British Journal of Mathematics & Computer Science g:%
>

4(10): 1390-1426, 2014 éi@%/
///% K

SCIENCEDOMAIN

SCIENCEDOMAIN international

www.sciencedomain.org

Interval-valued Hesitant Multiplicative Preference
Relations and Their Application to Multi-criteria
Decision Making

Zhiming Zhang®?" and Chong Wu'

School of Management, Harbin Institute of Technology, Harbin 15000ridgang Province
P. R. China
%College of Mathematics and Computer Science, Hebei UitiyeBsoding 071002, Heb

ei

Province, P. R. China.

| Original Research Article |

Received: 18 January 2014

Accepted: 08 March 2014
Published: 25 March 2014

Abstract

Aims: The aim of this paper is to investigidnterva-valued hesitant multiplicative preferer
relations and their application to multi-criteria decismaking.

Study Design: Based on pseudo-multiplication, we define some basic operaftonte
interval-valued hesitant multiplicative sets (IVHMSs}latevelop several aggregation operat
for aggregating the interval-valued hesitant multipli@information. Some desired propert
and special cases of the developed operators are alsstigated. Furthermore, we presen
new preference structure named as the interval-valued hesit#tiglicative preference relatio
(IVHMPR), each element of which is an IVHMS, denoting #fle possible interva
multiplicative preference values offered by the decision erafor a paired comparison
alternatives.

Place and Duration of Study:Interval-valued hesitant fuzzy set (IVHFS), recemtyoduced
by Chen et al., permits the membership degree of an rtdma set to be represented as sev
possible interval values. However, it is noted that IVHF®suf.1-0.9 scale, which
inconsistent with some practical problems (e.g. the ¢d diminishing marginal utility in
economics).

Methodology: We use the unsymmetrical 1-9 scale instead of the symaal 0.1-0.9 scale t
express the membership degree information in the IVHFS arudiirtte the concept of interva
valued hesitant multiplicative set (IVHMS).
Results: An approach for multi-criteria decision making basedtan interval-valued hesitar
multiplicative preference relations (IVHMPRS) is developad aome numerical examples g
provided to illustrate the developed approach.

(IVHPR) and the interval multiplicative preference riglat(IMPR), and show the effectivene|
and practicality of the IVHMPR.

*Corresponding author: zhimingzhang@ymail.com;

Conclusion: We compare the IVHMPR with the interval-valued hesitargference relation
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1 Introduction

Hesitant fuzzy set (HFS), originally proposed by Toith [s an efficient tool for representing
situations in which people hesitate between several noateralues to define the membership
degree of an element to a set. Compared to some classiggisions of fuzzy set, such as
interval-valued fuzzy set [2], intuitionistic fuzzetg3], interval-valued intuitionistic fuzzy set [4]
and type-2 fuzzy set [5], HFS can depict the human’s hesitatime objectively and precisely.
Since its introduction, HFS has attracted increasing istteire different areas and has been
successfully applied to many practical fields, espacialldecision making [6-23]. However, it
should be noted that hesitant fuzzy set permits the nrsiipeof an element to be a set of several

possible values. All these possible values are crapntembers that belong l[di):l] . However, in

a lot of cases, no objective procedure is availablepémple to select the crisp membership
degrees of elements in a set. It is suggested to spatifiyterval-valued membership degree to
each element of the universe. To deal with such cases, €t@n[24] introduced the notion of

interval-valued hesitant fuzzy set (IVHFS), which gelieea the HFS and permits the

membership degree of an element to be a set of severablpdssérval values. The IVHFS can

incorporate all possible opinions of the group memtmrd, correspondingly, provides an

intuitive description on the differences among the group meni®4}.s

It is noted that both HFS and IVHFS use the balancee stcal, 0.1-0.9 scale, to express the
membership degree information. The 0.1-0.9 scale is a syrmahatistribution around 0.5 and
assumes that the grades between “Extremely preferred” arulefiely not preferred” are
distributed uniformly and symmetrically, but in reaklithe information are often asymmetrically
distributed [25,26]. Take the law of diminishing margindlitytin economics as an example
[27,28]. When given the same resources, a company witpdrémtmance enhances more quickly
than a company with good performance; that is, the gap eettee grades expressing bad
information should be smaller than the one between the grexigressing good information
[27,28]. As an asymmetrically distributed scale, Sadty$s scale is more appropriate to deal with
such a situation than the 0.1-0.9 scale (see Table 1 fer details [27,28]), motivated by which,
we use the 1-9 scale instead of the 0.1-0.9 scale to expeesinbership degree information in
the HFS and the IVHFS, and develop the concept of intealaked hesitant multiplicative set
(IVHMS), which permits the membership of an elemenbe a set of several possible interval
multiplicative values. Then, based on pseudo-multiplicatiem give some operational laws for
the interval-valued hesitant multiplicative sets (IVH8jSbased on which, we further develop
some interval-valued hesitant multiplicative aggregation aipes, which can overcome the
limitations of the interval-valued hesitant fuzzy aggregaoperators [24].
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Table 1.The comparison between the 0.1-0.9 scale and the 1-9 scale

1-9 scale 0.1-0.9 scale Meaning

19 0.1 Extremely not preferred
Y7 0.2 Very strongly not preferre
15 0.3 Strongly not preferred
13 0.4 Moderately not preferred
1 0.5 Equally preferre

3 0.6 Moderately preferred

5 0.7 Strongly preferred

7 0.8 Very strongly preferred

9 0.9 Extremely preferred
other values between other values betwee@ Intermediate values used to present
/9 and9 and1 compromise

In a group decision making (GDM) problem, prefeeenelations are a powerful tool to describe
the decision makers’ preference information wheeytlperform a paired comparison of
alternatives. There are some different formats meffggence relations, such as multiplicative
preference relations [29], fuzzy preference retetif80], interval fuzzy preference relations [31],
interval multiplicative preference relations [32jtuitionistic fuzzy preference relations [33,34],
intuitionistic multiplicative preference relatiofi27,28], and so on. However, in some processes
of decision making, due to time pressures and #cknowledge, the decision makes (DMs)
cannot provide their preference information withgé& numerical value, a margin of error or
some possibility distribution values, but with sele possible interval numbers. The
aforementioned preference relations have difficiritglealing with such situations. To solve this
issue, Chen et al. [24] introduced the conceptntérival-valued hesitant preference relation
(IVHPR). Each element of the IVHPR is an intervalued hesitant fuzzy element (IVHFE),
which denotes all the possible interval preferevelees to which one alternative is preferred to
another alternative. However, it is noted that iMMEIPR uses the 0.1-0.9 scale to express the
interval preference information. As mentioned befdhe 0.1-0.9 scale has some disadvantages.
Thus, we use the 1-9 scale instead of the 0.1-6al@ $0 describe the preference information in
the IVHPR and define a new concept of interval-gdlhesitant multiplicative preference relation
(IVHMPR), each element of which is an interval-veduhesitant multiplicative element (IVHME)
denoting all the possible interval multiplicativalwes to which one alternative is preferred to
another alternative. Moreover, based on intervalad hesitant multiplicative aggregation
operators, we develop an approach to multi-critdgaision making with IVHMPRs and give
some examples to illustrate the developed apprdénhlly, we make a comparison analysis with
the interval multiplicative preference relation (MR) and the IVHPR.

To do this, this paper is structured as followscti®a 2 recalls some concepts of hesitant fuzzy
sets (HFSs) and interval-valued hesitant fuzzy $BI$iFSs). In Section 3, we define the
IVHMSs and give some operational laws for them.tiac4 presents several aggregation
operators for interval-valued hesitant multipligatinformation and examines some properties of
the new operators. Section 5 develops an appreactulti-criteria decision making based on the
IVHMPRSs. In the sequel, the application of the deped approach is shown in Section 6. Some
comparison analysis with the IVHPR and IMPR ar® afsde in this section. The final section
offers some concluding remarks.
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2. Preliminaries

In this section, some basic concepts of hesitaz#tyfisets [1] and interval-valued hesitant fuzzy
sets [24] are briefly introduced.

Definition 2.1 [1]. Let X be a fixed set, a hesitant fuzzy set (HFS) Xnis in terms of a
function that when applied t&X returns a subset cﬁf),]] .

To be easily understood, we express the HFS bythemmatical symbol:
E={(xh (X)) % 6y

where h; (X) is a set of some values [@,J] , Which denotes the possible membership degrees of

the elementxd X to the setE . For convenience, Xia and Xu [35] calléd= h ( x) a hesitant
fuzzy element (HFE) andH the set of all HFEs.

Considering that the precise membership degreas element to a set are sometimes hard to be
specified, Chen et al. [24] proposed the concepintgfrval-valued hesitant fuzzy set, which
permits the membership of an element to be a sst\@fral possible interval values.

Definition 2.2 [24]. Let X be a reference set, arﬁl([O,J]) be the set of all closed subintervals

of [0,]] . An interval-valued hesitant fuzzy set (IVHFS) &h is expressed by

A={(x (%) 0 ¥ 2)

where ﬁA(x) is a set of some interval values IDI([O:I]) denoting all possible interval-valued

membership degrees of the elemeill X to the setA. For convenience, Chen et al. [24] called
h=h,(X) an interval-valued hesitant fuzzy element (IVHFEX H the set of all IVHFES. If

yOh, then j is an interval and it can be denoted joy [ 7, 7 |.

Definition 2.3 [24]. Let X ={x, %,,, X} be a fixed set. An interval-valued hesitant prefiee
relation (IVHPR) on X is denoted by a matrixR= (f”.) U Xx X, where

= ) &S
T —{rij

X; , and Ir'.. represents the number of intervals in an IVHFErédwer, f; should satisfy

s=12;-- ,Ir.“} is an IVHFE, indicating all possible degrees tdchhy; is preferred to

IfIl fs+1)

inf ﬁja(s) +supr~ji”(lrU *s+1) - SUF’T,-J(S) + inf}a( =.f :{[1,]]} 00, =1,2;--n (3)
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where the elements ify are arranged in an increasing ordﬁ?,(s) denotes theth smallest value

in f;, andinf ﬁjg(s) and supﬁj”(s) denote the lower and upper limits Qf(s), respectively.
Definition 2.4 [36]. The pseudo-multiplicatio® is defined as® &f =g (g(a)-2(b)),
where g is a strictly decreasing function such tigat(0,00) — (0,0).

3. Interval-valued Hesitant Multiplicative Sets (IVHMSS)

Chen et al. [24] proposed some aggregation operdtoraggregating interval-valued hesitant
fuzzy information. Among them, the interval-valudtksitant fuzzy weighted averaging

(IVHFWA) operator is the basic one, based on whiatiher aggregation operators have been
developed.

Definition 3.1 [24]. Let ﬁ (i=1,2,-n ) be a collection of IVHFEs, and let
~ n
w=(W, W, -, )" be the weight vector o (i =1,2;-- n) with w 0[0,] and > w =1.
i=1

An interval-valued hesitant fuzzy weighted averggiiVHFWA) operator is a mapping
H" — H such that

IVHFWA (R, R, -, ) =0 (wh) ={[1— I_l (1-7)" 1- I_l (-7 )W}

yluﬁl szDﬁz [ vf/n O FL} (4)

However, the IVHFWA operator has a drawback thahiswn as follows:

Example 3.1. Let h ={[14} , A ={[0,0} , K, ={[0.0} . h, ={[0.0} . h ={[0.0]} . and
h, :{[0,0]} be six special IVHFEs, anw:(—,—,— == ,—jT be their weight vector, then by
the IVHFWA operator, we have

IVHFWA (R, R, B, b, T, ) ={[1.1}

which is somewhat inconsistent with our intuition.the following, we will try to address this
issue by using other scales to express the intsalakd hesitant fuzzy information.

In Definition 3.1, if we use the 1-9 scale insteddhe 0.1-0.9 scale to express the membership
degree, then a new concept can be introduced awbel

Definition 3.2. Let X be a reference set. A interval-valued hesitantipligative set (IVHMS)

on X is defined as
M ={<x,ﬁv7 (x)>‘ xJ ><} (5)
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where hy; () :{;7|;7 :[VL,VU ] Oh, ( x)} denotes all possible interval-valued membership

degrees of the element] X to the setM , with the condition:

<pt<p’ <9, DxOX, Oy =[y*7"]Ohy (%) (6)

ol

For convenience, we calﬁ:m(x) an interval-valued hesitant multiplicative element

(IVHME) and H the set of all interval-valued hesitant multiptiva elements (IVHMES).

Example 3.2.Let X ={X, %, %},

ool 3 ) o [ 002 bt ot e

h :{[%,l} [13] 2,(}}. Then,M is an IVHMS onX , andh is an IVHME.

Given three IVHMEs expressed Idr_y E and|’_12, we define some basic operations on them as
below:

@ he={[yy” ¥ Jron} )
@ RUR={[7 077 072 70RO} ©®)
@ AN ={[7 0757 072 J7.0h,7 0h) ©)

To compare the IVHMES, we define the following caripon laws:

Definition 3.3. For an IVHME h ={[}7L,}_/U ]‘VDH} , S(F]) :(H VDH(}_/L 7" ))2'lh is called
the score function oh , wherel is the number of the elements fin. For two IVHMEs I'_ll and
h,.if s(h)> ). thenh >h,;if s(h)= ), thenh =h,.

Based on the pseudo-multiplication, motivated keywork of Xia and Xu [15], we further define
some operations about IVHMESs as below:

@ B oh={[ () or(r), e e ) or (72)]
@ ROk ={[ ¢*(o7)oo7:). o( d7)0d72))]
3) Aﬁ:{[ f’l(( f (VL))A)' f’l(( (7 ))A”‘VD ﬁ}v A>0; (12)

7,0h,7,0 F} L0

7.0 hy,0 by (11)
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@ ={[a*((a() ) o ((alr ) ) Jpo 8} 250 a3

where g is a strictly decreasing function such ttgat(0,00) — (0,0), and f (t) = g(%) :

Theorem 3.1.For three IVHMEsh , ﬁ and E we have the following properties:

W hOh=h0Hh;
@hOh=hOh

@3 A(hOR)=AROAR, A>0;
@ (ROR) =K O, 1>0;

(6) AhOA,h=(A,+A,)h, A,4,>0;
(6) h* Oh% =n""%_ ) A,>0.

Proof. It can be easily derived from Egs. (10), (11), (483 (13).

4. Aggregation Operators for Interval-valued Hesiant
Multiplicative Information

In the current section, we will propose severalrafms for aggregating the interval-valued
hesitant multiplicative information and investigademe properties and special cases of these
operators.

4.1. The GIVHMWA and IVHMWA Operators

Definition 4.1. Let iy (i =1,2,-- n) be a collection of IVHMES, and lev=(w, w,--, v )"
be the weight vector of_\ (i=1,2,-- n) with w D[O,]] and ZWi =1. Then, a generalized
i=1

interval-valued hesitant multiplicative weightedeaaging (GIVHMWA) operator is a mapping
H" - H, where
_ _ n,o_ O\
GIVHMWA , (h, -, ) :(gl(wrir‘)j (14)

with A >0.

Especially, if A=1, then the GIVHMWA operator reduces to the intervalued hesitant
multiplicative weighted averaging (IVHMWA) operator

n —

IVHMWA (b, B, - ) :El(vyh) (15)
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Theorem 4.1.Let ﬁ (i=1,2,-- n) be a collection of IVHMEs, andv:(vq,wz,u-,V\g)T be
the weight vector ofI'_] (i=1,2,-- n), wherew indicates the importance degree ﬁf,
satisfying w D[O,]] and Zn:wi =1, then the aggregated value by using the GIVHMW &rafor
is also an IVHME, and -

GIVHMWA , (R, B, -, ) = o RORR R, 7,08, (16)
9 {[g{f [”(f(g*((g(ﬁ“)) )D D] J
Proof. First, we will prove the following equation:
0(wh')= f_[u(f(g_ ((g(z ) m ] 7,00, 7,00, .7, OR, (17)

(e (o tste )|

wh :{ f‘l[{ f[g'l(( o)) )D”J f‘l[{ f( g-l(( 47 ))A)jjwl]:|
st ) o et |

we have
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That is, the Eq. (17) holds far=2. Suppose that the Eq. (17) holds for Kk, i.e.,

)= (0o (b )] ) ({0

then, whenn=Kk+1, we have

7.0 b % DD}

A ol o) Jrenos o,

i.e., Eg. (17) holds fon=k+1. Thus Eq. (17) holds for alt.
Furthermore, by Eq. (13), we have
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In addition, because:(0,0) - (0,») is a strictly decreasing function anfi(t)=g(1/t),
f:(0,0) - (0,0) is a strictly increasing function. Accordinglg™:(0,0) - (0,0) is a

strictly decreasing function anfl ™ : (0,00) - (0,00) is a strictly increasing function. Moreover,

foranyy =[y". %" |Oh (i=1,2;--n), we have%s V- <y’ <9. Therefore,

This completes the proof of Theorem 4.1.

Based on Theorem 4.1, wheh=1, the following theorem can be easily obtained:

Theorem 4.2.Let h (i=1,2,-- n) be a collection of IVHMEs, antv=(w, -, )" be

the weight vector ofﬁ (i=1,2,-- n), wherew indicates the importance degree ﬁf,

satisfying w D[O,]] and Zwi =1, then the aggregated value by using the IVHMW Arafw is
i=1

also an IVHME, and
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T
Especially, ifW:(l,l,---,—lj , then the GIVHMWA operator reduces to the geneeali
nn n
interval-valued hesitant multiplicative averagii@\{HMA) operator:
1A
— — — nifq]—
GIVHMA , (R, b, -, W):(E(E hAD

f (19)

(o]
AN
(o]
N
m I =
VR
-~
VY
u:l
iy
—_—
—
(o]
—_—
xI
-
~—
P—
N
~—
N——
N—
S
Ne—
Ne—

. oy [AORFeT R R OB,
oo e{ Bl o)

11 1)
If W=[—,—,---,—) , then the IVHMWA operator reduces to the intervalded hesitant
n n

multiplicative averaging (IVHMA) operator:

IVHMA (R, B, -+ 1) ZEGE)

{f[rj(f (ViL))iJ’f'lm(f 7 ))iﬂ

Then, we can investigate some desirable propestide [VHMWA operator as follows:

(20)

ZDE,;_/ZEIEZ,--- !Vn Dﬁ}

Theorem 4.3.Let ﬁ (i=1,2,-- n) be a collection of IVHMEs, andv=(V\{,Wz,---,V\4)T be
p— n p—
the weight vector oh (i =1,2,-- n), satisfyingw 0[0,1] and > w =1, if h is an IVHME,
i=1

then

IVHMWA (R, OR B0 h- RO R)=IVHMWA (T §- h)O T (21)

Proof. Based on Eq. (10), for any=1,2,-- n,
Roh=Roh={[ £( f(r)orr). £ () or) Jrohroy

According to Theorem 4.2, we have
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[t J]
(i)
: :f-l[f(yt)qj(f(ys» ) (1))

By Theorem 4.2 and Eq. (10), we can obtain
IVHMWA (h, 1, -, )0 h

{f(n( ) (ru L)
|}
e e)

:{:f-l[f(VL)Elj(f(%L))Wj - (f(? )El:ll(f(yiU))”HMDn,yZDhZ,...’yan’yDh}

¥, 0h,y,0h,, meth]

—

v.0h,y,0h,,--7, Dhn,y[Ih}

—

—

ﬂthlth th,} {7 7o

——

7,0h,y,0h,, meth’

~—

This completes the proof of Theorem 4.3.

Theorem 4.4.Let i (i =1,2,-- n) be a collection of IVHMEs, antv=(w, w,--, v )" be

the weight vector oh (i=1,2,-- n), satisfyingw D[O]] and ZW =1,if r >0, then

IVHMWA (rh, th,, -+, rh, ) = IVHMWA (h h, - h) (22)

Proof. Since for anyi =1,2,-- n,
A ={ () ) (1)) on)

Based on Theorem 4.2, we have
IVHMWA (rh, th,, -, rh, )

- [n(f(f (my i) Jw[rﬁl(f(f1((f(yu))w
g UGN

ylum,yzﬂhzmynm}

yI]hlyI]h th}
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According to Eq. (12), we can obtain

rIVHMWA (

”_ﬂf Ruli 3 )
b Gt

[l (Al

This completes the proof of Theorem 4.4.

3551725521“' vJ7n Dhn}]

I I:
p——
—n
—
~I
<
—
=
=
~
Na—
D
N
[—

ylﬂhl,yzljhz,---,ynljh}

7,0h,7,0h,,-.7, Dm}

According to Theorems 4.3 and 4.4, we can easilgiolTheorem 4.5:

Theorem 4.5.Let i (i=1,2,-- n) be a collection of IVHMEs, antv=(w, w,--, v )" be
the weight vector oﬁ (i=1,2,-- n), satisfyingw D[O,]] and Z\Ni =1, if r>0 andh is
i=1

an IVHME, then

IVHMWA (rh, Oh, rh, O -, th O )= ivHMWA (R B -, R)O h (23)

Theorem 4.6. Let ﬁ andf (i=14,2,--n ) be two collections of IVHMEs,

W=(V\£, V\é,---,V\q)T be their weight vector withw D[O,]] (i=1,2,-- n)and ZWi =1, then
i=1

IVHMWA (R, 0T, A, 0T, ,h 0T )=ivimMwA (b, b, -, R)OIVHMWA (T T, - 1)) (24)

Proof. According to Eqg. (10), we have

ROT={[ () (@), (e () er (89) ] o £ o)

According to Theorem 4.2, we have
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<
T
<
=
>
T:T
O
ol
le
O
=
|

—_——

)
whi_ch completes the proof of Theorem 4.6.

If the multiplicative generatog is assigned different forms, then some specifigregation
operators can be obtained as follows:

+
Case 1If g (t) :¥, then the GIVHMWA operator reduces to the follog/fiorm:
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=
I
O
,f'-f\
N
O
=l
~I
O
=

ey -G
ey ey ) b

Furthermore, ifA =1, then the Eq. (25) is transformed to

IVHMWA (f, F, -, ﬁ):{“—:l (1+J7.L)W‘ _1'|j(1+}7'u )M —1}‘;71DHI,VZDHZ,... 7, Dﬁ} (26)

+
Case 2If g (t) :¥, then the GIVHMWA operator reduces to the follog/fiorm:

GIVHMWA , (h, B, -+, )

w7) (7 “j : 27)

Furthermore, ifA =1, then the Eq. (27) is transformed to

n

IVHMWA (hl,hz...,n)_H[ﬂ(hzyL)WJ_l(rl(n WU)WJ_? .

2 ' 2

Case 3If g (t) :$ , >0, then the GIVHMWA operator reduces to the follogiiorm:
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(29)

Furthermore, ifA =1, then the Eq. (29) is transformed to

Qo) 2 (o2

17

IVHMWA (R, , -, ) =

Especially, if @ =1, then the Egs. (29) and (30) reduce to Egs. (B8) (26), respectively; if
@=2, then Egs. (29) and (30) reduce to Egs. (27) 28} (espectively.

Example 4.1. Assume that h :{[]/4,111 [12]1[A 5/1]? ., h :{[6,8] | 5,6}} and
I’_13:{[4,5] ,[6,1} are three IVHMEs, and their weight vector \is= (0.2,0.5,0.$T . Let

g(t)‘1+t

then from Eg. (25), we have

GIVHMWA, (b, 1, h,) =IVHMWA (T T, h)

[4.1439,5.430p[, 3.3051,4.20Rf

[3.4836,4.439, 3.9598,4.92pf
[3.1172,3.797]1[, 3.5545,4.2205

GIVHMWA , (n, b, )

[4.3765,5.551D ], 4.9633,6.144p
=1[4.9659,6.178}L[, 3.9192,4.707B
[3.9167,4.677)1[, 4.4884,5.2351

, 3.1510,3119B.5918,4.2295[, 3.6501,4.898
, 3.7624,4H7[13.4471,4.439[, 3.9194,4.9%9

, 3.9168,4H7[#.4885,5.2351[, 4.3790,5.543
, 4.4910,5464.3764,5.551[, 4.9632,6.144

Example 4.2.1f we use the corresponding IVHMEs of the IVHFEs&rample 3.1 to express the

input arguments, then we havd,f_ll:{[9,9]} , FEZ{[]/QZ][E}} , |’_13={[]/9Z]/51} ,
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h={[1/9.49}. R ={[1/9.79} andh, ={[1/9,4 d} . Therefore, by the IVHMWA operator
(Eq. (18)), we can get

which is consistent with our intuition. Thereforthe IVHMEs can contain more original
information than the IVHFEs in the aggregation ess; which leads to the result that the
IVHMES are more reasonable and reliable than tHéRAKs in dealing with such a situation.

4.2 The GIVHMWG and IVHMWG Operators

Based on the GIVHMWA operator and the geometric rmese next define a generalized
interval-valued hesitant multiplicative weightedgeetric (GIVHMWG) operator as:

Definition 4.2. Let ﬁ (i=1,2,-- n) be a collection of IVHMESs, and Ieﬁsl:(vq,V\é,-u,V\q)T
J— n
be the weight vector of (i =1,2,-- n) with w 0[0,1] and > w =1. Then, a generalized
i=1

interval-valued hesitant multiplicative weightedogeetric (GIVHMWG) operator is a mapping
H" = H, where
— — =\ _ 1/ n —\W
GIVHMWG,, (h, hZ""’h*)‘j(El(A h) ) (31)

with A >0.

Especially, if A=1, then the GIVHMWG operator reduces to the intemallied hesitant
multiplicative weighted geometric (IVHMWG) operator

IVHMWG (h, B, -+, 1) =1

imE

B (32)

Theorem 4.7.Let h (i =1,2,-- n) be a collection of IVHMEs, andV:(V\i,V\é,'--,V\q)T be

the weight vector ofﬁ (i=1,2,-- n), wherew indicates the importance degree ﬁf,
n

satisfying w, D[O,J] and ZWi =1, then the aggregated value by using the GIVHMW@&rafor
i=1

is also an IVHME, and

GIVHMWG, (R, . )=

Aol |
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Based on Theorem 4.7, wheh=1, the following theorem can be easily obtained:

Theorem 4.8.Let i (i=1,2,-- n) be a collection of IVHMEs, antv=(w, w,--, w)" be

the weight vector ofﬁ (i=1,2,-- n), wherew indicates the importance degree l?qf,
n

satisfying w, D[O,]] and Zwi =1, then the aggregated value by using the IVHMWG aijpe is
i=1

also an IVHME, and

7.0 07,0 b7, D’n} (34)

T
Especially, ifW:(l } —]'j , then the GIVHMWG operator reduces to the germzdli
n n

’ ) ’

interval-valued hesitant multiplicative geometi@!\YHMG) operator:
1

GIVHMGA(hl,m,~--,ﬂ)=j(@1(/m) J

Al (ot oy |

= o 7,007,007, 0h,
Al A )|

.
If W:(l,l,--- —1] , then the IVHMWG operator reduces to the intemalied hesitant

Tl

’

nn n
multiplicative geometric (IVHMG) operator:

IVHMG (P, -, ) :él[mi]

et <l

In what follows, we investigate some desirable prtps of the IVHMWG operator.

(36)

v,0hy,0h, 7 0%

AN

Theorem 4.9.Let i (i =1,2,-- n) be a collection of IVHMEs, antv=(w, -, )" be
p— n pr—
the weight vector oh (i =1,2, n), satisfyingw 0[0,1] and > w =1, if h is an IVHME,
i=1

then

IVHMWG (h,0h, B0 R, O R =IVHMWG (h B, h) Ot (37)
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Theorem 4.10.Let ﬁ (i=1,2,-- n) be a collection of IVHMEs, anw=(V\5,V\é,~-,V\4)T be

J— n
the weight vector ofy (i =1,2,-- n), satisfyingw; 0[0,1] and >’ w =1, if r >0, then
i=1
IVHMWG (R, B+, B ) = (IVHMWG (B B, B)) (38)
According to Theorems 4.9 and 4.10, we can eabilgio Theorem 4.11;

Theorem 4.11.Let ﬁ (i=1,2,-- n) be a collection of IVHMEs, anW:(V\i,V\é,---,V\q)T be

the weight vector oﬁ (i=1,2,-- n), satisfyingw D[O,]] and Z\Ni =1,if r>0andh is
i=1

an IVHME, then

IVHMWG (R Oh B O | OB =(vHMWG (BB ) 0 (39)
Theorem 4.12. Let ﬁ andf (i=2,2,--n ) be two collections of IVHMEs,

W=(V\4,V\é,---,V\4)T be their weight vector withw D[O,]] (i=1,2,-- n)and ZWi =1, then

i=1

IVHMWG (R, O, 1, 0T, h, OT) = IVHMWG (R, h, -+, B ) OIVHMWG (L, T, T,)  (40)

In what follows, we will investigate the relatiomghbetween GIVHMWA operator and
GIVHMWG operator.

Theorem 4.13.Let ﬁ (i=1,2,-- n) be a collection of IVHMEs, anW:(V\i,V\é,---,V\q)T be

the weight vector oﬁ (i=1,2,-- n), satisfyingw D[O,]] and ZWi =1, then we have

i=1

(1) GIVHMWA , (Rg, B, -+, ) =(GIVHMWG , (B B+ B))’ 41)

(2) GIVHMWG,, (Re, B, ) =(GIVHMWA,, (B -+~ B))’ (42)
Proof. (1) According to Egs. (7), (16), and (33), we cah g
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GIVHMWA , (R, Bs, -+, 1)

VJ.DEIVZDHZ""1VnDHn

= }_/lljl’_ll,}_/zl:lﬁz,~~~,;7n|:|ﬁ1

7.0h,y,0h,, .7, O,

el oAl ()

=(GIvHMWG,, (R, B B ))
Similarly, we can prove Eqg. (42), which completes proof of Theorem 4.13.

_.,
A
—
(@)
AN
“ IJ
TN
(]
TN
—
A
—_—
—_
—
—_—
X! S
-
~
Nt
o
[
~—
N
= =
~_ Ne— N
e

N—
NI

Theorem 4.14.Let R (i=1,2,-- n) be a collection of IVHMES, antv=(w, w,,---, ;)" be

— n
the weight vector ofy (i =1,2,-- n), satisfyingw; 0[0,1] and > w =1, then we have
i=1

(1) IVHMWA (RS, B+, ) = (IVHMWG (B |- )’ (43)
(2) IVHMWG (Re, Bg, -+, Be) = (IVHMWA (B | -, )Y (44)

If the multiplicative generatogy is assigned different forms, then some specifigregation
operators can be obtained as follows:

+
Case 1lIf g(t) :¥, then the GIVHMWG operator reduces to the follagvform:
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)
Qe el -4
_ (ENl+RﬁM'1j(@+ﬁﬁﬂ‘)wj | (45)

GIVHMWG,, (i, by,
r 1
A

Qe

Furthermore, ifA =1, then the Eq. (45) is transformed to

)
7 ) -1 )
IVHMWG (R, -, y) = i yn) '3(” PR R0
D(Viu).
_Ij(l+}7iu)vw_|j(}7iu)w_
Case 21f g( ) _ZT then the GIVHMWA operator reduces to the follog/fiorm:
GIVHMWG,, (i, b+, 1)
(e e ] {020 2] -l 20 F]
{”3+nw‘f_nuhyw_¥f (47)

7.0h,7,0h,,0h,

Furthermore, ifA =1, then the Eq. (47) is transformed to
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D(2+y) —rl(vt)“' | us)
il
_D(2+V) -[j(y.“)”_
g+t

Case 3If g( ) = >0, then the GIVHMWG operator reduces to the follagvform:
GIVHMWG,, (R, 1+, ]

(Al A (e (eom )] -
[(FJ"”*W Il -“JJ |
o{(fletory oy |
- )ﬂﬂ((uw—l) J+(u<e~u+w—l)ﬂf—
(Bl teony -4 Fferory -4 )
o[ty ) leory )
Furthermore, if4 =1, then the Eq. (49) is transformed to
0” |
g(ew)—q(mw [P s
alis
_[j(9+y) -D(z“)“_

I
O
=l
=~
O
R=a
AN
O
!

IVHMWG (R, B+, )=

1
P

~I
O
eyl
~I
O
=l
xI
O
JI

IVHMWG (P, B+, ) =

Especially, if@=1, then the Egs. (49) and (50) reduce to Egs. (#8) (@6), respectively; if
@=2, then Egs. (49) and (50) reduce to Egs. (47) 48} (espectively.
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Example 4.3. Assume thath ={[]/8,1(q [1 74 IfS[/l 4/1]}3 . h, ={[7,9] [ 5@} and
h, ={[1/5,2][q [ 1 2,]1} are three IVHMES, and their weight vectorvis= (0.6,0.3,0.).T. Let

1+t
g(t) == then from Eq. (33), we have

GIVHMWG,, (h, h,, h,) = IVHMWG (1, h, Th)

[0.2737,0.355B[, 0.2993,0.391B , 0.2687,08}48.2936,0.3835[, 0.2998,0.444
=1[0.3284,0.446p[, 0.2941,0.396p , 0.3221,09{3@.4405,0.58(1[, 0.4875,0.648

[0.4313,0.566p[, 0.4770,0.6334

GIVHMWG, . (h,, h,, h)
[0.3016,0.394f [, 0.3304,0.436f , 0.2920,064810.3198,0.420)8[, 0.3298,0.447

=1[0.3618,0.496B[, 0.3192,0.431p , 0.3500,08{7[0.4813,0.637R[, 0.5323,0.714
[0.4646,0.611P[, 0.5134,0.6850

5. Interval-valued Hesitant Multiplicative Preference Relations
(IVHMPRS)

In the process of group decision making under uatogy and vagueness, the decision makers
usually compare each pair of alternatives, andigeotheir preferences by interval multiplicative
values, and thus construct the interval multipli@preference relations (IMPRs) as follows:

Definition 5.1 [32]. Let X :{xl,xz,---,>g} be a discrete set of alternatives. An interval
multiplicative preference relation (IMPRR on the setX is defined ast(r”.) 0 Xx X,

wherer; = [rijL,rij”] shows the interval-valued preference degree ofttenativex over X, ,
and satisfies

1 -

3 s’ <9, rhmy =t mi =1, =t =1, Oi,j=1,2;-n. (51)

Generally speaking, a common approach for MAGDMJMPRSs first aggregates the individual
IMPRs into the group IMPR, which often causes tbsslof information. To overcome this
drawback, instead of performing information aggtegea we first collect all of the possible

interval multiplicative preference values providedthe decision makers (DMs) into an interval-
valued hesitant multiplicative preference relatiorich can avoid the loss of information and
fully reflects the differences of preference infation of different DMs.

If some decision makers provide some interval mplittative preference values to describe the
degrees thak, is preferred tox; , which are denoted byjl, ruz . rij'u , then the degrees that

1412



British Journal of Mathematics & Computer Scien¢g0), 1390-1426, 2014

X

is preferred tox; can be represented by an IVHME :{r_ijl,ri_jz,---,r;'”} . AlT
(i,j =1,2;-- n) constitute an interval-valued hesitant multiplica preference relation, which is
defined below:

Definition 5.2. Let X :{xl,xz,---,)g} be a discrete set of alternatives. An intervaligdl

hesitant multiplicative preference relation (IVHMPRon X is denoted by a matrix

ﬁ:( ) 0 Xx X, whereT; ={r_ijss=1,2,m L} is an IVHME, indicating all possible
nxn

I;j e

degrees to whichx; is preferred tox; , and Ir*.. represents the number of intervals fin.
Moreover,r_ij should satisfy

inf .70 ><supr_jia(lﬁj =) _ sug; "™ x ian.iU('T" =) _ LT ={[1]]} J0i,j=1,2;--n (52)

where the elements iy are arranged in an increasing or(ﬁ?,(s) denotes theth smallest value

in T, , andinf r_ij”(s) and Supr_ij”(s) denote the lower and upper limits qfr(s), respectively.

For a multi-criteria decision making (MCDM) probletnased on interval-valued hesitant
multiplicative preference relations (IVHMPRSs), leX :{xl,xz,m,)g} be a set ofn

alternatives, C:{q,g,...,qn} be a set of m criteria, whose weight vector is

W=(V\{,Wz,---,V\41)T satisfying w, D[O,:I], k=1,2,--,m, and Zm“wk =1, wherew, denotes

k=1
the importance degree of the criterigp. The decision makers provide all the possibleriate

multiplicative preference values to whiot is preferred tox; with respect to the criterion,
represented by the IVHMEr_ij(k) . All Fij(k) (i,j=1,2;--n ) construct the IVHMPR
R = (T;j(k))nxn with respect to the criteriog, . To get the best alternative, the following steps
are involved:

Algorithm 5.1.

Step 1.Utilize the GIVHMA (or GIVHMG) operator to aggregaall r_ij(k) (j=12,-- n) that

correspond to the alternativg , and get the IVHMEr'i(k) of the alternativex, over all the other
alternatives for the criteriog, .

Step 2. Utilize the GIVHMWA (or the GIVHMWG) operator to @gegate all Fi(k)
(k=1,2,-- ,m) into an overall IVHMET, for the alternativex; .
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Step 3.Compute the score functiort‘s(_ri) of T (i =1,2,-- n) by Definition 3.3, and rank all

the alternativesx, (i =1,2,-- n) according tos(_ri) in descending order.
Step 4.End.

6. lllustrative Example

6.1. An lllustrative Example

In this subsection, a practical example adaptech ff@2,23] is employed to demonstrate the
validity of the developed approach.

Example 6.1 [22,23].Let us consider a factory which intends to seleatew site for new
buildings. Four alternativeg, (i =1,2,3,4) are available, and three decision makers compare

these four alternatives with respect to the thmieréa: (1) c, (price); (2)c, (location); and (3)

C, (environment). The weight vector of three critegja(k =1,2,3) is W= (0.2,0.5,0.33T . The
selection of the new site can be modeled as arhl@cal structure, as shown in Fig. 1. The three
decision makers provide all the possible intervaltiplicative preference values to which is

preferred toX; with respect to the criterio, represented by the IVHMEi"j(k). All r_ij(k)
(i,j =1,2,3,4) are contained in the IVHMPRR" :(_rij(k)) with respect to the criterioo,
nxn
(see Tables 2-4). In the following, we explain htve IVHMPR RM :(T;J.(k)) is obtained.
nxn

Take RY =(Tij(1)) as an example. The three decision makers provigér fpreference
nxn

information thatx, is preferred tox, with respect to the criteriog, in the form of interval

multiplicative values. Suppose that one decisiomemaprovides[l,ﬂ, one decision maker

provides[3,4], and the third decision maker provick5|. Considering that three decision
makers cannot persuaded each other to changeottiaions, the preference information thgt

is preferred tox, can be considered as an IVHME, i.Eg}) :{[1,3] ,[ 3,4] [ 3,§ . Similarly we
can denote the symmetric elemaiff) of 7 as ) :{[J/S,Z]Zq [14AB[A 3]} Other
symmetric elementﬁj(l) and Fji(l) in RY can be obtained in an analogous way. Moreoﬁ@,
represents the preference degree to whicis preferred to itself with respect to the criteric, ;
that is, it is equally preferred, sr_;p(l) :{[1,]]} . The IVHMPR RY is obtained through the above
procedure. Similarly, we can get the IVHMPRE? and R® .
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Table 2. The IVHMPR RY with respect to the criterion ¢, .

2 X % X3 Xy
x| {[1L1]} {13, 41, [4, 51} {[v3, 1721} {[1, 3], (3, 4] [3 5}
O e R R 340350 |([/2 1)
X | {230 tay O M 3, 11, (12, 1)
| Sewey U@ 2,00,3)  |1L)
New site
Price Location Environment
% X X3 X4
Fig. 1. Hierarchical structure.
Table 3. The IVHMPR R® with respect to the criterion c, .
3 1x X, X, X,
x {11} {12,1],[2, 3]y |{1/4, 1/3]} {3, 4], 3, 51}
x, |{(U3, 12,1, [{[11} {[1/5, 1/4],[1/4, 1/3], [{[6, 7}
21} [1/2, 1]}
x, | {34} {1,2], 3,4, [4 |{11} {[1/6, 1/5], [1/5, 1/4],
5]} [1/5, 1/3]}
x, | {(1/5, 3], [1/4, [{[1/7, 1/6} {13, 5], [4, 5], [5, 6}

1/3]}

{{1.1}
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Table 4. The IVHMPR R with respect to the criterion c,

s % % % X,
X, {[1,1]} {[1/7, 1/5], [1/6, 1/41} | {[1/9, 1/8]} {I1, 3], 12, 3], [3, 4]}
X, |46.05.7) | (1) {15, 71,16, 7) /4, 1 3)

X | 8.9 {[1/7, 1/6], [1/7, U5} | {[L1]) 3. 5)

% | ey o 134 {[ws, 13]) 1)

criteria ¢, (k=1,2,3).

Table 5. The aggregation results of the alternatives; (i =1,2,3, 4) with respect to the

G

G

Cs

{[1.1491,1.7832),[1.5558,1.94
28],[1.5558,2.0801],[1.2724,1
9130],[1.7024,2.0801],[1.7024
2.2237]}

{{0.9680,1.2724],[0.9680,1.37
84],[1.3403,1.7024],[1.3403,1
, 8284]}

{{0.5012,0.8128],[0.6614,0
.8128],[0.7853,0.9168],
[0.5090,0.8314],[0.6700,0.
8314],[0.7945,0.9365]}

{[0.9480,1.2361],[0.9480,1.34
03],[0.9680,1.2724],[0.9680,1
3784]}

{{1.1755,1.3403][1.1978,1.37
84],[1.3003,1.6321],[1.4076,1
7832],[1.4323,1.8284],[1.5457
2.1302]}

{[1.9428,2.4957),[2.0585 2
.4957],[2.0801,2.6144],[2.4
,011,2.6144]}

{[0.7602,1.1491],[0.8128,1.14
91],[0.7783,1.1491],[0.8314,1
1491]}

{[1.0786,1.4495] [1.0933,1.47
46),[1.0933,1.5149],[1.4719,1
7832],[1.4893,1.8117],[1.4893
1.8574],[1.6137,1.9130],[1.63
1,1.9428],[1.6321,1.9907]}

{[2.0118,2.4398],[2.0118,2
4641]}

D

{[0.7602,1.2134],[0.7602,1.37
84],[0.7783,1.2134],[0.7783,1
3784],[0.8072,1.4495],[0.8072

1.6321]}

{{0.8200,1.0786],[0.9244,1.07
86],[1.0141,1.1602],[0.8386,1
,0786],[0.9441,1.0786],[1.0348

{[0.8612,1.0534],[0.8915,1
.1147],[0.8915,1.2724]}

1.1602]}

Let g (t) = 1tj To obtain the ranking of the alternatives, thHéofeing steps are given:

Step 1.Utilize the GIVHMA operator (without loss of gemdity, let A =1) to aggregate afti'j(k)

(j=1,2,3,4), and get the IVHMEﬁ(k) of the alternativex;, with respect to the criterion, (see
Table 5). For example,

417 42

79 =GIVHMA, (F,r 3. r 3 d)

= IVHMA (70, PO, F,

417

1437 44

(9 (3

431 44)

=IVHMA ({fi/a,y/3],[¥3.3 3 [133 {[ 3B {[/1918{ })

={[0.8612,1.053}[, 0.8915,1.114f , 0.8915,1.3f24
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Step 2. Utilize the GIVHMWA operator to aggregate afﬂ(k) (k=1,2,3) into an overall
IVHME T, for the alternativex; , which are not shown here due to the limited space

Step 3.By Definition 3.3, we compute the score functics(s_ri) of I, (i=1,2,3,4) as follows:
s(f)=1.2000, s(T)=1.6248 s(§)=1.595z s(T,)=1.0158

Since s(%;) > s(%) > () > ), then the ranking of the alternativesxs> X, > X > X,,
which showsy, is the best among four alternatives.

It is noted that the above results are obtainecutie assumption that =1. In the following,
we will analyze the variation of the ranking of thléernatives with respect to the different values
of the parameterd . Fig. 2 shows the score functions of the alteveatiobtained by the
GIVHMWA operator, from which we can find that theose functions of each alternatives
increase as the values df increase from 0 to 20, and

(1) when/ D(O,10.41613, the ranking of the four alternatives s > x, > x > X, and the best
choice isx, .
(2) when A 0(10.4163, 24), the ranking of the four alternativesys > x, > x, > X and the best
choice is X, .

4.5

4,

35r-

3,

2.5F

2,

Score functions

15 _ lambda=10.4163 i
,// s(x1)=s(x4)=2.3025
1F i

05 ! ! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18 20

lambda

Fig. 2. Score functions for alternatives obtained by the GIVHMWA operator.
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If we use the GIVHMWG operator instead of the GIVMM operator to aggregate the interval-

valued hesitant multiplicative preference inforraatithen the score functions of the alternatives
are shown in Fig. 3, from which we can see thatsttwre functions of each alternatives obtained
by the GIVHMWG operator decrease as the paramétehanges from 0 to 20. From Fig. 3, we

can also find that

(1) whenA D(0,12.581$, the ranking of the four alternatives s > x, > x > x, and the best

choice is X, .
(2) whenA D(12.5818,2q3, the ranking of the four alternativesys > x, > x, > X and the best
choice isx, .
12
—s(x1)
11 —s(x2)| |
1 S(x3)] |
s(x4)

0.9

0.8

0.7

lambda=12.5818

Score functions

0.6 . i
N s(x1)=s(x4)=0.3012
0.5 G
\

0.4+
0.3F —
02 L L L

0 5 10 15 20

lambda

Fig. 3.Score functions for alternatives obtained by the GIVHMWGoperator.

Fig. 4 illustrates the deviation values betweendbere functions obtained by the GIVHMWA
operator and the ones obtained by the GIVHMWG dperdrom which we can find that the
values obtained by the GIVHMWA operator are mucgber than the ones obtained by the

GIVHMWG operator for the same value of the parameéteand the same aggregation values,
and the deviation values increase as the valugegbarameted increases.

Fig. 4 indicates that the GIVHMWA operator can ditanore favorable (or optimistic)
expectations, and therefore can be considered aptamistic operator, while the GIVHMWG
operator can obtain more unfavorable (or pessio)istixpectations, and therefore can be
considered as a pessimistic operator. The valugheoparameted can be referred to as the
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optimistic or pessimistic levels. From Figs. 2,r8la, we can conclude that the decision makers
who are optimistic could use the GIVHMWA operatordachoose the bigger values of the
parameter] , while the decision makers who are pessimistiddcase the GIVHMWG operator
and choose the bigger values of the paraméter

Deviation values

| | | | |
0 2 4 6 8 10 12 14 16 18 20
lambda
Fig. 4. Deviation values for alternatives between the GIVHMWA andGIVHMWG
operators.

6.2. Comparison with the Existing Approach for GDMwith IMPRs

In this subsection, we will compare our approackthwhe existing approach for GDM with
IMPRs and demonstrate the advantage of the propageach. Generally speaking, a common
approach for GDM with IMPRs involves the followisteps:

Algorithm 6.1.

Step 1: Aggregate the individual IMPRs into the collectii¢PR.

Step 2: Aggregate the preference values of each alternatitlee collective IMPR, and derive the
overall preference value of each alternative.

Step 3:Rank all the alternatives and select the bestioaecordance with the overall preference
values.

The difference between the algorithms 5.1 and $that the former first aggregates the different
opinions provided by the DMs for a paired comparigb alternatives and derives the collective
interval multiplicative preference information, wéihe latter eliminates step 1 in the former, i.e.
does not perform such an aggregation, and diredllgcts the individual interval multiplicative
preference information into the interval-valueditaag multiplicative preference information. In
the following, a concrete example is given to coreghe results of the rankings of alternatives
obtained with two approaches.
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Example 6.2.Let’s revisit Example 6.1 using Algorithm 6.1.

Step 1: Utilize the geometric averaging (GA) operatoraggregate the individual DMs’ interval
multiplicative preference opinions with respecttte attributec, (k =1,2,3) into the collective

interval multiplicative preference opinion with pest to the attribute, , which are shown in
Tables 6-8.

Step 2: Calculate the overall interval multiplicative peeénce valueri(k) of the alternativex;

with respect to the attribute, by the geometric averaging (GA) operator (see &&)l For
example,

:GA([Z(;.’Z;:G,ZS.Z:SP[ 11, 3,4.4%2], 11
={[0.8612,1.053}[, 0.8915,1.11}4f , 0.8915,14)y

Step 3:Utilize the weighted geometric averaging (WGA) aer to aggregate aﬂ(k)
(k=1,2,3) into an overallr; of the alternativex;

r,=WGA(r r? r 1) = WGA([1.2449,1.7201], 0.9306,1.2476 , 02D 5513) =[ 0.7770,1.04p
r,=[1.0402,1.369, r,=[1.0864,1.427F, r, =[0.6338,0.875F.

Step 4: In accordance withr, (i=1,2,3,4), the ranking of the four alternatives is
X; > X, > X > X, and the best choice is,.

Table 6. The collective IMPR R” with respect to the criterion ¢, .

6 X % %3 %
X [1.1] [3.4641, 4.4721] [1/3, 1/2] [2.0801, 3.9149
X, | [0.2236, 0.2887] [1,1] [3, 4.4721] [1/2, 1]
X | [2,3] [0.2236, 1/3] [1,1] [0.4082, 1]
X, | [0.2554, 0.4807] [1, 2] [1, 2.4498] [1,1]
Table 7. The collective IMPRR® with respect to the criterion c, .
7 X % % %
X 1.1 [1,1.7321] [1/4, 1/3] [3,4.4721]
X, | [0.5773,1] [1,1] [0.2924, 0.4368] {6, 7]
X | [3,4] [2.2894, 3.4200] [1,1] [0.1882, 0.2554]
X, | [0.2236, 1/3] [1/7, 1/6] [3.9154, 5.3135] [1.1]
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81X X X X,
X, [1,1] [0.1543, 0.2236] [1/9, 1/8] [1.8171, 3.3019]
x, | [44723,6.4809] [1.1] [5.4772, 7] [1/4, 1/3]
X, [8, 9] [1/7,0.1826] [1,1] [3, 5]
x, | [0:3029,0.5503] [3, 4] [1/5, 1/3] [1,1]
Table 8. The collective IMPR R with respect to the criterion c,.
8 X % X X4
X [1,1] [0.1543, 0.2236] [1/9, 1/8] [1.8171, 3.3019]
X, |[4.4723,6.4809] |[1,1] [5.4772, 7] [1/4, 1/3]
X, [8, 9] [1/7, 0.1826] [1,1] [3, 5]
X, | [0.3029, 0.5503] [3, 4] [1/5, 1/3] [1.1]

Table 9. The aggregation results of the alternatives; (i =1,2,3,4) with respect to the
criteria ¢, (k=1,2,3).

G

G,

(o

[1.2449, 1.720:

[0.9306, 1.267¢

[0.

4201, 0.551:

[0.7610, 1.0660]

[1.0032, 1.3223]

[1.5731, 1.9720]

[0.6536, 1.0000]

[1.0663, 1.3672]

[1.3607, 1.6931]
[0.6529, 0.925¢

XXX |x| @

[0.7109, 1.238¢ [0.5947, 0.7371

From the above results, we can see that the ramifiniernatives obtained with Algorithm 6.1 is
different from the one obtained with Algorithm 5.The reason for the difference is that
Algorithm 6.1 first needs to aggregate the indigdunterval multiplicative preference values to
the collect interval multiplicative preference valun fact, such an aggregation is equivalent to
transformation of the interval-valued hesitant nplitative preference value into the interval
multiplicative preference value, which may cause Itses of information. Contrary to Algorithm
6.1, Algorithm 5.1 does not need such an aggregatitd therefore can preserve the original
information as much as possible. As a consequeheecomparison results clearly illustrate the
advantage of the proposed approach for MCDM basd¥dMPRs.

6.3. Comparison with the IVHPRs

According to Definitions 2.3 and 5.2, we can se# the difference between the IVHPRs and the
IVHMPRSs is that the former uses 0.1-0.9 scale, avtie latter uses 1-9 scale. As stated before,
the 1-9 scale may be more consistent with ourtiotuithan the 0.1-0.9 scale in some cases. As a
result, the IVHMPRs may be more appropriate to edtd some situations than the IVHPRs. An

IVHPR R= (Fij ) can be transformed into an IVHMPR = (T” ) by the following equation:
nxn nxn
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= {[gz(ﬁjs)L_l’ gg(r'u's)u —1:|

s=1,2,- ,|r_} Landi,j =1,2;--n.

ij

s=1,2;- JI’U} (53)

wheref; = { rjjs

In what follows, we use an example adapted fronm {8 8how the difference between them.

Example 6.3 [37].Let’s revisit the example given in Section 6 off §&4]. Suppose thaR™
(k =1,2,3) are three IVHPRs given in [24] (see Tables 10-12)

Table 10. The IVHPR RY

10| x X, X, X,
{[0.5, 0.5]} {[0.4,0.5], [0.7, {{0.5, 0.6], [0.8, {[0.3, 0.5]}
0.9]} 0.9]}
{[0.1, 0.3],[0.5, {{0.5, 0.5} {{0.4, 0.5} {{0.6, 0.8}
0.6}
{0.1,0.2], [0.4, {{0.5, 0.6]} {[0.5, 0.5]} {[0.3, 0.4], [0.5,
0.5]} 0.6]}
x, |{05,0.7} {{0.2, 0.4} {{0.4,0.5],[0.6 {[0.5, 0.5}
0.7]}

Table 11. The IVHPR R

11 1 x %, X, X,
{[0.5, 0.5} {[0.2,0.3],0.5, 0.6} |{[0.5,0.6],[0.7 |{[0.2, 0.4}
0.9]}
{[0.4, 0.5],[0.7, 0.8]} | {[0.5, 0.5]} {[0.5, 0.8]} {{0.3, 0.5], [0.6,
0.7, [0.8, 0.9]}
{[0.1, 0.3], [0.4, 0.5]} | {[0.2, 0.5]} {[0.5, 0.5]} {{0.4, 0.5], 0.7,
0.8]}
x, | {(0.6,0.8} {0.1,0.2],[0.3,0.4] |{[0.2,0.3],[0.5 |{0.5, 0.5}
[0.5, 0.7]} 0.6]}

Table 12. The IVHPR R

12| x X, X, X,
x| 105,05} {[0.4,0.5], {{0.6, 0.7} {{0.3,0.5],[0.6, 0.7}
[0.7, 0.8]}
x, | {00.2,0.3],[0.5,0.6]} | {[0.5, 0.5} {[0.4, 0.6]} {{0.7,0.8]}
x, |{03,04]} {[0.4, 0.6]} {[0.5, 0.5]} {{0.3,0.4],[0.5, 0.7],
[0.8, 0.9]}
x, | 103,0.4],[0.5,0.7]} | {[0.2,0.3]} {[0.1,0.2][0.3, | {[0.5, 0.5]}
0.5], [0.6, 0.7]}
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First, we use EqQ. (53) to transform the IVHPRY) (k=1,2,3) into the IVHMPRs =
(k =1,2,3), which are shown in Tables 13-15. Then, we ugoithm 5.1 to derive the ranking
of the alternatives asx, > X > X, > X, which is different from the onex( > x, > x, > x;) [24]

obtained with the IVHPRs . The reason is that wthescribing the same preferences information,
the IVHPR uses 0.1-0.9 scale, while the IVHMPR u4e8 scale. The IVHMPR is more
consistent with our intuition than the IVHPR. Thusyr ranking may be more reasonable and
reliable than the one obtained in [24].

Table 13. The IVHMPR RY

13 1 x %, X, X,
{1, 17 {[0.6444, 1], [2.4082, | {[1, 1.5518], {{0.4152, 1]}
5.7995]} [3.7372, 5.7995]}
x, | {[0.1724,0.4152], [1] {[1, 1]} {[0.6444, 1]} {[1.5518, 3.7372]}
1.5518]}
{{0.1724, 0.2676] | {[1, 1.5518} {{1, 1] {[0.4152,
[0.0.6444, 1]} 0.0.6444], 1,
1.5518]}
x, | {[1,2.4082% {[0.2676, 0.6444 | {{0.0.6444, 1] {11}
[1.5518, 2.4082]}

Table 14. The IVHMPR R\

141 x X, X, X,
{1, 17 {[0.2676, 0.4152], | {[1, 1.5518], {{0.2676, 0.6444]}
[1, 1.5518]} [2.4082, 5.7995]}
x, | 1{00.6444, 1], {[L, 17} {[1, 3.7372]} {[0.4152, 1], [1.5518,
[2.4082, 3.7372]} 2.4082], [3.7372,
5.7995]}
x, | {[0.1724,0.4152], | {{0.2676, 1} {11} {{0.6444, 1], [2.408z
[0.6444, 1]} 3.7372]}
x, | {[1.5518,3.7372]}| {[0.1724,0.2676], |{[0.2676, 0.4152], | {1, 1]}
[0.4152, 0.6444], [1,| [1, 1.5518]}
2.4082]}

Table 15. The IVHMPR RO

15 | x X, X, X,
{1, 1 {[0.6444, 1], {[1.5518, 2.4082]}| {[0.4152, 1], [1.5518,
[2.4082, 3.7372]} 2.4082]}
{[0.2676, 0.4152] | {[L, 1}} {[0.6444, 1.551§ | {[2.4082, 3.737%
[1, 1.5518]}
x, | {0-4152, 0.6444]} | {[0.6444, L, 1} {[0.4152, 0.6444], [1,
1.5518]} 2.4082], [3.7372,
5.7995]}
x, | {04152, 0.6444], | {[0.2676, {[0.1, 0.2676], L, 11y
[1, 2.4082]} 0.4152]} [0.4152, 1],
[1.5518, 2.4082]}

1423



British Journal of Mathematics & Computer Scien¢g0), 1390-1426, 2014

7. Conclusions

In this paper, we have defined the concept of IVKME replacing the 0.1-0.9 scale in the
IVHFSs by the 1-9 scale. We have proposed someafaadtal operational laws on the IVHMSs
and developed several operators for aggregationirterval-valued hesitant multiplicative
information, including the generalized intervalwed hesitant multiplicative weighted averaging
(GIVHMWA) operator, the interval-valued hesitant Itplicative weighted averaging
(IVHMWA) operator, the generalized interval-valukdsitant multiplicative weighted geometric
(GIVHMWG) operator and the interval-valued hesitamultiplicative weighted geometric
(IVHMWG) operator. Some interesting properties apecial cases have also been discussed.
Considering that the decision makers provide sowssiple interval multiplicative preference
values when they compare two alternatives, we fatker defined the IVHMPR, which collects
all the possible interval multiplicative preferenealues into an IVHME as its basic element.
Moreover, an approach for MCDM with the IVHMPRs Hzeen developed. In the end, we have
compared the IVHMPRs with the IVHPRs and IMPRs me numerical examples, and
illustrated the advantages of the developed IVHMB®Rs the IVHPRs and IMPRs.
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