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Abstract 

Reaction Diffusion Control problem is a class of optimization problem in the form 
Minimize  av t  bu t dt 
Subject to  v t u t cv t du t  . 
It has been proved that a unique solution exists. In this work, the solution provided by ECGM 
and Euler-Lagrange algorithm, are admissible and favourably comparable. 
Keywords: ECGM; Euler-Lagrange; Diffusion; Control; Convergence rate; 
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1 Introduction 
 
We begin by considering descent with a functional  on a Hilbert space  in which  is a Taylor 
series expansion truncated after the second order terms, namely: 
 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science, 1(3): 165-180, 2011 
 
 

166 
 

, ,                (1) 
 
Where  is an  symmetric positive definite matrix operator on the Hilbert space .    is a 
vector in  and  is a constant term. 
 
Let us also consider what is termed conjugate descent with . With conjugate descent, it is 
assumed that a sequence , , … , , … is available with the members of the sequence 
conjugate with respect to the positive definite linear operator A . 
 
By conjugate with respect to  we mean that 

,   
0,    
0,     

In the case here,  is assumed positive definite so ,  0.  
 
2 Steps involved in conventional conjugate gradient method 
algorithm (CGM) 
 
With conjugate gradient descent, as with any descent method, the first Step simply involves 
guessing the first sequence . The remaining members of the sequence are then calculated as 
follows: 
 
Step 2 
 

    
(  is the descent direction and  is the gradient of  when ) 
 
Step3 
 

, , / ,       
;1 iiii Apagg +=+  

  is the step length 

HiiHiiiiiii ggggpgp ><>=<+−= ++++ ,/,; 1111 ββ  
 
Step 4 
 
If  for some  terminate the sequence else, set 1 and go to step 3. 
 
If , operator  turns out to be a positive definite symmetric matrix operator and for this 
case can easily be computed. The CGM algorithm has a well worked out theory with an elegant 
convergence profile Bertsekas (1973). It has been proved that the algorithm converges, at most, in 
n iterations in a well posed problem and the convergence rate is given as: 
 

1

1
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Where m and M are smallest and spectrums of matrix A, respectively. 
 
That is, for an n dimensional problem, the algorithm will converge in at most n iterations. This 
Conventional CGM algorithm, due to Hestene and Stiefel, was originally designed for the 
minimization of a quadratic objective functional. CGM appears to be the most popular among the 
descent iterative methods because of its simplicity, elegance and the convergence property in 
handling quadratic functional. With the above qualities in mind, Ibiejugba, Onumanyi (1984) 
worked on the possibility of applying CGM algorithm to continuous optimal cost functional. Their 
own version of CGM is called the Extended Conjugate Gradients Method (Hestenes, 1969; 
Omolehin, 1985). 
 
We know that if H   the operator   turns out to be a positive definite symmetric constant 
matrix and A can easily be computed in quadratic functional so that CGM Algorithm will be 
appropriate for the solution but if  the situation becomes very difficult (Yosida, 1984). 
This is what motivated Ibiejugba (1980), knowing explicitly the control operator  so as to 
compute  needed for the step length . Ibiejugba (1980) successfully constructed this control 
operator . He then used the constructed operator to formulate his own method called the 
Extended Conjugate Gradient Method (ECGM). The formalism of CGM was adopted in the 
construction of the Extended Conjugate Gradient Method (EGCM) algorithm. It was originally 
formulated to solve problems in the following class: 
 

Minimize                                                      (2) 

 
Subject to 

  
      ; 

 denotes the transpose of   , 
 stands for the first derivative of  with respect to  . 
is the   – state vector, 

    is the  – control vector applied to the system at time . 
  and   are ,  constant matrices respectively, 
while  and  are symmetric , positive definite , constant square matrices of dimensions  and  
respectively.  
 
The control operator  associated with Bertsekas (1973) satisfies equation (3).  
 

       (3) 
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By transforming (2) into an unconstrained optimal control problem,  is a penalty constant greater 

than zero,  is defined by   Where  denotes Sobolev space of 

the absolutely continuous functions  square integrable over the closed interval .  

stands for the Hilbert space consisting of the equivalence classes of square integrable 

functions from  into , with norm denoted by  defined by 

 and with scalar product conventionally denoted by  and 

defined by  . Furthermore,  and  denote the 

norm and scalar product in Euclidean -dimensional space. The result of the constructed operator 
  is as follows: 

 

   (4) 

 
Where  is such that  
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The desired  can now be applied when calculating  in the CGM algorithm 
which will now allow us to exploit the simplicity of the CGM algorithm. Therefore the ECGM 
algorithm is given as follows: 
 
Step 1 
 
It involves guessing the first sequence . The remaining members of the sequence are then 
calculated as follows: 
 
Step 2 

 
(  is the descent direction and  is the gradient of the cost functional when ). 
 
Step3 
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and where we have used the following notations: 
 

) 

) 

 

 

 

 

 
and  

 
 
Step 4 
 
If  satisfies the tolerance, for some  terminate the sequence else, set  and go to step 
3. 
 
Basically, the ECGM algorithm was formulated by Ibiejugba and Onumanyi (1984) to solve 
problems in quadratic cost functions of the type 

Minimize         (5) 

 
Subject to           

 
 
However, the algorithm is extended to the solution of Reaction Diffusion problem. 
 
3 Euler – Lagrange Approach to Reaction Diffusion Control 
Problem 
 
Let us consider the Reaction Diffusion Control problem: 
 

Minimize      (6) 

 
Subject to          

        (7) 
 
Consider the Euler – Lagrange equivalent to equations (6) and (7): 
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           (8) 

Where is the augmented Lagrangian and  
 

    (9) 
 
is the Euler-Lagrange equation for equation (8), then 
 

      (10)     

                   (11) 

 
Adding equations (10) and (11), we obtain 
 

          (12) 

 
substitute (11) into (9), we get 
 

 
i.e., 
2a , i.e., 

                      (13) 

 
Adding equations (7) and (13), we obtain 
 

                            (14) 
 
Substitute (14) into (13) and simplify, we get 
 

                                                                           (15) 

Let 
 

 
 
Equation (15) becomes 
 

                                                                                 (16) 
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Observe that equation (16) ordinary equation and   (from our hypothesis)   
therefore constant    is positive. 
 
The general solution to equation (16) is 
 

 
or                                                (17) 

Where  are arbitrary constants to be determined using the initial condition (5) in equation 
(17) to obtain 

                                             (18) 
Substitute the value of   in (17) to obtain 

 
 
To determine the value of  appearing in the last equation we make use of free-end condition (9). 
 
From (9) and (12), we obtain 
 

 
i.e., 

 
 

but        
 
using (18) in (14), we obtain 
 

                                                  (19) 
 
Substitute the value of  into equation (19) and simplify to obtain 

                                                                         (20) 
 From (20), we get 
 

                 (21) 

 
and substituting for the value of  given by (21) into (18), we obtain 
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              (22) 

 
Differentiate (22) to obtain  also substitute for the values of and  in equation (14) 
we obtain  
 

                   
                     (23)                                                
where   

 
 
Therefore equations (22) and (23) give the solution of the objective functional. 
 
4 ECGM approach to Reaction Diffusion Problem 
 
Recall that our reaction Diffusion control problem 
 
Minimize 

                    (24) 

 
Subject to 

 
 
Where, 

 
 

 
One dimensional control problem (Gland, 1976) is considered in the following form: 
 

Minimize   

 
Subject to 
 .                                                                         (25) 
 
Example [1]: In this numerical example, values are assigned to the variables of the control 
problem in the following form: 
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Let 

 
 
Substituting these last values in equation (25) we obtain 
 
Minimize 

                                                                                                           (26) 

Subject to v + (2  
 
The last equation is now transformed to an unconstrained penalized functional with the 
introduction of a penalty parameter  in the following form: 
 
Minimize 

 dt      (27) 

 
ECGM is now used for the minimization of problem (7). The numerical result is displayed in 
Table [1]. It also displays the performance of ECGM with the analytical solution to our control 
problem through Euler-Lagrange  approach. The computer listing is given in Appendix.  
 
ANALYSIS OF TABLE [1] 
 
Since this is the first attempt to transform reaction diffusion problem into optimization, we went 
further to find the analytical solution of the resulting reaction diffusion control problem via Euler-
Lagrange method. The analytical solution is composed favorably with the performance of the 
ECGM algorithm when used as a method of solution to the control problem (Di Pillo and Grippo, 
1972; Powell, 1969).  
 
For example, at ∆t 0.4 , we have at the second iteration, 
 
       OBJF ECGM 4.60542E 12⁄  
      OBJF E L 2.12620E 13⁄  
 
These two values are favorably comparable, research will still continue in this area. Appendix is 
the programme listing for the Euler-Lagrange method. 
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Table 1. The numerical solution to the reaction diffusion control problem with ECGM algorithm and Euler-Lagrange approach 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
N=1              ∆ 0.1 
                     0.330685606 
 

∆ 0.2 

0.388755981 

 

 

∆ 0.3 

0.446797229 

 

 

∆ 0.4 

0.562968249 

 

 

∆ 0.5 

0.755581395 

 

 
 
ITRN             OBJF/ECGM 

0B
JF

/E
-L

 

 
OBJF/ECGM 

0B
JF

/E
-L

 

 
OBJF/ECGM 

0B
JF

/E
-L

 

 
OBJF/ECGM 

0B
JF

/E
-L

 

 
OBJF/ECGM 

0B
JF

/E
-L

 

1 2E – 11 
2 7.2909E-13 
3 3.322575E-13 
4 3.04532E-13 
5 2.64007E-13 3.

20
98

2E
-

17
 

4E-1 
1.64402E-12 
1.07363E-12 
1.21488E-12 
1.87394E-12 8.

47
42

4E
-

16
 

6E-1 
2.85961E-12 
5.76730E-12 
8.10635E-12 
1.71462E-11 1.

43
33

6E
-

14
 

8E-1 
4.60542E-12 
5.76730E-12 
8.10635E-12 
1.71462E-11 2.

12
62

0E
-

13
 

1E-10 
7.40762E-12 
1.94914E-11 
3.09329E-11 
6.48852E-11 2.

95
32

5E
-

12
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Table 1. (Continue) 
 
 

OBJF/ECGM = the value of the objective functional through the Extended Conjugate Gradient Method at time t, 
OBJF/E-L = the value of the objective functional via Euler-Lagrange approach, 
ITRN = the iteration number, 

 = the optimal penalty parameter,  

N=1 
∆ 0.6 

 

 
∆ 0.7 

 
∆ 0.8 

 
∆ 0.9 
 

 
ITRN 

 
OBJF/ECGM 

0B
JF

/E
-L

 

 
OBJF/ECGM 

0B
JF

/E
-L

 

 
OBJF/ECGM 

0B
JF

/E
-L

 

 
OBJF/ECGM 

0B
JF

/E
-L

 

1 
2 
3 
4 
5 

1.2E-10 
7.40762E-12 
1.94914E-11 
3.09329E-11 
6.48851E-11 3.

93
74

8E
-

11
 

1.4E-1 
2.64391E-11 
1.14150E-09 
1.101902E-09 
1.08674E-09 5.

10
38

6E
-

10
 

1.6E-10 
9.38138E-11 
6.66133E-09 
6.681346-09 
6.70421E-09 1.

48
07

3E
-

09
 

1.8E-10 
2.58062E-09 
3.74576E-06 
3.76303E-06 
3.77983E-06 8.

10
04

6E
-

08
 

∆  = the time descritization
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5 Conclusion 
 
Since it has been proved that the class of control problem in equation (24) admits unique solution, 
therefore the ECGM and Euler- Lagrange methods provide suitable trial solutions. To the best 
knowledge of the authors, this is the first time of using ECGM to obtain the solution of reaction 
diffusion control problem. 
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APPENDIX 
 
20 REM OPTIMAL PENALTY PARAMETER (µ) FOR R/D SYSTEM IS CONSIDERED 
30 REM ECGM WAS USED FOR R/D SYSTEM 
50 REM N IS THE DIMENSION OF THE STATE AND THE CONTROL VECTORS 
60 N=1; K=N 
70 DIM U(K), X(K), D(K), C(K), PX(K), PU(K), JK(K),JU(K), EPI(K), EP2(K), PXO(K) 
80 DIM PUO(K), GX(K), GU(K),ALPX(K), ALPU(K),BITAX(K),BITAU(K),GXO(K) 
90 DIM GUO(K),DK(K),UPX(K),UPU(K),UPPX(K),UPPU(K),UPGX(K),UPGU(K) 
95 DIM JXO(K), JUO(K) 
100 REM THE CONSTANTS IN THE CONSTRAINT ARE RE-DEFINE AS FOLLOWS 
110 REM a=A1, b=B1, c=C1, d=DS, A AND B ARE THE COEEFFICIENTS IN THE 
115 REM COST FUNCTIONAL 
120 READ A, B, A1, B1, DS, C1, U0 
130 REM THE DATATO READ ARE AS FOLLOWS: 1,1,3,1,1,1,0.001 
140 REM U0 IS THE ARBITRARY CONSTANTS IN THE ANALYTICAL SOLUTION 
150 K1 = 0.001:K2 = K1: ITERA = 0: T = 0:OB2 = 0:CS1 = 0 
160 FOR I = 1 TO N 
170 X(I) = 0:U(I) = 0:D(I) = 0:C(I) = 0: PX(I) = 0:PU(I) = 0: JX(I) = 0: JU(I) = 0:EP1(I) = 0 
180 EP2(I) = 0:GX(I) = 0;GU(I) = OALPHAX(I) = 0:ALPHAU(I) = 0:BITAX(I) = 0 
190 BITAU(I) = 0:UPX(I) = 0:UPU(I) = 0:UPPU(I):UPPX(I) = 0;UPGX(I) = 0 UPGU(I) = 0 
200 JXO(I) = 0:JUO(I) = 0:DK(I) = 0:PXO(I) = 0:PUO(I) = 0 
210 NEXT I 
220 T = T + 0.0: ITERA = 0 
230 PRINT 
240 PRINT,”T = ”,T 
250 FOR I =I TO N 
260 X(I) = K1:U(I) = K2 
270 NEXT I 
280 IF T > 1 GOTO 970 
290 FOR I = 1 TO N 
300 C(I) = ( ( 3.142 *I)^2) + 4:D(I)  = - ( (3.142*I)^2):DK(I) =(C(I)^2 +D(I)^2)/2 
310 SK = SQR(DK(I) ):SKT = SK*T:ST = 0.5*(EXP(SK)-EXP(-SK)) 
320 CT = .5*(EXP(SK)-EXP(-SK) ):B1 = 1/(B(I)-C(I) ):B2 = 2:B3 = D(I) +C(I):A1 = UO*CT 
330 STT = .5*(EXP(SKT)-EXP(-SKT) ):CTT = .5 * (EXP(SKT) + EXP(-SKT) 
340 A2 = (B3*UO*CT-2*UO*SK*ST)/(2*SK*CT-B3*ST):A3 = U0*SK*ST 
350 UDT = A1+A2*SK*CTT:UD = A1+A2*STT 
360 XD = B1*(B2*( A3+A2*DK(I)*STT)-B3*(A1+A2*SK*CTT) ) ) 
370 CEX(I) = C(I) * (B1*(B2* (A3+A2*SK*CTT) ) ) 
380 UDD =  D(I) *(A1*A2*STT) 
390 DN = (B3*(UDT-XD-CEX-UDD) 
395 REM THE CALCULATION OF THE OPTIMAL PARAMETER(AM) NOW FOLLOWS 
400 AM = (B1*(B2*(A3+A2*SK*CTT)-B3*(A1+A2*STT) ) ) +(A1+A2*STT) )/DN 
410 JX(I) = 2*X(I)-2*AM*C(I)*(-C(I)*X(I)-D(I)*U(I) ) 
420 JU(I) = 2*U(I)-2*AM*D(I)*(-C(I)*X(I)-D(I)*U(I) ) 
430 PX(I) = 2*X(I)-2*T+2*AM*C(I)*(C(I)*X(I)+D(I)*U(I) ) + T 
440 PU(I) = 2*U(I)-2*T+2*AM*D(I)*(C(I)*X(I)+D(I)*U(I) ) + T 
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450 GX(I) = JX(I):GU(I)=JU(I) 
460 NEXT I 
470 ITRE = ITERA+1:OB1 = 0:OB2 = 0:CS1 = 0:CS = 0 
480 IF ITERA > 10 GOTO 220 
490 PRINT:”ITERA=ITERA”;ITERA 
500 FOR I = 1 TO N 
510 C(I) = (3.142*I)^2+4:D(I) = -(3.142*I)^2:DK(I) = (C(I)^2+D(I)^2)/2 
520 REM SK = SQR(DK(I)):SKT = SK*T 
530 SK = SQR(DK(I) ):SKT = SK*T:ST =.5*(EXP(SK)-EXP(-SK)) 
535 CT =.5 *(EXP(SK)+EXP(-SK)) 
540 B1 =1/(C(I)-D(I)):B2 = 2:B3 = D(I)+C(I):A1 = UO*CT 
550 STT =.5*(EXP(SKT)-EXP(-SKT)):CTT = .5*(EXP(SKT)+EXP(-SKT) 
560 A2 = (B3*UO*CT-2*UO*SK*SK)/(2*SK*ST-B3*ST):A3=UO*SK*ST 
570 UDT = A1+A2*SK*CTT:UD = A1+A2*STT 
580 XD =B1*(B2*(A3+A2*DK(I)*STT)-B3*(A1+A2*SK*CTT) ) )  
590 CEX = C(I)*(B1*(B2*(A3+A2*SK*CTT)-B3*(A1+A2*SK*CTT) ) ) 
600 UDD = D(I)*(A1*A2*STT) 
610 DN = -(B3*(UDT-XD-CEX-UDD) ) 
620 AM =( (B1*(B2*(A3+A2*SK*CTT)-B3*(A1+A2*STT) )/DN 
630 JXO(I)  = 2*K1+2*AM*C(I)*(C(I)*K1+D(I)*K2) 
640 JUO(I) = 2*K1+2*AM*D(I)*(C(I)*K1+D(I)*K2) 
650 GXO(I) =JXO(I):GUO(I) = JUO(I):PXO(I) = -GXO(I):PUO(I) = -GUO(I) 
660 REM THE CONSTRUCTION OF EPiNOW FOLLLOWS 
670 STI = 0.5*(EXP(1)-EXP(-1) ):ST2 = 0.5*(EXP(1)+EXP(-1) ) 
680 ST3 =0.5 *(EXP(T)-EXP(-T) ):ST30.5*(EXP(T)+EXP(-T) ) 
690 AMC = A+(AM*(C(I)^2) ):BMD = B+(AM*(D(I)^2) ) 
700 EP = -AM*ST3*(JXO(I)+(C(I)*PXO(I) ) ):EC = AM*(JX(I)+PX(I) ) * ST3 
710 EP3 = (AMC*PX(I) + (AM*C(I0*JX(I) ) )* (-1+ ST4) 
715 EP4  = AM*ST3*(JXO(I)+(C(I)*PXO(I) ) ) 
720 EP5 = -AM*(JX(I) + (C(I)*PX(I) ) )*ST1 
725 EP6 = (AMC*PX(I) +  (AM*C(I)* JX(I) ) )*(-1+ST2) 
730 EP7 = -AM*ST3*(D(I)*PUO(I)-JUO(I):EP8=-AM*(PU(I)-JU(I) ) *ST3 
740 EP9 = -AM*C(I)*(D(I)*PU(I)-JU(I):EP10=AM*ST1*(D(I)*PUO(I)-JUO(I) ) 
750 EP11= - AM*(D(I)*PU(I)-JU(I) ) *ST1 
755 EP12= AM*C(I)*(D(I)*PU(I)-JU(I) ) *(-1+ ST4) 
760 EP13= AM*ST3*JXO(I):EP14=AM*JX(I)*ST3 
770 EP15= AM*(D(I)*JX(I)-C(I)*PX(I)*(-1+ST4):EP16=ST1*AM*JXO(I) 
780 EP17 = AM*JX(I)*ST1:EP18=AM*(D(I)*JX(I)-C(I)*PX(I)*(-1=ST2) 
790 EP19=AM *ST3(JUO(I)-(D(I)*PU0(I) ) ):EP20=AM*(JU(I) – D(I) *PU(I) ) * ST3 
800 EP21 = (BMD*/PU(I)-(AM*D(I)*JU(I) ) )*(-1+ST2) 
805 EP22= AM*ST1*(JUO(I)-(D(I)*PUO(I) ) ) 
810 EP23 = -AM*(JU(I)-(D(I)*PU(I) ) )*ST1 
815 EP24= (BMD*PU(I) – (AM*D(I)*JU(I) ) )*(-1 + SP2) 
820 PK1 = EP+EC+(EP3 +EP4 + EP5+EP6)*EXP(1) 
825 PK2 = (EP7 + EP8 + EP9) * EXP(1) + EP10 + EP11 + EP12 
830 PK3 = EP13+EP14 + EP15 + EP16 + EP17 + EP18 
835 PK4 = (EP19 + EP20 + EP21 + EP22 + EP23 + EP24)*EXP(1) 
840 EP1(I) = =PK1 + PK2: EP(2) = PK3 + PK4 
850 ALPX(1) = (6X(I) ^ 2) /(PX(I) *EP1(I) ):ALPU (I )=  (6U(I) ^ 2 )/(PU(I) + EP2(I) ) 
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860 UP6X(I) =6X(I) + ALPX(I) *PX(I):UP6U(I)=6U(I) + ALPU(I) *PU(I) 
870 UPPX(I) = UPGX(I) + BITAX(I) * PX(I) : UPPU(I) = -UPGU(I) + BITAU(I) * PU(I) 
880 UPX(I) = X(I) + ALPX(I) * PX(I):UPU(I) = U(I) + ALPU(I) * PU(I) 
890 PX(I) = UPPX(I):PU(I)=UPPU(I):6X(I) = UPGX(I) :GU(I) = UPGU(I) 
900 X(I) = UPX(I): U(I) = UPU(I) 
910 OB1= OB1+(X(I) ^ 2):OB2=OB2+(U(I) ^ 2) 
915 CS1 = CS1 + AM * ( (C(I) *X(I) + D(I) * U(I) ) ^ 2 ) 
920 PRINT , “X(“ ; I ; ”)=” ; X(I) ,”U(“ ; I ; ”) =” ; U(I ) 
925 PRINT , “GX(“ ; I ; ”)=” ; GX(I) ,”GU(“ ; I ; ”) =” ; GU(I ) 
930 NEXT I 
940 OB = (OB1+OB2)*T + CS1 * T: CS = CS * T 
950 PRINT,”AM=”;AM,”CS=”;CS,”OB=”;OB 
960 GOTO 470 
965 DATA 1,1,3,1,1,0.001 
970 END 
_______________________________________________________________________ 
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