
Measurement Science and
Technology

     

PAPER • OPEN ACCESS

Single-projection reconstruction technique for
positioning monodisperse spheres in 3D with a
divergent x-ray beam
To cite this article: Edward Andò et al 2021 Meas. Sci. Technol. 32 095405

 

View the article online for updates and enhancements.

You may also like
First M87 Event Horizon Telescope
Results. IV. Imaging the Central
Supermassive Black Hole
The Event Horizon Telescope
Collaboration, Kazunori Akiyama, Antxon
Alberdi et al.

-

First Sagittarius A* Event Horizon
Telescope Results. IV. Variability,
Morphology, and Black Hole Mass
Event Horizon Telescope Collaboration,
Kazunori Akiyama, Antxon Alberdi et al.

-

Seizure onset zone classification based on
imbalanced iEEG with data augmentation
Xuyang Zhao, Jordi Sole-Casals, Hidenori
Sugano et al.

-

This content was downloaded from IP address 202.8.112.182 on 19/06/2023 at 11:51

https://doi.org/10.1088/1361-6501/abfbfe
/article/10.3847/2041-8213/ab0e85
/article/10.3847/2041-8213/ab0e85
/article/10.3847/2041-8213/ab0e85
/article/10.3847/2041-8213/ac6736
/article/10.3847/2041-8213/ac6736
/article/10.3847/2041-8213/ac6736
/article/10.1088/1741-2552/aca04f
/article/10.1088/1741-2552/aca04f


Measurement Science and Technology

Meas. Sci. Technol. 32 (2021) 095405 (13pp) https://doi.org/10.1088/1361-6501/abfbfe

Single-projection reconstruction
technique for positioning monodisperse
spheres in 3D with a divergent x-ray beam
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Abstract
The measurement of the position of single-sized spheres in 3D from a single, divergent,
radiographic projection is addressed in the present study with the development of a novel
method. Generally speaking, the location of the shadow cast by a single sphere on a detector
defines a source-detector ray; the position of the particle along this ray is identified by the strong
prior knowledge of its radius and the size of the shadow. For a dense assembly of equal-sized
particles whose projections overlap, a novel Fourier transform based technique is introduced to
give a first 3D determination of the particle centres. The uncertainty of this measurement is
calculated from synthetic data with a known noise distribution. A further refinement of this
measurement is performed based on the minimisation of the projection residual. The combined
approach is validated both on synthetic data, and on real radiographs of a glass bead packing.
The effect of noise on the measurement uncertainty is evaluated. The technique is made
available to the community in the open source python package radioSphere.

Keywords: granular media, reconstruction, x-ray radiography
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List of symbols

Symbol Meaning

Imaging geometry (see figure 1)

r Particle radius (mm)
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X 3D position of a sphere centred at [X,Y,Z]
(mm)

x Position on detector [y, z] (mm)
SOD Centre-line source-object distance (mm)
SDD Centre-line source-detector distance (mm)
L Path length through spheres (mm)
θ Half-beam angle of particle location (degree)
ϕ Half-beam angle of particle diameter (degree)

Pixelated images on detector

P Projection, units are L (mm)
p ROI (i.e. cropped) projection, units are L (mm)
ψ Single centred projection of a sphere (mm)
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I ‘Indicator’ valued zero everywhere except at
pixels which correspond to a sphere centre
(equation (4))

f Approximation of I

Fourier ingredients

k Wavelengths
Π Function that operates on f, rounding it to the

nearest non-negative integer

tomopack ingredients

λ Sub-relaxation parameter
tol Convergence factor
ψmin Minimum value of ψ which is considered trust-

worthy
Ktrust Wavelengths for which ψ̃(k) can be trusted

Sensitivity field ingredients

N Number of particles
ϵ Applied perturbation (mm)
η, H Local and global residuals (mm)
w Weights vector

1. Introduction

A collection of spheres is the simplest form that a granular
material can take, yet it exhibits most of the rich behaviour
that makes granular mechanics such a fascinating and active
field of research [e.g. 1–3]. This simple description lends itself
well to implementation in computer simulations (see ‘discrete
element methods’ or DEMs stemming from [4]).

For granular experimentalists, glass spheres are also a com-
mon system to study. Given the complexity of grain kin-
ematics, imaging methods capable of identifying individual
grains are extremely pertinent [5, 6] and there now exist grain-
based image analysis methods which are able to characterise
a granular system from such measurements [7, 8]. Individual
particle information within a 3D granular system is typic-
ally obtained using computed tomography. However, a sig-
nificant drawback of such a technique is the requirement for
the mechanically complex and time-consuming acquisition of
radiographs in many directions, which limits time resolution
significantly, meaning that dynamical 3D granular flows are
essentially out of reach of tomography. One existing method
for probing the kinematics of a granular flow is to interrupt
the flow very quickly (see for an example of silo flow [9]),
record a tomography, and possibly trace backwards in time
the position of the beads. Many alternative imaging techniques
are beginning to fill this gap: x-ray radiography-based rheo-
graphy [10] (which does not resolve individual particles dir-
ectly) and x-ray- or positron-based intruder detection [11, 12]
(which require few, dense and/or radioactive particles as mark-
ers in the flow) are notable examples. Alternatively, grains
can be immersed in a viscous fluid with a matching refractive
index [13] or characterised by MRI [14] to track them indi-
vidually or measure the velocity field. Several recent works

have used an initial tomography scan of a granular packing
and updated particle positions only with a few radiographs of
each subsequent imaged state [15], itself a discrete version of
[16, 17]. There also exist sophisticated techniques to recog-
nise specific sets of shapes in three dimensions from single
divergent radiographs [18]. Finally, it is important to mention
a similar method for parallel projections of granular media,
where boundary conditions are imposed to regularise the dis-
placements in the x-ray direction [19].

Here, a novel technique is described that exploits know-
ledge of particles shape and size (i.e. a strict requirement for
spherical particles of a known single size) to reconstruct the
3D positions of each particle from a single radiograph acquired
with a divergent beam. The uncertainties in the measured pos-
itions are evaluated both with synthetic data with controlled
noise, and with real experimental data (with respect to a tomo-
graphy image). Since one key application of this method is the
analysis of granular flows, solving the problem directly from a
single radiograph, rather than an initial tomography, is a chal-
lenge to be faced. Indeed, it may not be possible to acquire a
tomography scan in a number of flow geometries (and even if
it is, it is likely that studying a well-developed flow is more
interesting than the immediate vicinity of the static part).

This paper is organised as follows: In section 2 the geo-
metry of the problem is defined. In section 3, an FFT-based
sphere detection algorithm called tomopack is developed for a
parallel beam, and in section 4, tomopack is used tomake a 3D
guess of particle positions by scanning through different zoom
levels for a divergent cone beam. The tomopack algorithm
is then applied to synthetic data generated from DEM sphere
packings in section 4.1. The initial 3D guess of the particle
locations is then improved with an optimisation algorithm
developed in section 5. Finally, the combined tomopack and
optimisation techniques are validated on an experimental case
in section 6.

2. Imaging geometry

The imaging system that is modelled herein is a divergent
laboratory x-ray (transmission or reflection) source emitting a
‘cone beam’ which is detected by a relatively large 2D photo-
sensitive detector. Although specifications vary, such sources
can achieve emission cone half-angles as high as 70◦, mean-
ing that in principle a ‘source-detector distance’ (SDD) of
the order of the detector size is possible, although not often
used in x-ray tomography. Micro-focus x-ray sources can have
extremely good focusing of the electron beam onto the tar-
get, meaning that the size of the resulting x-ray emission spot
can in some cases be below a micrometre in size. A signi-
ficant advantage of the combination of a focused, divergent
x-ray source and a flat-panel detector is that thanks to geomet-
ric magnification such imaging systems are able to trade off
spatial resolution and field of view very easily by translating a
sample closer to the source or detector respectively.

As opposed to the parallel geometry typically offered at
a synchrotron, the radiographic projections of a 3D object
acquired on a divergent system has a differing level of
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Figure 1. Coordinate system used in 3D space (X= [X,Y,Z] in
mm), the detector dimensions (height and width H,W in mm), and
coordinates in mm [y, z].

Figure 2. Projection of spherical particles with a conical x-ray
beam. Two spherical particles of radius r are projected individually
onto a detector panel. The blue particle, located closer to the x-ray
source, appears larger on the detector panel due to the conical beam.

magnification in the direction of the beam—this is necessarily
taken into account in tomographic reconstruction techniques
such as the famous FDK algorithm [20]. The technique pro-
posed in this work aims to position spheres in three dimen-
sions: simply put, with knowledge of the imaging geometry
and the physical size of a sphere in a radiograph, the peak of the
absorption spot on the detector defines a source-detector line
(as shown in figure 1) on which the centre of the sphere must
lie; positioning the sphere along this line can then be achieved
by detecting the size of the absorption spot on the detector,
which is related to the level of magnification of the sphere,
and thus its position along the line.

In order to describe the problem mathematically, the
coordinate system is defined in figure 1. The centre of the ith
sphere is denoted with capital letters as Xi in three dimen-
sional space. The first coordinate X is along the centre line
of the x-ray beam path, and the remaining directions Y and Z
are perpendicular to it and each other.

Projected coordinates on the detector panel are denoted in
lowercase, x= {y,z} in mm. The sphere radius is denoted r
and is assumed to be identical for all spheres, although it would
be desirable to generalise the approach in the future to a set of
discrete particle sizes. The projection of a sphere in a divergent
beam is schematically represented in figure 2. With different
magnification factors (distances between the source and the

sphere), the width of the absorption peak recorded is altered,
but the magnitude of the peak is not affected.

It is important to note that the projections treated here are
geometrical in nature, meaning that the scalar ‘measured’ on
the detector is the distance travelled through the material (i.e.
L in mm). This is clearly not the raw output from a radiograph
in the lab, requiring at the very least the natural log of the
intensity-normalised radiograph ln(I/I0) and a suitable calib-
ration. In the case where polychromaticity of the beam is sig-
nificant, an absorption calibration with a large object com-
posed of the same material as the particles that will be stud-
ied is suggested, allowing an appropriate calibration function
of a known distance against the measured I/I0. This calibra-
tion procedure is reported in the appendix for the experimental
validation in section 6. Although keeping projections as cal-
ibrated values of L is convenient for a quantitative compar-
ison to projected or synthetic data, the signal-to-noise ratio is
defined in greylevels in terms of I/I0, as the difference in val-
ues between the background and themaximumvalue through a
single particle (its diameter) divided by the standard deviation
of the background.

3. Finding sphere centres in a radiograph

Initially a parallel beam is discussed, instead of a divergent
beam. The connection between this derivation and the use of
the technique for a divergent beam is made in section 4. For
a parallel x-ray beam, the projection of one disk centred at
Y =Z= 0 (and therefore y= z= 0), in units of mm, will be
recorded on the detector as ψ(x), where

ψ(x) =

{
2
√
r2 − y2 − z2 if|x|⩽ r

0 else.
(1)

Hence the projection of the entire pack of N particles is
easily written as

p(x) =
N∑
i=1

ψ(x− xi). (2)

Such a function is shown in figure 3. Let us note that it can
be rewritten as

p(x) =
∑
i

ˆ
ψ(x− x ′)δ(x ′ − xi) dx ′

=

ˆ
ψ(x− x ′)

∑
i

δ(x ′ − xi) dx ′

= ψ ⋆ I (3)

where ⋆ denotes a convolution, and I denotes the indicator of
the projected particle centres

I(x) =
∑
i

δ(x− xi) (4)

as depicted in figure 3. A first question to address is to estimate
I(x) from the known p(x). In order to solve this ‘deconvolu-
tion’ problem, it is straightforward to go to Fourier space, and

3
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Figure 3. Example of the convolution process to construct an image following equation (3). A set of 30 randomly positioned 1 mm
diameter particles is projected in a parallel projection onto a detector panel. Left: ψ, the projection of a fictional particle located at Y =Z= 0
(colour is L in mm). Centre: I, the indicator which represents the spatial position of each particle, with non-dimensional units such that a
value of unity represents a single particle with centroid at that pixel. Right: p= ψ ⋆ I, the constructed image (colour is L in mm).

Figure 4. Representation of the tomopack algorithm process. For the same case as shown in figure 3, additional fields are shown for a
detector with 200× 200 pixels. Top left: |p̃(k)|. Top centre: |ψ̃(k)|. Top right: |ψ̃(k)|−1. Bottom left: Ktrust(k) for a trust cutoff of
ψmin = 0.1. Bottom centre: Π[f(x)] after 49 iterations of the algorithm to reach ϵ= 10−3. Bottom right: e, residual field of difference
between the true p(x) = ψ ⋆ I and the reconstructed p(x) = ψ ⋆Π[f(x)] (colour is L in mm).

denoting p̃(k) the Fourier transform of p(x), and similarly for
other variables, the expression of p(x) becomes

p̃(k) = ψ̃(k)Ĩ(k) (5)

for all k. Hence, it appears trivial to write the solution as

Ĩ(k) = p̃(k)

ψ̃(k)
. (6)

Although this expression ismathematically true, the inverse
of ψ̃(k) is ill-behaved and any algorithm simply based on this
expression appears to be highly unstable. The ill-behaviour of
ψ̃(k)−1 can be traced back to its (quasi-)divergences at some
wavenumbers as shown in figure 4 (i.e. values becoming van-
ishingly small), hence the Fourier transform I(k) contains
‘gaps’, in the sense that some wavenumber amplitudes should

be treated as unknown, in order to avoid noise amplification in
the measured data.

3.1. The tomopack algorithm

To be able to compute the inverse Fourier transform f(x), all
f̃(k) should be known including its gaps. To find these missing
values, prior information on f(x) can be used. Mathematically,
it is positive, mostly 0, but contains a collection of δ func-
tions whose amplitude is quantified (an integer number). If the
unknown Fourier transform amplitudes are set to an arbitrary
value, then those properties have no chance to be obeyed. It is
straightforward to project any given f(x) onto one such indic-
ator having the desired properties. For this purpose, the pro-
jectorΠ is defined, which operates on any f(x) to produce f̂(x)
such that

f̂(x) = round(pos(f(x))) (7)
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Algorithm 1: Algorithm for a staggered iterative scheme (FFT
means discrete Fourier transformation, and iFFT its inverse
transformation).

Input: Projection data, p(x), shape function
ψ(x), trusted values Ktrust,
convergence factor tol, sub-relaxation
parameter λ

Output: Indicator f(x)
initialisation
f(x)← 0;
fold(x)← tol;
While||f− fold|| ≥ toldo

fold(x)← f(x);
f̃(k)← FFT[f(x)];
f̃(k)← p̃(k)/ψ̃(k) only for k ∈ Ktrust;
f(x)← iFFT[̃f(k)];
f(x)← f(x)+λ(Π[f(x)]− f(x));

end

where ‘round’ indicates rounding to the nearest integer, and
‘pos’ represents just positive values, such that values of
f(x)< 0 are projected to 0.

Thus the following algorithm is proposed. First, wavenum-
bers are classified into two categories k ∈ Ktrust when
|ψ(k)|> ψmin, and k ∈ Kdiscard if not. The former may be trus-
ted but not the latter ones. Then, the algorithm summarised in
algorithm 1 proceeds sequentially by enforcing the f̃(k) values
only for trustworthy wavenumbers where the information is
known, and then projecting f(x) onto an indicator which is
physically admissible. These two steps are repeated until a
fixed point solution is obtained.

It is to be noted that the projectionΠ[ f ] may induce a large
change on f, eventually leading to trapping the solution at an
unsatisfactory position, but where the correction of the next
iteration is cancelled during the projection. For this reason,
a softer condition is chosen in the form of a sub-relaxation
parameter 0< λ < 1 such that the last line in the loop only
accepts a fraction, λ, of the correction proposed by the pro-
jection. The full correction is obtained for λ= 1, but a smaller
value (0.5) is preferable. In the example shown in figures 3 and
4, the position of 30 randomly located particles is estimated
using this algorithm. After tomopack is applied, the recovered
indicator is used to compute an estimated radiograph, and the
signed residual shown in the bottom right of figure 4. All
particles were correctly identified within 1 pixel of their initial
location.

3.2. Conical effects

The use of a cone beam necessarily implies that the further
from the centre-line of the x-ray beam a particle is imaged,
the more it will appear deformed in its projection on the
detector panel. The following parameters define the projec-
tion geometry for a given particle of radius r at location Xp =
[Xp,Yp,Zp] as is relevant to this deformity: ϕ, the half angle
described by the projection of a particle on the detector panel,

Figure 5. Performance of tomopack in finding a single particle as a
function of aspect ratio. Grey area indicates ± one standard
deviation.

θ, the half angle describing the width of the cone beam, and
AR, the projected aspect ratio of the particle.

ϕ= tan−1

(
r

|Xp|

)
(8)

θ = tan−1

(√
Yp2 +Zp2

Xp

)
(9)

AR= secθ. (10)

The behaviour of tomopack as a function of the aspect
ratio is shown in figure 5, with decreasing positional accur-
acy with increasing aspect ratio. This issue could be ameli-
orated by either choosing an imaging geometry with small
aspect ratios, or by remapping the flat detector panel onto an
imaginary spherical detector panel centred on the source so
that all particles appear as spheres. Failing this, another geo-
metry suited to the sample, e.g. cylindrical for a collection of
particles in a column could partially alleviate the problem. In
the work presented below, the first approach has been used,
which will additionally apply to most imaging possible with a
standard micro-focus x-ray source with θ ≲ 25◦ and ϕ≲ 5◦.

4. Initialising a 3D guess from tomopack

If the tomopack algorithm were to be used to detect single-
sized spheres in a divergent beam, the key question is its toler-
ance to deviations in magnification. Simple numerical exper-
iments are performed with a single particle, where the struc-
turing element ψ is kept constant and the particle is gradually
moved in the X direction; tomopack is run and the sphere is
considered as detected if the resulting indicator is larger than
0.25 in the known position of the particle centre.

The shaded area in figure 6 shows, for different beam
angles, the change in size of the projected particle on the
detector for which it is still detected by ψ. This reveals that
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Figure 6. Limits on particle detection with tomopack by varying
zoom level with a constant ψ with a single centred 1 mm particle.
Limits of sphere detection (in units of radius) with varying
half-beam angle for particle radius .

the tomopack algorithm is sensitive to changes in size of the
projected particle (regardless of beam angle), with a ±0.3 %
deviation in radius tolerated.

This relatively narrow, but non-zero tolerance for discrep-
ancies in magnification between ψ and p in effect means that
in a divergent projection of a granular assembly, different
ψ can be used to scan the range of expected magnifications
(i.e. particle positions in the X direction) in the experiment.
Each particle therefore is expected to appear for a num-
ber of different ψ magnifications (corresponding to ±0.3%
variation in particle size), with the best match being in the
middle of the range. A rough 3D guess of particle positions
can thus be obtained by scanning the divergent projection of
a mono-sized granular assembly with gradually varying ψ.
Since the algorithm is sensitive to changes in projected size,
the ±0.3% change of projected diameter corresponds to dif-
ferent displacements along the beam axis as a function of the
beam angle.

The sensitivity of tomopack can be exploited to differen-
tiate particles at different levels of magnification by varying
the magnification of ψ. In this case a series of indicators I is
computed for different magnifications of ψ which can then be
analysed for the presence of particles. Figure 7 shows a ψ scan
either side of the correct value for a synthetic case of a single
centred sphere, and presents themax projection of the resulting
I image series in X, Y and Z directions. The Y and Z projec-
tions in particular show how the value of the indicator function
increases and localises into a point around the correct value,
facilitating its identification. At the first order the highest
values in the I-series can be selected as detected particles
(possibly imposing a non-overlapping constraint), however in
the current implementation, the particle locations are identi-
fied by matching the characteristic converging cones in I by
convolution.

Therefore a divergent radiograph of a sphere packing be
can analysed by varying the X position of the centred synthetic
sphere projection used to generate ψ and identifying the best X
position for each particle. For each particle, the bestX position,

Figure 7. Maximum projections of I series analysing a synthetic
radiograph of a centred sphere of radius 1 mm at X = 15 mm
obtained by scanning psi from X = 13 mm to X = 17 mm.

taken together with the detector coordinates y, z—which can
easily be converted to Y and Z—yields an initial guess of the
3D position of the particle.

The accuracy of this guess will depend on the size of the
X steps in the ψ scanning and the limited accuracy of particle
position on the detector.

4.1. Validation with synthetic tests

Validation of the ability of the tomopack technique to find 3D
particle locations was performed against artificial radiographs
produced from discrete element method simulations using
MercuryDPM [21]. Packings of 1 mm diameter particles were
produced at a solid fraction of 0.6 (near the random close pack-
ing limit for monodisperse spheres) to simulate a dense pack-
ing of grains, with negligible overlaps between particles (much
less than one pixel), which is sheared over time to generate
many realisations of grain locations. To generate an artificial
radiograph, the set of grains that have centres within a test
domain are selected and projected using the same mechanism
as described above.

The artificial radiographs were produced assuming that
ϕ= 1◦, the pixel size on the detector was 0.1 mm, the
detector resolution was 512× 512 pixels and a zoom factor
(SDD/SOD) of 5, which implies a half cone beam angle of
θ≈ 20◦ at the edges of the sample. Particleswere only sampled
if they were within a distance of ±2 mm from the X axis, and
at varying distances in the X direction. In this way, different
typical optical depths could be investigated. The optical depth
in figure 8 is defined as the distance in mm in which particle
centroids should lie in the X direction to be sampled. Addi-
tionally, artificial noise was added to the artificial radiographs

6
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Figure 8. Validation of tomopack algorithm with synthetic data.
The image in the middle shows the fraction of particles lost by the
tomopack algorithm (i.e. those not found within half a radius of
their true location). The four surrounding images show the synthetic
radiographs used, with varying optical depth and noise level, as
indicated by the black arrows.

which was normally distributed with a mean of zero and a
known standard deviation. This standard deviation is reported
in figure 8 as the mean noise level.

A particle is defined to be ‘lost’ if the measured centroid of
the particle is not within a distance of half a radius of the true
location, thus treating X and (Y,Z) on the same footing. With
respect to finding particles, it can be seen that the tomopack
algorithm functions at > 99% efficiency for optical depths up
to 5mmwith low noise levels. As the noise level and/or optical
depth increases, the performance of the tomopack algorithm
decreases.

5. Real-space optimisation with ‘sensitivity fields’

In order to improve a 3D guess of particle positions (start-
ing from above, or from a previous tomography scan where
particles have been labelled), an optimisation to minimise
squared residuals is carried out.

Algorithm 1 outlines the implemented procedure, which
iteratively attempts to explain the current residuals as a

Algorithm 2: Algorithm for local and individual optimisation
of guessed 3D positions to minimise a residual computed on the
projection.

Input: Measured projection data Pm,
N particle position initial guesses X0,
particle radius r in mm,
perturbation to apply ϵ in mm,
convergence factor tol
Output: Updated particle positions X
initialisation;
Xold← X0;
|δX| ← tol;
while|δX| ≥ toldo
Compute complete synthetic projection of current particle
positions:

P←
N∑
n=1

q(Xn
old,r,WholeDetector);

Compute current squared residual:
H2← (Pm−P)2;
for n = 1 to n = N do
Compute detector ROI for particle n
Compute reference local projection:

pnref←
N∑

m=1
q(Xm

old,r,ROI);

for d = 1 to d = 3 do
Perturbation in direction d:

pnd←
N∑

m=1
q
(
Xm
p (+X̂ · ϵ iff(n= m)),r,ROI

)
;

Local residual for perturbation:
ηnd ← (pnref− pnd)2

end
On ROI, solve for weights vector w:

w← lsq

(
H2(ROI) =

3∑
d=1

wdη
n
d

)
;

Update current guess:
for d = 1 to d = 3 do

Xn
d← Xn

oldd −wdϵd;
end

end
if DEM regularisation;

Correct X by adding displacements as function of overlap
end
|δX| ← |Xold−X|;

Xold← X
end

combination of 3 synthetic residual fields, which are the
perturbations of the current guess of each particle in each dir-
ection. Figure 9 illustrates one step in this approach, show-
ing the signed residual on the whole radiograph between the
input radiograph and projection of the current guess in the top
left and in the remaining plots the local sensitivity fields in
X,Y,Z directions with a perturbation ϵ of 15 mm in X and 1
mm in Y and Z. As per the algorithm, a combinations of these
three fields will be sought to best match the residual for this
iteration.

Since many calls to a particle projection function are
made in this procedure, it is solved locally on a Region Of

7
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Figure 9. Operation of the sensitivity field optimisation. Top left:
Full-detector signed residual (in mm) for a synthetic test case of a
centred 4 mm diameter particle that has been mis-detected by a
perturbation of −1 mm in the Y direction. Remaining images are
local perturbation fields of 1 mm in the Y and Z directions and
15 mm in the X direction.

Figure 10. Evolution of the step size |δX| and the squared residual
per pixel in a synthetic case of a noisy radiograph containing a
single centred sphere of radius 1 mm centred at X= {30,0,0}, with
an initial guess of X= {30.5,0.5,0.5} and an initial sensitivity field
perturbation of 1 mm in the Y and Z directions, and 15 mm in the X
direction.

Interest (ROI) of the detector pixels, by identifying the pixels
concerning a given particle with an added margin, and only
projecting the detector pixels concerned, and thus only solv-
ing the problem on those pixels. To calculate an appropriate
perturbation in the X direction, ϵX , the following relationship
can be used to relate this perturbation to the equivalent perturb-
ations in the detector plane, ϵX = ϵY

SOD
r . In this work, where

not indicated otherwise, an initial perturbation of ϵY = ϵZ =
1 pixel on the detector panel is assumed.

Figure 10 shows the evolution of the step size |δX| and the
squared residual per pixel in a synthetic case of a noisy radio-
graph containing a single centred sphere of radius 1 mm, with

an incorrect initial guess that is offset by 0.5 mm in X, Y, and
Z. This shows that the proposed algorithm is able to converge
for relatively poor initial guesses in this ideal condition.

Studying amore complicated case—the synthetic reference
case with 173 spheres—an initial guess is needed. In this case
the approximate 3D position resulting from the X-direction
scan with the tomopack algorithm is used as an initial guess.
Figure 11 shows the updated residuals after 100 iterations of
the algorithm with two different colour bar ranges. The mean
positioning error is 0.076 mm, with SD 0.069 mm obtained on
the input radiograph with an SNR of 60.

6. Experimental validation

In order to prove the robustness and applicability of this
algorithm, it is also validated on a real experiment.

Radiographic acquisition is performed at the detector
highest speed setting (i.e. at 60 Hz which imposes 4× 4 bin-
ning and thus an effective pixel size of 0.508 mm on the
detector), in order to validate this technique for imaging of
dynamic processes. As usual in x-ray imaging, the ‘dark field’
of the detector is measured and subtracted from all subsequent
measurements.

TheRX-Solutions Easytom x-ray scanner in SIMAP (Gren-
oble) was used for this validation. Interestingly, two Hama-
matsu x-ray sources are available on this machine, as listed in
table 2. Both are suitable for this validation, and although a
larger maximum half-angle θ is available on the transmission
source, the reflection source is selected for its much higher
flux, since fine focus is not needed for this validation, given
the relatively large particle size.

Since both tomopack and the sensitivity optimisation have
been discussed (and programmed) with P in mm, the acquired
experimental data needs to be converted into this description.
To this end, a larger calibration sphere with diameter 7 mm, is
also scanned allowing the attenuation mm−1 curve to be fitted
beyond 1 particle diameter— there is a strong assumption that
the material of the calibration sphere and the material of the
spheres studied are the same. To simplify this calibration, the
130 kV beam is strongly hardened with a 0.5 mm Cu filter.
The photon flux available on this x-ray source means that the
detector can be run in low-sensitivity mode, which helps to
reduce shot noise. The source-detector distance was 242.6 mm
and the source-object distance around 23 mm. The maximum
cone beam half-angle is approximately 21.5◦ and the limits of
the beam are evident in the radiographs, as dark zones. ϕ for
the middle of the sample is 2.5◦.

The following datasets are acquired, each time allowing a
5 min stabilisation of the x-ray source.

• A single ‘flat field’ I0 (the image of the beamwith no object)
averaging 64 images.

• A single image of the 7 mm soda-lime glass calibration
sphere.

• 360 radiographs as the empty sample holder is rotated (con-
tinuously) around 360◦, again averaging 64 images.

8
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Figure 11. Artificial radiographs and signed residuals (units mm) for synthetic packing of 173 spheres with a cone angle of 20◦ with applied
noise of signal-to-noise ratio 60. Top left: artificial radiograph produced from DEM data. Top centre: noise to be added to radiograph to
ensure SNR = 60. Note that the noise values extend well beyond this range, with the maximum absolute value of noise added being
approximately 1.1 mm. Top right: artificial radiograph with added noise. Bottom left: residual from 3D guess of tomopack and scanning
with ψ magnification. Bottom centre: after update of guess with optimisation with sensitivity field algorithm. Bottom right: same as centre,
but with a tighter lookup table, revealing some misalignment and noise in the input synthetic radiograph.

Table 2. X-ray sources available for this study.

Model Type Maximum beam half-angle, θ Focus spot size @ max power Current @ max power

L12161-07 Reflection 21.5◦ 50 µm 500 µA
L10711-03 Transmission 70◦ 4 µm 50 or 100 µA

• a number of 360 radiograph series with the sample holder
filled with 22 soda-lime glass spheres of 1 mm radius4 is
rotated (continuously) around 360◦, averaging [64, 32, 16,
8, 4, 2, 1] images for the different series.

A few of the acquired radiographs, as well as the exper-
imental setup are illustrated in figure 12. The radiograph of
the 7 mm calibration sphere is normalised by I0, whereas the
radiograph of the column of 2 mm spheres in the holder is
directly normalised by the empty sample holder at the same
rotation angle. The natural log of the normalised images is
computed, and for the calibration sphere the path length L
inside the sphere vs. these image values is also computed (see
appendix). This fitted function (L in mm vs log(I/I0)) is then
applied to the natural log of the images acquired of the column
of spheres, finally resulting in a projection P in mm.

Since radiographs around 360◦ have been acquired, the data
is also tomographically reconstructed, which offers a conveni-
ent validation of the quality of the 3D positions obtained on the
first radiograph with tomopack, as well as after the optimisa-
tion. The tomography data is analysed with spam [8]: recon-
structed grey values are thresholded and particles separated

4 from ballandrollerstore.com.

using a markers-based watershed, thereafter centres of mass
of the particles are computed in pixels and converted to mm
with the known projected pixel size of 0.05 mm.

Thereafter each radiograph (at different angles and aver-
aging amounts) is normalised by the radiograph of the sample
holder acquired by averaging 64 measurements, and the fit
applied to the log of the image to make this an experimentally-
measured p of L in mm. The normalisation of low-average
radiographs with the high-average holder reveals some move-
ment artefacts (see figure 14), which will induce bias in the
higher-noise experimental images. It is expected that themeas-
ured positioning errors for the higher-noise image are an over-
estimation compared to a more suitable normalisation. The
background of p (zones within the source cone but without
particles) is fitted with a bi-linear function, which is then sub-
tracted from p, with the explicit goal of improving X direction
iterations for the sensitivity field. A tomopack guess scan is
obtained by varying ψ, and passed to a sensitivity field optim-
isation, which is run until changes of position fall below 5 µm.

3D particle centres are compared by subtracting the mean
position from all three datasets (labelled, tomopack, optim-
ised) and relabelling the centres in the labelled image to
their closest corresponding particle from the tomopack scan.
The rigid-body motion of the labelled centres that minimises

9
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Figure 12. Measured experimental data for a set of soda-lime glass
spheres. This illustrates the experimental process of converting
x-ray grey-level information into experimental measurement of the
path length through the sample in the bottom right. The fit of µ to
the path length for Icalib is shown in appendix A.

distances with the tomopack-positions and the optimised
positions are both computed (which erases systematic errors)
and applied to labelled centres, after which the absolute devi-
ation and standard deviation of errors can be computed.

Results are shown for all averaging levels (and thus SNR
levels) in figure 13, revealing that the tomopack 3D guess
already offers a good estimation of 3D positions with respect

Figure 13. Errors in tomopack positions and optimised positions
on the first radiograph of each averaging level (and thus SNR)
compared to labelled particle centres from tomography.

to the centres obtained from tomography. As expected, errors
increase with noise level, and the direction normal to the
detector, X, is the most error-prone. For the lowest noise
level, absolute errors averaged over all particles for the
tomopack guess are X,Y,Z = 0.061, 0.016, 0.025 mm and
after optimisation 0.068, 0.008, 0.011 mm. As a reminder,
these experimental errors are to be compared to the particle
radius (1 mm), the detector pixel size (0.508 mm) and the pro-
jected pixel size in the middle of the sample (0.05 mm), which
is the voxel size of the reconstructed tomography volume.
Using the projected pixel size as a reference, the error in the X
direction from tomopack is slightly above this dimension, and
the optimisation step worsens the guess slightly, most likely
due to the slightly inhomogeneous background. The Y and
Z errors from tomopack are respectively a third and half a
project pixel—the difference likely due to the sample being
longer in the Z dimension and thus the particle aspect ratio
increasing away from the centre. After the optimisation step
(not sensitive to aspect ratio), both error are about a fifth of
the projected pixel size, which is a very satisfactory result.

Furthermore, it is worth noting that the purchased particles
are ball bearings with a precision grade of 100, meaning a
‘nominal ball diameter tolerance’ of±0.0127 mm, which also
puts the positioning errors into context. It is expected that there
will be a positioning error in the X direction due to incorrectly
assumed radii, inversely proportional to the beam angle. With
a perfectly calibrated p, particles with incorrect radii would
appear as circular patches in the residual.

10
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Figure 14. Residuals obtained for 0.94 and 60 Hz (top and bottom, SNR = 61.7 and 12.6 respectively) for the first angle. Left column
presents residuals from positions obtained with tomopack, middle and right columns after optimisation, with the right column having the
scale bar zoomed ten times, colour scale in mm.

Figure 15. Rendering of measured displacement vectors viewed
down the Z axis (the axis of rotation) for the experimental data with
the lowest noise. Colours indicate different particles.

Interestingly, as the SNR decreases from 62 to 32, themeas-
ured errors are essentially constant, indicating that some arte-
facts not described by the model are limiting accuracy (scat-
tering artefacts are visible in the top row of figure 14). Below
an SNR of 30, noise begins to limit accuracy—the tomopack

guess is more sensitive to the noise (in the case of SNR = 24
the optimised position error is still close to the lowest noise
one). At an SNR of 12 – which means imaging at 60 Hz—the
errors for tomopack are X,Y,Z = 0.202, 0.025, 0.027 mm and
the optimised positions are 0.127, 0.024, 0.037 mm.

For reference, the residual images obtained with the
tomopack guess, and after the sensitivity field optimisation
are presented in figure 14 for the highest and lowest noise cases
(1 and 60 Hz imaging respectively). In the case of the lowest
noise (top), residuals are very low, however on the right, it
can be seen that they are far from zero: for large values of L
(i.e. with significant overlaps) there is an underestimation of
L in the experimental image, and around the sample there is
a scattering corona. The underestimation of L is likely due to
beam hardening. In the higher noise case, it is clear that there
is an artefact induced by the different averaging of the sample
holder, which causes problems visible on the ± 1 radius scale
of the left and middle images, however it seems that the optim-
isation is able to converge successfully despite this significant
bias.

Although the analysis of a time-series could be performed
by making displacements guesses and only using the optim-
isation, in order to evaluate the robustness of the combination
of tomopack and the optimisation step, the entire set of 360
radiographs is analysed individually. This means that a large
number of different particle overlap configurations are tested.
Until SNR 24, excellent tracking is obtained, after which the
loss of a few particles in a few views damaged the tracking
obtained. As an illustration of the results that can be obtained,
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the measured trajectories for the lowest-noise case are shown
in figure 15. The figure shows good tracking for all particles,
and mostly circular trajectories, and confirms that the uncer-
tainty in the X direction is higher than the others.

7. Conclusions

The combination of the tomopack algorithm and the optim-
isation method mean that mono-disperse spheres of a known
size can be placed in 3D space from a single divergent radio-
graph, as can be acquired on any laboratory x-ray scanner. This
adds tremendous time resolution to measurements of particle
position, as well as removing the requirement to rotate the
sample, at the cost of some positioning uncertainty, especially
in the direction of the beam. Between the synthetic validation
cases and the simple experiment presented it turns out that
the measurement of a radiograph containing the distance trav-
elled through the scanned object is quite delicate: the applic-
ation of a measured attenuation profile on the same material
is apparently not sufficient, and small variations of the source
can cause problems (especially for the optimisation step), bet-
ter knowledge and thus modelling of flat fields is doubtlessly
needed, as per [22].

8. Perspectives

The perspectives coming from this work are split into two
categories: possible uses of this tool as-is, and further devel-
opments that could improve performance and release some
assumptions.

In the case of a parallel beam, the tomopack technique
could be a very effective (again with ψ scanning) tool to
count particles and their sizes. This may also be achieved with
divergent acquisitions at different zoom levels. The combined
tomopack and optimisation, could and will be used to make
previously-impossible measurements of 3D particle kinemat-
ics in a number of fields such as the flow of grains down an
inclined plane (kinematic interaction with an obstacle), hydro-
dynamic suspensions of particles (kinematics of viscous resus-
pension), or sheared granular media (measuring granular tem-
perature and vortex structures).

The perspectives for development of this technique are
manifold. First of all, it must be mentioned that the require-
ment of single-sized spheres is a strong limitation that can
be lifted in a number of different ways: in the case of a two-
(or more) source and detector imaging system, the limitation
of monodispersity can likely be removed with ease. Other-
wise, if the initialisation of 3D positions from a tomopack
scan is abandoned and replaced with particles labelled in
an initial tomography, the sensitivity field optimisation pro-
cess should be able to successfully converge for displacement
unknowns for spheres of different sizes, and may be able to
yield good results also optimising three rotation unknowns for
sufficiently unique shapes, in the style of [15]. The initialisa-
tion from a tomography obviously requires all the particles
to be in the field of view, and cannot tolerate particles

being lost, so will require small transformations between
images.

More prosaically, some short-term improvements to
tomopack that could be implemented with relative ease are
the measurement of an experimental ψ to be used, rather
than a synthetic one (possibly at different positions), which
would include blurring as well as scattering effects, which
might render the particle identification more robust. Further-
more, for very large θ angles, there is distortion of particles
towards the edges of the detector, which can be faced with
some unwarping of the image (or warping of ψ). The effect of
radiograph de-noising by filtering (perhaps directly in Four-
ier space) might increase the signal-to-noise ratio of input
data in a way that helps both tomopack and the subsequent
optimisation.

The sensitivity optimisation has been found to be lead
astray by missing particles, so some way of enforcing edges
in the optimisation may help. Furthermore, small offsets in
the calibrated p in units of L cause offsets in the measured X
position, meaning that x-ray imaging artefacts such as scatter-
ing, source movement, and beam hardening all have deleteri-
ous effects on the optimised result. Better characterisation of
the source will certainly be a way to make improvements in
this direction.
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Appendix A. Fitting attenuation to path length L

For convenience, a solution is provided for the path length
L of the sphere radius r located at Y =Z= 0 for a ray
at angle θ. The angle β, indicated in figure 16, can be
calculated as

sinβ =
SODsinθ

r
. (11)

With this definition, the path length L can be calculated as

L= 2rcos(β). (12)

This computation has been performed for a calibration glass
sphere, and when the beam is filtered the Beer–Lambert law
well fits the relationship between this path length measure and
the measured attenuation on the detector panel, as shown in
figure 17.
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Figure 16. Geometry of path length in a sphere.

Figure 17. Fitted calibration of normalised attenuation vs. path
length for the 7 mm calibration sphere scanned with 130 kV and
0.50 mm Cu filter.
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Edward Andò https://orcid.org/0000-0001-5509-5287
Benjy Marks https://orcid.org/0000-0003-2928-9349
Stéphane Roux  https://orcid.org/0000-0003-4885-6732

References

[1] Gray J M N T 2018 Particle segregation in dense granular
flows Ann. Rev. Fluid Mech. 50 407–33

[2] Hestroffer D et al 2019 Small solar system bodies as granular
media Astron. Astrophys. Rev. 27 1–64

[3] Jerolmack D J and Daniels K E 2019 Viewing Earth’s surface
as a soft-matter landscape Nat. Rev. Phys. 1 716–30

[4] Cundall P A and Strack O D L 1979 A discrete numerical
model for granular assemblies Geotechnique 29 47–65

[5] Oda M 1972 Initial fabrics and their relations to mechanical
properties of granular material Soils Found. 12 17–36

[6] Hall S A, Wood D M, Ibraim E and Viggiani G 2010 Localised
deformation patterning in 2D granular materials revealed by
digital image correlation Granular Matter 12 1–14

[7] Weis S and Matthias S 2017 Analyzing x-ray tomographies of
granular packings Rev. Sci. Instrum. 88 051809

[8] Stamati O et al 2020 ‘spam’: software for practical analysis of
materials J. Open Source Softw. 5 2286

[9] Börzsönyi T, Somfai E, Szabó B, Wegner S, Mier P, Rose G
and Stannarius R 2016 Packing, alignment and flow of
shape-anisotropic grains in a 3D silo experiment New
J. Phys. 18 093017

[10] Baker J and Guillard F, Marks B and Einav I 2018 X-ray
rheography uncovers planar granular flows despite
non-planar walls Nat. Commun. 9 1–9
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