1

i

i

n n

wn
U
i

i

wn
L

i
i

h

f f g g f f

h

f f g g f f

λ
λ

λ
λ

γ

γ

γ

− − −

=

− − −

=

 
 
 
  ∈ 
 
 
 
  

 
                           
 = ∈
 
                            

∏

∏

( )( )( )

( )( )( )

1 2 2

1

1 1 1

1

1

1 1 1

1

, , ,

,
i

i

n n

wn
L

i
i

wn
U
i

i

h h

f f g g f f

f f g g f f

λλ

λλ

γ γ

γ

γ

− − −

=

− − −

=

 
 
 
 
 
 ∈ ∈ 
 
 
 
 
  

  
                        
 =

  
                           

∏

∏

L

( )( )

1 1 2 2

1 2

, , ,

GIVHMWG , , ,

c

n n

c

n

h h h

h h hλ

γ γ γ

 
 
 
 
  ∈ ∈ ∈ 
 
 
 
  

=

L

L

 

Similarly, we can prove Eq. (42), which completes the proof of Theorem 4.13. 
 

Theorem 4.14. Let ih  ( 1,2, ,i n= L ) be a collection of IVHMEs, and ( )1 2, , ,
T

nw w w w= L  be 

the weight vector of ih  ( 1,2, ,i n= L ), satisfying [ ]0,1iw ∈  and 
1

1
n

i
i

w
=

=∑ , then we have 

 

(1) ( ) ( )( )1 2 1 2IVHMWA , , , IVHMWG , , ,
c

c c c
n nh h h h h h=L L                         (43) 

(2) ( ) ( )( )1 2 1 2IVHMWG , , , IVHMWA , , ,
c

c c c
n nh h h h h h=L L                                (44)  

 
If the multiplicative generator g  is assigned different forms, then some specific aggregation 

operators can be obtained as follows: 

Case 1. If ( ) 1 t
g t

t

+= , then the GIVHMWG operator reduces to the following form: 
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( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )( )
( ) ( )( )

1 2

1 1

1 1 1

1

1 1

1 1

1 1 1

1

GIVHMWG , , ,

1 1 1 1

,

1 1 1

1 1 1 1

1 1 1

L

i
i i

i
i

i
i i

i
i

n

n n n ww wL L L
i i i

i i i

n n wwL L
i i

i i

n n n ww wU U U
i i i

i i i

n wwU U
i i

i i

h h hλ

λ λλ λ λ

λλ λ

λ λλ λ λ

λ λ

γ γ γ

γ γ

γ γ γ

γ γ

= = =

= =

= = =

=

   + − + − + −   
   

 + − + − 
 =

   + − + − + −   
   

+ − + −

∏ ∏ ∏

∏ ∏

∏ ∏ ∏

∏

1 1 2 2

1

1

, , ,L n n

n

h h h

λ

γ γ γ

=

  
  
  
  
  
  
   ∈ ∈ ∈  
  
  
  
  
   

      
∏

   (45) 

 
Furthermore, if 1λ = , then the Eq. (45) is transformed to 
 

( )

( )

( ) ( )

( )

( ) ( )

1

1 1
1 2 1 1 2 2

1

1 1

,
1

IVHMWG , , , , , ,

1

i

i i

i

i i

n wL
i

i
n nw wL L

i i
i i

n n nn wU
i

i
n nw wU U

i i
i i

h h h h h h

γ

γ γ
γ γ γ

γ

γ γ

=

= =

=

= =

  
  
  
  + −   
 = ∈ ∈ ∈ 
  
  
  
  + −
    

∏

∏ ∏

∏

∏ ∏

L L
         (46) 

Case 2. If ( ) 2 t
g t

t

+= , then the GIVHMWA operator reduces to the following form: 

          

( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 2

1 1

1 1 1 1
1

1 1

1

1 1

GIVHMWG , , ,

3 1 2 1 3 1 2 3 1 2 1 2 1

,

2 3 1 1 2 1

3 1 2 1 3 1 2 3 1 2

L

i i i i

i i

i i i

n

n n n nw w w w
L L L L

i i i i
i i i i

n nw w
L L

i i
i i

n nw w w
U U U
i i i

i i

h h hλ

λ λλ λ λ λ

λλ λ

λλ λ λ

γ γ γ γ

θγ γ

γ γ γ

= = = =

= =

= =

   + − + + + − + + − + −   
   

 + + − + − 
 

=
 + − + + + − + + 
 

∏ ∏ ∏ ∏

∏ ∏

∏ ∏ ( )( )
( )( ) ( )( )

1

1 1
1

1 1

1 1 2 2

1 2 1

2 3 1 1 2 1

, , ,L

i

i i

n n w
U
i

i i

n nw w
U U
i i

i i

n nh h h

λλ

λλ λ

γ

θγ γ

γ γ γ

= =

= =

  
  
  
  
  
  
  
  
    − + −  
   
  
   + + − + −      
 ∈ ∈ ∈ 

∏ ∏

∏ ∏

(47) 

 
Furthermore, if 1λ = , then the Eq. (47) is transformed to 
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( )

( )

( ) ( )

( )

( ) ( )

1

1 1
1 2 1 1 2 2

1

1 1

2
,

2

IVHMWG , , , , , ,

2

2

i

i i

i

i i

n wL
i

i
n nw wL L

i i
i i

n n nn wU
i

i
n nw wU U

i i
i i

h h h h h h

γ

γ γ
γ γ γ

γ

γ γ

=

= =

=

= =

  
  
  
  + −   
 = ∈ ∈ ∈ 
  
  
  
  + −
    

∏

∏ ∏

∏

∏ ∏

L L
        (48) 

Case 3. If ( ) t
g t

t

θ += , 0θ > , then the GIVHMWG operator reduces to the following form: 

      

( )

( ) ( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

( )

1 2

1

2 2

1 1

1

2

1 1

1

2

1 1

2

GIVHMWG , , ,

1 1 1 1 1

1 1 1 1

,

1 1 1 1

1 1

L

i i

i i

i i

n

n nw w
L L

i i
i i

n nw w
L L

i i
i i

n nw w
L L

i i
i i

h h hλ

λλ λ

λλ λ

λλ λ

θ θγ θ θγ

θ θγ θγ

θ θ θγ θγ

θ

= =

= =

= =

    − + − + + + − −    
    

    + + − − + −    
    

    + + − − + −    
    =

− +

∏ ∏

∏ ∏

∏ ∏

( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

1

2

1 1

1

2

1 1

1

2

1 1

1 1 1

1 1 1 1

1 1 1 1

i i

i i

i i

n nw w
L L

i i
i i

n nw w
L L

i i
i i

n nw w
L L

i i
i i

λλ λ

λλ λ

λλ λ

θγ θ θγ

θ θγ θγ

θ θ θγ θγ

= =

= =

= =

 
 
 
 
 
 
 





     − + + + − −         


     + + − − + −         

     
 + + − − + −    
      

∏ ∏

∏ ∏

∏ ∏

1 1 2 2, , ,L n nh h hγ γ γ

 
 
 
 
 
 
 
 
 
 
  ∈ ∈ ∈ 

 
 
 
 
 
 
 
 
 
 
  

      (49) 

 
Furthermore, if 1λ = , then the Eq. (49) is transformed to 

   ( )

( )

( ) ( )

( )

( ) ( )

1

1 1
1 2 1 1 2 2

1

1 1

,

IVHMWG , , , , , ,

i

i i

i

i i

n wL
i

i
n nw wL L

i i
i i

n n nn wU
i

i
n nw wU U

i i
i i

h h h h h h

θ γ

θ γ γ
γ γ γ

θ γ

θ γ γ

=

= =

=

= =

  
  
  
  + −   
 = ∈ ∈ ∈ 
  
  
  
  + −
    

∏

∏ ∏

∏

∏ ∏

L L
        (50) 

 
Especially, if 1θ = , then the Eqs. (49) and (50) reduce to Eqs. (45) and (46), respectively; if 

2θ = , then Eqs. (49) and (50) reduce to Eqs. (47) and (48), respectively. 
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Example 4.3. Assume that [ ] [ ] [ ]{ }1 1 8,1 6 , 1 7,1 5 , 1 4,1 3h = , [ ] [ ]{ }2 7,9 , 5,6h =  and 

[ ] [ ]{ }3 1 5,1 3 , 1 2,1h =  are three IVHMEs, and their weight vector is ( )0.6,0.3,0.1
T

w= . Let 

( ) 1 t
g t

t

+= , then from Eq. (33), we have 

 

( ) ( )
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ]

1 1 2 3 1 2 3GIVHMWG , , IVHMWG , ,

0.2737,0.3558 , 0.2993,0.3913 , 0.2687,0.3488 , 0.2936,0.3835 , 0.2998,0.4042 ,

0.3284,0.4462 , 0.2941,0.3960 , 0.3221,0.4369 , 0.4405,0.5801 , 0.4875,0.6488 ,

0.4313,0.5669 , 0.4770,0.6334

h h h h h h=



=


 
 
 
 

 

( )
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ]

0.5 1 2 3GIVHMWG , ,

0.3016,0.3947 , 0.3304,0.4367 , 0.2920,0.3806 , 0.3198,0.4208 , 0.3298,0.4473 ,

0.3618,0.4963 , 0.3192,0.4310 , 0.3500,0.4778 , 0.4813,0.6372 , 0.5323,0.7143 ,

0.4646,0.6119 , 0.5134,0.6850

h h h

 
 

=  
 
 

 

 
5. Interval-valued Hesitant Multiplicative Preference Relations 

(IVHMPRS) 
 
In the process of group decision making under uncertainty and vagueness, the decision makers 
usually compare each pair of alternatives, and provide their preferences by interval multiplicative 
values, and thus construct the interval multiplicative preference relations (IMPRs) as follows: 
 

Definition 5.1 [32]. Let { }1 2, , , nX x x x= L  be a discrete set of alternatives. An interval 

multiplicative preference relation (IMPR) R  on the set X  is defined as ( )ij n n
R r X X

×
= ⊂ × , 

where ,L U
ij ij ijr r r =    shows the interval-valued preference degree of the alternative ix  over jx , 

and satisfies 
1

9
9

L U
ij ijr r≤ ≤ ≤ ,   1L U U L

ij ji ij jir r r r⋅ = ⋅ = ,   1L U
ii iir r= = ,          , 1,2, ,i j n∀ = L .              (51) 

 
Generally speaking, a common approach for MAGDM with IMPRs first aggregates the individual 
IMPRs into the group IMPR, which often causes the loss of information. To overcome this 
drawback, instead of performing information aggregation, we first collect all of the possible 
interval multiplicative preference values provided by the decision makers (DMs) into an interval-
valued hesitant multiplicative preference relation, which can avoid the loss of information and 
fully reflects the differences of preference information of different DMs. 
 
If some decision makers provide some interval multiplicative preference values to describe the 

degrees that ix  is preferred to jx , which are denoted by 1ijr , 2
ijr , L , ijl

ijr , then the degrees that 
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ix  is preferred to jx  can be represented by an IVHME { }1 2, , , ijl

ij ij ij ijr r r r= L . All ijr  

( , 1,2, ,i j n= L ) constitute an interval-valued hesitant multiplicative preference relation, which is 
defined below: 
 

Definition 5.2. Let { }1 2, , , nX x x x= L  be a discrete set of alternatives. An interval-valued 

hesitant multiplicative preference relation (IVHMPR) on X  is denoted by a matrix 

( )ij n n
R r X X

×
= ⊂ × , where { }1,2, ,

ij

s
ij ij rr r s l= = L  is an IVHME, indicating all possible 

degrees to which ix  is preferred to jx , and 
ijrl  represents the number of intervals in ijr . 

Moreover, ijr  should satisfy 

 

( ) ( ) ( ) ( )1 1
inf sup sup inf 1r rij ij

l s l ss s
ij ji ij jir r r r

σ σσ σ− + − +
× = × = , [ ]{ }1,1iir = , , 1,2, ,i j n∀ = L         (52) 

 

where the elements in ijr  are arranged in an increasing order, ( )s
ijr σ  denotes the sth smallest value 

in ijr ,  and ( )inf s
ijr σ

 and ( )sup s
ijr σ

 denote the lower and upper limits of ( )s
ijr σ , respectively. 

 
For a multi-criteria decision making (MCDM) problem based on interval-valued hesitant 

multiplicative preference relations (IVHMPRs), let { }1 2, , , nX x x x= L  be a set of n  

alternatives, { }1 2, , , mC c c c= K  be a set of m  criteria, whose weight vector is 

( )1 2, , ,
T

mw w w w= L  satisfying [ ]0,1kw ∈ , 1,2, ,k m= L , and 
1

1
m

k
k

w
=

=∑ , where kw  denotes 

the importance degree of the criterion kc . The decision makers provide all the possible interval 

multiplicative preference values to which ix  is preferred to jx  with respect to the criterion kc  

represented by the IVHME ( )k
ijr . All ( )k

ijr  ( , 1,2, ,i j n= L ) construct the IVHMPR 

( ) ( )( )k k
ij

n n
R r

×
=  with respect to the criterion kc . To get the best alternative, the following steps 

are involved: 
 
Algorithm 5.1. 
 

Step 1. Utilize the GIVHMA (or GIVHMG) operator to aggregate all ( )k
ijr  ( 1,2, ,j n= L ) that 

correspond to the alternative ix , and get the IVHME ( )k
ir  of the alternative ix  over all the other 

alternatives for the criterion kc . 
 

Step 2. Utilize the GIVHMWA (or the GIVHMWG) operator to aggregate all ( )k
ir  

( 1,2, ,k m= L ) into an overall IVHME ir  for the alternative ix . 
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Step 3. Compute the score functions ( )is r  of ir  ( 1,2, ,i n= L ) by Definition 3.3, and rank all 

the alternatives ix  ( 1,2, ,i n= L ) according to ( )is r  in descending order. 

Step 4. End. 
 

6. Illustrative Example 
 
6.1. An Illustrative Example 
 
In this subsection, a practical example adapted from [22,23] is employed to demonstrate the 
validity of the developed approach. 
 
Example 6.1 [22,23]. Let us consider a factory which intends to select a new site for new 
buildings. Four alternatives ix  ( 1,2,3,4i = ) are available, and three decision makers compare 

these four alternatives with respect to the three criteria: (1) 1c  (price); (2) 2c  (location); and (3) 

3c  (environment). The weight vector of three criteria kc  ( 1,2,3k = ) is ( )0.2,0.5,0.3
T

w= . The 

selection of the new site can be modeled as a hierarchical structure, as shown in Fig. 1. The three 
decision makers provide all the possible interval multiplicative preference values to which ix  is 

preferred to jx  with respect to the criterion kc  represented by the IVHME ( )k
ijr . All ( )k

ijr  

( , 1,2,3,4i j = ) are contained in the IVHMPR ( ) ( )( )k k
ij

n n
R r

×
=  with respect to the criterion kc  

(see Tables 2-4). In the following, we explain how the IVHMPR ( ) ( )( )k k
ij

n n
R r

×
=  is obtained. 

Take ( ) ( )( )1 1
ij

n n
R r

×
=  as an example. The three decision makers provide their preference 

information that 1x  is preferred to 4x  with respect to the criterion 1c  in the form of interval 

multiplicative values. Suppose that one decision maker provides [ ]1,3 , one decision maker 

provides [ ]3,4 , and the third decision maker provides [ ]3,5 . Considering that three decision 

makers cannot persuaded each other to change their opinions, the preference information that 1x  

is preferred to 4x  can be considered as an IVHME, i.e., ( ) [ ] [ ] [ ]{ }1
14 1,3 , 3,4 , 3,5r = . Similarly we 

can denote the symmetric element ( )1
41r  of ( )1

14r  as ( ) [ ] [ ] [ ]{ }1
41 1 5,1 3 , 1 4,1 3 , 1 3,1r = . Other 

symmetric elements ( )1
ijr  and ( )1

jir  in ( )1R  can be obtained in an analogous way. Moreover, ( )1
iir  

represents the preference degree to which ix  is preferred to itself with respect to the criterion 1c ; 

that is, it is equally preferred, so ( ) [ ]{ }1 1,1iir = . The IVHMPR ( )1R  is obtained through the above 

procedure. Similarly, we can get the IVHMPRs ( )2R  and ( )3R . 
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Table 2. The IVHMPR ( )1R  with respect to the criterion 1c . 
 

2 1x  2x  3x  4x  

1x  {[1,1]} {[3, 4], [4, 5]} {[1/3, 1/2]} {[1, 3], [3, 4], [3, 5]} 

2x  {[1/5, 1/4], [1/4, 
1/3]} 

{[1,1]} {[3, 4], [3, 5]} {[1/2, 1]} 

3x  {[2, 3]} 
{[ 1/5, 1/3], [1/4, 
1/3]} 

{[1,1]} {[1/3, 1], [1/2, 1]} 

4x  {[1/5, 1/3], [1/4, 
1/3], [1/3, 1]} 

{[1, 2]} {[1, 2], [1, 3]} {[1,1]} 

 

LocationPrice Environment

New site

1x 2x 3x 4x
 

 
Fig. 1. Hierarchical structure. 

 

Table 3. The IVHMPR ( )2R  with respect to the criterion 2c . 
 
3 

1x  2x  3x  4x  

1x  {[1,1]} {[1/2, 1], [2, 3]} {1/4, 1/3]} {[3, 4], [3,  5]} 

2x  {[ 1/3, 1/2], [1, 
2]} 

{[ 1,1]}  {[ 1/5, 1/4], [1/4, 1/3], 
[1/2, 1]} 

{[ 6, 7]}  

3x  {[3, 4]} {[1, 2], [3, 4], [4, 
5]} 

{[1,1]} {[1/6, 1/5], [1/5, 1/4], 
[1/5, 1/3]} 

4x  {[ 1/5, 1/3], [1/4, 
1/3]} 

{[ 1/7, 1/6]}  { [3, 5], [4, 5], [5, 6]}  {[ 1,1]}  
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Table 4. The IVHMPR ( )3R  with respect to the criterion 3c  
 

4 1x  2x  3x  4x  

1x  {[1,1]} { [1/7, 1/5], [1/6, 1/4]} {[1/9, 1/8]} {[1,  3], [2, 3], [3, 4]} 

2x  {[4, 6], [5, 7]} {[1,1]} {[5, 7], [6, 7]} {[1/4, 1/ 3]} 

3x  {[8, 9]} {[1/7, 1/6], [1/7, 1/5]} {[1,1]} {[3, 5]} 

4x  {[1/4, 1/3], [1/3, 
1/2], [1/3, 1]} 

{[3, 4]} {[1/5, 1/3]} {[1,1]} 

 
Table 5. The aggregation results of the alternatives ix  ( 1,2,3,4i = ) with respect to the 

criteria kc  ( 1,2,3k = ). 
 
5 

1c  2c  3c  

1x  {[1.1491,1.7832],[1.5558,1.94
28],[1.5558,2.0801],[1.2724,1.
9130],[1.7024,2.0801],[1.7024,
2.2237]} 

{[0.9680,1.2724],[0.9680,1.37
84],[1.3403,1.7024],[1.3403,1.
8284]} 

{[0.5012,0.8128],[0.6614,0
.8128],[0.7853,0.9168], 
[0.5090,0.8314],[0.6700,0.
8314],[0.7945,0.9365]} 

2x  {[0.9480,1.2361],[0.9480,1.34
03],[0.9680,1.2724],[0.9680,1.
3784]} 

{[1.1755,1.3403],[1.1978,1.37
84],[1.3003,1.6321],[1.4076,1.
7832],[1.4323,1.8284],[1.5457,
2.1302]} 

{[1.9428,2.4957],[2.0585,2
.4957],[2.0801,2.6144],[2.2
011,2.6144]} 

3x  {[0.7602,1.1491],[0.8128,1.14
91],[0.7783,1.1491],[0.8314,1.
1491]} 

{[1.0786,1.4495],[1.0933,1.47
46],[1.0933,1.5149],[1.4719,1.
7832],[1.4893,1.8117],[1.4893,
1.8574],[1.6137,1.9130],[1.632
1,1.9428],[1.6321,1.9907]} 

{[2.0118,2.4398],[2.0118,2
.4641]} 

4x  {[0.7602,1.2134],[0.7602,1.37
84],[0.7783,1.2134],[0.7783,1.
3784],[0.8072,1.4495],[0.8072,
1.6321]} 

{[0.8200,1.0786],[0.9244,1.07
86],[1.0141,1.1602],[0.8386,1.
0786],[0.9441,1.0786],[1.0348,
1.1602]} 

{[0.8612,1.0534],[0.8915,1
.1147],[0.8915,1.2724]} 

Let ( ) 1 t
g t

t

+= . To obtain the ranking of the alternatives, the following steps are given: 

Step 1. Utilize the GIVHMA operator (without loss of generality, let 1λ = ) to aggregate all ( )k
ijr  

( 1,2,3,4j = ), and get the IVHME ( )k
ir  of the alternative ix  with respect to the criterion kc  (see 

Table 5). For example, 
 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
[ ] [ ] [ ]{ } [ ]{ } [ ]{ } [ ]{ }( )

[ ] [ ] [ ]{ }

3 3 3 3 3
4 1 41 42 43 44

3 3 3 3
41 42 43 44

GIVHMA , , ,

IVHMA , , ,

IVHMA 1 4,1 3 , 1 3,1 2 , 1 3,1 , 3,4 , 1 5,1 3 , 1,1

0.8612,1.0534 , 0.8915,1.1147 , 0.8915,1.2724

r r r r r

r r r r

=

=

=

=
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Step 2. Utilize the GIVHMWA operator to aggregate all ( )k
ir  ( 1,2,3k = ) into an overall 

IVHME ir  for the alternative ix , which are not shown here due to the limited space. 
 

 Step 3. By Definition 3.3, we compute the score functions ( )is r  of ir  ( 1,2,3,4i = ) as follows: 

( )1 1.2000s r = ,    ( )2 1.6248s r = ,   ( )3 1.5952s r = ,    ( )4 1.0158s r =  

 

Since ( ) ( ) ( ) ( )2 3 1 4s r s r s r s r> > > , then the ranking of the alternatives is 2 3 1 4x x x x> > > , 

which shows 2x  is the best among four alternatives. 
 
It is noted that the above results are obtained under the assumption that 1λ = . In the following, 
we will analyze the variation of the ranking of the alternatives with respect to the different values 
of the parameter λ . Fig. 2 shows the score functions of the alternatives obtained by the 
GIVHMWA operator, from which we can find that the score functions of each alternatives 
increase as the values of λ  increase from 0 to 20, and 
 

(1) when ( ]0,10.4163λ ∈ , the ranking of the four alternatives is 2 3 1 4x x x x> > >  and the best 

choice is 2x . 

(2) when ( ]10.4163,20λ ∈ , the ranking of the four alternatives is 2 3 4 1x x x x> > >  and the best 

choice is 2x . 
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Fig. 2. Score functions for alternatives obtained by the GIVHMWA operator. 
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If we use the GIVHMWG operator instead of the GIVHMWA operator to aggregate the interval-
valued hesitant multiplicative preference information, then the score functions of the alternatives 
are shown in Fig. 3, from which we can see that the score functions of each alternatives obtained 
by the GIVHMWG operator decrease as the parameter λ  changes from 0 to 20. From Fig. 3, we 
can also find that 
 

(1) when ( ]0,12.5818λ ∈ , the ranking of the four alternatives is 2 3 1 4x x x x> > >  and the best 

choice is 2x . 

(2) when ( ]12.5818,20λ ∈ , the ranking of the four alternatives is 2 3 4 1x x x x> > >  and the best 

choice is 2x . 
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Fig. 3. Score functions for alternatives obtained by the GIVHMWG operator. 
 

Fig. 4 illustrates the deviation values between the score functions obtained by the GIVHMWA 
operator and the ones obtained by the GIVHMWG operator, from which we can find that the 
values obtained by the GIVHMWA operator are much bigger than the ones obtained by the 
GIVHMWG operator for the same value of the parameter λ  and the same aggregation values, 
and the deviation values increase as the value of the parameter λ  increases. 
 
Fig. 4 indicates that the GIVHMWA operator can obtain more favorable (or optimistic) 
expectations, and therefore can be considered as an optimistic operator, while the GIVHMWG 
operator can obtain more unfavorable (or pessimistic) expectations, and therefore can be 
considered as a pessimistic operator. The values of the parameter λ  can be referred to as the 
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optimistic or pessimistic levels. From Figs. 2, 3 and 4, we can conclude that the decision makers 
who are optimistic could use the GIVHMWA operator and choose the bigger values of the 
parameter λ , while the decision makers who are pessimistic could use the GIVHMWG operator 
and choose the bigger values of the parameter λ . 
 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

lambda

D
ev

ia
tio

n 
va

lu
e

s

x1

x2

x3

x4

 
 

Fig. 4. Deviation values for alternatives between the GIVHMWA and GIVHMWG 
operators. 

 

6.2. Comparison with the Existing Approach for GDM with IMPRs 
 
In this subsection, we will compare our approach with the existing approach for GDM with 
IMPRs and demonstrate the advantage of the proposed approach. Generally speaking, a common 
approach for GDM with IMPRs involves the following steps: 
 
Algorithm 6.1. 
 
Step 1: Aggregate the individual IMPRs into the collective IMPR. 
Step 2: Aggregate the preference values of each alternative in the collective IMPR, and derive the 
overall preference value of each alternative. 
Step 3: Rank all the alternatives and select the best one in accordance with the overall preference 
values. 
 
The difference between the algorithms 5.1 and 6.1 is that the former first aggregates the different 
opinions provided by the DMs for a paired comparison of alternatives and derives the collective 
interval multiplicative preference information, while the latter eliminates step 1 in the former, i.e., 
does not perform such an aggregation, and directly collects the individual interval multiplicative 
preference information into the interval-valued hesitant multiplicative preference information. In 
the following, a concrete example is given to compare the results of the rankings of alternatives 
obtained with two approaches. 
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Example 6.2. Let’s revisit Example 6.1 using Algorithm 6.1. 
 
Step 1: Utilize the geometric averaging (GA) operator to aggregate the individual DMs’ interval 
multiplicative preference opinions with respect to the attribute kc   ( 1,2,3k = ) into the collective 

interval multiplicative preference opinion with respect to the attribute kc , which are shown in 
Tables 6-8. 
 

Step 2: Calculate the overall interval multiplicative preference value ( )k
ir  of the alternative ix  

with respect to the attribute kc  by the geometric averaging (GA) operator (see Table 9). For 
example, 
 

( ) ( ) ( ) ( ) ( )( )
[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ]{ }

1 1 1 1 1
2 21 22 23 24GA , , ,

GA 0.2236,0.2887 , 1,1 , 3, 4.4721 , 1/2, 1

0.8612,1.0534 , 0.8915,1.1147 , 0.8915,1.2724

r r r r r=

=

=

 

 

Step 3: Utilize the weighted geometric averaging (WGA) operator to aggregate all ( )k
ir   

( 1,2,3k = ) into an overall ir  of the alternative ix : 
 

( ) ( ) ( )( ) [ ] [ ] [ ]( ) [ ]1 2 3
1 1 1 1WGA , , WGA 1.2449,1.7201 , 0.9306,1.2676 , 0.4201,0.5512 0.7770,1.0495r r r r= = =  

[ ]2 1.0402,1.3694r = ,    [ ]3 1.0864,1.4279r = ,     [ ]4 0.6338,0.8755r = . 

Step 4: In accordance with ir  ( 1,2,3,4i = ), the ranking of the four alternatives is 

3 2 1 4x x x x> > >  and the best choice is 3x . 

Table 6. The collective IMPR ( )1R  with respect to the criterion 1c . 
 
6 1x  2x  3x  4x  

1x  [1,1] [3.4641, 4.4721] [1/3, 1/2] [2.0801, 3.9149] 

2x  [0.2236, 0.2887] [1,1] [3, 4.4721] [1/2, 1] 

3x  [2, 3]  [0.2236, 1/3] [1,1]  [0.4082, 1]  

4x  [0.2554, 0.4807] [1, 2] [1, 2.4498] [1,1] 
 

Table 7. The collective IMPR ( )2R  with respect to the criterion 2c . 
 

7 1x  2x  3x  4x  

1x  [1,1] [1, 1.7321] [1/4, 1/3] [3, 4.4721] 

2x  [0.5773, 1] [1,1] [0.2924, 0.4368] {[6, 7] 

3x  [3, 4] [2.2894, 3.4200] [1,1] [0.1882, 0.2554] 

4x  [0.2236, 1/3] [1/7, 1/6] [3.9154, 5.3135] [1,1] 
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8 
1x  2x  3x  4x  

1x  [1,1] [0.1543, 0.2236] [1/9, 1/8] [1.8171, 3.3019] 

2x  [4.4723, 6.4809] [1,1] [5.4772, 7] [1/4, 1/3] 

3x   [8, 9] [1/7, 0.1826] [1,1] [3, 5] 

4x  [0.3029, 0.5503] [3, 4] [1/5, 1/3] [1,1] 

 

Table 8. The collective IMPR ( )3R  with respect to the criterion 3c . 
 

8 1x  2x  3x  4x  

1x  [1,1] [0.1543, 0.2236] [1/9, 1/8] [1.8171, 3.3019] 

2x  [4.4723, 6.4809] [1,1] [5.4772, 7] [1/4, 1/3] 

3x   [8, 9] [1/7, 0.1826] [1,1] [3, 5] 

4x  [0.3029, 0.5503] [3, 4] [1/5, 1/3] [1,1] 

 
Table 9. The aggregation results of the alternatives ix  ( 1,2,3,4i = ) with respect to the 

criteria kc  ( 1,2,3k = ). 
 

9 
1c  2c  3c  

1x  [1.2449, 1.7201] [0.9306, 1.2676] [0.4201, 0.5512] 

2x  [0.7610, 1.0660] [1.0032, 1.3223] [1.5731, 1.9720] 

3x   [0.6536, 1.0000] [1.0663, 1.3672] [1.3607, 1.6931] 

4x  [0.7109, 1.2388] [0.5947, 0.7371] [0.6529, 0.9255] 

 
From the above results, we can see that the ranking of alternatives obtained with Algorithm 6.1 is 
different from the one obtained with Algorithm 5.1. The reason for the difference is that 
Algorithm 6.1 first needs to aggregate the individual interval multiplicative preference values to 
the collect interval multiplicative preference value. In fact, such an aggregation is equivalent to 
transformation of the interval-valued hesitant multiplicative preference value into the interval 
multiplicative preference value, which may cause the loss of information. Contrary to Algorithm 
6.1, Algorithm 5.1 does not need such an aggregation and therefore can preserve the original 
information as much as possible. As a consequence, the comparison results clearly illustrate the 
advantage of the proposed approach for MCDM based on IVHMPRs. 
 
6.3. Comparison with the IVHPRs 
 
According to Definitions 2.3 and 5.2, we can see that the difference between the IVHPRs and the 
IVHMPRs is that the former uses 0.1-0.9 scale, while the latter uses 1-9 scale. As stated before, 
the 1-9 scale may be more consistent with our intuition than the 0.1-0.9 scale in some cases. As a 
result, the IVHMPRs may be more appropriate to deal with some situations than the IVHPRs. An 

IVHPR ( )ij n n
R r

×
=% %  can be transformed into an IVHMPR ( )ij n n

R r
×

=  by the following equation: 
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( ) ( )2 1 2 1

9 ,9 1,2, ,
L Us s

ij ij

ij

r r

ij rr s l
− −   = =  

   

% %

%L                                               (53) 

 

where { }1,2, ,
ij

s
ij ij rr r s l= = %
% % L , and , 1,2, ,i j n= L . 

In what follows, we use an example adapted from [37] to show the difference between them. 
  

Example 6.3 [37]. Let’s revisit the example given in Section 6 of Ref. [24]. Suppose that ( )kR%  
( 1,2,3k = ) are three IVHPRs given in [24] (see Tables 10-12). 
 

Table 10. The IVHPR ( )1R%  
 
10 

1x  2x  3x  4x  

1x  {[0.5, 0.5]} {[0.4, 0.5], [0.7, 
0.9]} 

{[0.5, 0.6], [0.8, 
0.9]} 

{[0.3, 0.5]} 

2x  { [0.1, 0.3], [0.5, 
0.6]} 

{[ 0.5, 0.5]}  {[ 0.4, 0.5]}  {[ 0.6, 0.8]}  

3x  {[0.1, 0.2] , [0.4, 
0.5]} 

{[0.5, 0.6]} {[0.5, 0.5]} {[0.3, 0.4], [0.5, 
0.6]} 

4x  {[ 0.5, 0.7]}  {[ 0.2, 0.4]}  {[ 0.4, 0.5], [0.6, 
0.7]} 

{[ 0.5, 0.5]}  

 

Table 11. The IVHPR ( )2R%  
 
11 

1x  2x  3x  4x  

1x  {[ 0.5, 0.5]}  { [0.2, 0.3], [0.5, 0.6]}  {[ 0.5, 0.6], [0.7, 
0.9]} 

{ [0.2, 0.4]}  

2x  {[0.4, 0.5], [0.7, 0.8]} {[0.5, 0.5]} {[0.5, 0.8]} {[0.3, 0.5], [0.6, 
0.7], [0.8, 0.9]} 

3x  {[0.1, 0.3], [0.4, 0.5]} {[0.2, 0.5]} {[0.5, 0.5]} {[0.4, 0.5], [0.7, 
0.8]} 

4x  {[ 0.6, 0.8]}  {[0.1, 0.2], [0.3, 0.4], 
[0.5, 0.7]} 

{[ 0.2, 0.3], [0.5, 
0.6]} 

{[ 0.5, 0.5]}  

 

Table 12. The IVHPR ( )3R%  
 
12 

1x  2x  3x  4x  

1x  {[ 0.5, 0.5]}  { [0.4, 0.5],  
[0.7, 0.8]} 

{[ 0.6, 0.7]}  {[ 0.3, 0.5], [0.6, 0.7]}  

2x  {[0.2, 0.3], [0.5, 0.6]} {[0.5, 0.5]} {[0.4, 0.6]} {[0.7, 0.8]} 

3x  {[0.3, 0.4]} {[0.4, 0.6]} {[0.5, 0.5]} {[0.3, 0.4], [0.5, 0.7], 
[0.8, 0.9]} 

4x  {[0.3, 0.4], [0.5, 0.7]} {[0.2, 0.3]} {[0.1, 0.2], [0.3, 
0.5], [0.6, 0.7]} 

{[0.5, 0.5]} 
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First, we use Eq. (53) to transform the IVHPRs ( )kR%  ( 1,2,3k = ) into the IVHMPRs ( )kR  
( 1,2,3k = ), which are shown in Tables 13-15. Then, we use Algorithm 5.1 to derive the ranking 

of the alternatives as: 2 1 4 3x x x x> > > , which is different from the one (1 2 4 3x x x x> > > ) [24] 
obtained with the IVHPRs . The reason is that when describing the same preferences information, 
the IVHPR uses 0.1-0.9 scale, while the IVHMPR uses 1-9 scale. The IVHMPR is more 
consistent with our intuition than the IVHPR. Thus, our ranking may be more reasonable and 
reliable than the one obtained in [24]. 
 

Table 13. The IVHMPR ( )1R  
 

13 
1x  2x  3x  4x  

1x  {[1, 1]} {[0.6444, 1], [2.4082, 
5.7995]} 

{[1, 1.5518], 
[3.7372, 5.7995]} 

{[0.4152, 1]} 

2x  {[0.1724, 0.4152], [1, 
1.5518]} 

{[1, 1]} {[0.6444, 1]} {[1.5518, 3.7372]} 

3x  {[ 0.1724, 0.2676] , 
[0.0.6444, 1]} 

{[ 1, 1.5518]}  {[ 1, 1]}  {[ 0.4152, 
0.0.6444], [1, 
1.5518]} 

4x  {[ 1, 2.4082]}  {[ 0.2676, 0.6444]}  {[ 0.0.6444, 1], 
[1.5518, 2.4082]} 

{[ 1, 1]}  

 

Table 14. The IVHMPR ( )2R  
 
14 

1x  2x  3x  4x  

1x  {[1, 1]} {[0.2676, 0.4152], 
[1, 1.5518]} 

{[1, 1.5518], 
[2.4082, 5.7995]} 

{[0.2676, 0.6444]} 

2x  {[0.6444, 1], 
[2.4082, 3.7372]} 

{[1, 1]} {[1, 3.7372]} {[0.4152, 1], [1.5518, 
2.4082], [3.7372, 
5.7995]} 

3x  {[0.1724, 0.4152], 
[0.6444, 1]} 

{[ 0.2676, 1]}  {[ 1, 1]}  {[ 0.6444, 1], [2.4082, 
3.7372]} 

4x  {[1.5518, 3.7372]} {[0.1724, 0.2676], 
[0.4152, 0.6444], [1, 
2.4082]} 

{[0.2676, 0.4152], 
[1, 1.5518]} 

{[1, 1]} 

Table 15. The IVHMPR ( )3R  
 

15 
1x  2x  3x  4x  

1x  {[1, 1]} {[0.6444, 1], 
[2.4082, 3.7372]} 

{[1.5518, 2.4082]} {[0.4152, 1], [1.5518, 
2.4082]} 

2x  { [0.2676, 0.4152], 
[1, 1.5518]} 

{[ 1, 1]}  {[ 0.6444, 1.5518]}  { [2.4082, 3.7372]}  

3x  {[0.4152, 0.6444]} {[0.6444, 
1.5518]} 

{[1, 1]} {[0.4152, 0.6444], [1, 
2.4082], [3.7372, 
5.7995]} 

4x  {[0.4152, 0.6444], 
[1, 2.4082]} 

{[0.2676, 
0.4152]} 

{[0.1, 0.2676], 
[0.4152, 1], 
[1.5518, 2.4082]} 

{[1, 1]} 
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7. Conclusions 
 
In this paper, we have defined the concept of IVHMSs by replacing the 0.1–0.9 scale in the 
IVHFSs by the 1–9 scale. We have proposed some fundamental operational laws on the IVHMSs 
and developed several operators for aggregation the interval-valued hesitant multiplicative 
information, including the generalized interval-valued hesitant multiplicative weighted averaging 
(GIVHMWA) operator, the interval-valued hesitant multiplicative weighted averaging 
(IVHMWA) operator, the generalized interval-valued hesitant multiplicative weighted geometric 
(GIVHMWG) operator and the interval-valued hesitant multiplicative weighted geometric 
(IVHMWG) operator. Some interesting properties and special cases have also been discussed. 
Considering that the decision makers provide some possible interval multiplicative preference 
values when they compare two alternatives, we have further defined the IVHMPR, which collects 
all the possible interval multiplicative preference values into an IVHME as its basic element. 
Moreover, an approach for MCDM with the IVHMPRs has been developed. In the end, we have 
compared the IVHMPRs with the IVHPRs and IMPRs by some numerical examples, and 
illustrated the advantages of the developed IVHMPRs over the IVHPRs and IMPRs. 
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