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ABSTRACT

The packing problem is a well known-problem. There are several versions of this problem. In this paper we
consider packing or covering of a disc of a given radius r by a number of discs of unit radius. We introduced
two types of packing, hexagonal packing and square packing. We show that hexagonal packing is better in
the sense that it needs less discs to cover a disc of higher radius. Coverage problem is similar to the packing
problem in continuous domain. Coverage is essential in wireless sensor networks. In this paper we also discuss
the coverage problem in random deployment scenario.

Keywords: Packing problem; sphere packing problem; random deployment.

1 INTRODUCTION

The packing problem is a well-known problem. There
are several versions of this problem. In this paper we
consider packing or covering of a disc of a given radius
by a number of discs of unit radius. We introduced

two types of packing, hexagonal packing and square
packing. We show that hexagonal packing is better in
the sense that it needs less discs to cover a disc of
higher radius.

The well-known sphere packing problem asks, what
fraction of Rn can be covered by congruent balls that
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do not intersect except along their boundaries. This is
a very important problem as it has many applications
in error-correcting codes, spherical codes etc. Analysis
of this problem is a very interesting area of research.
Linear programming bounds are the most powerful
known techniques to produce upper bounds in such
problems. In this paper we discuss the optimal packing
in two and three dimension and relation between the
packing and coverage problem.

The coverage problem has many applications in
wireless sensor networks (WSNs). WSNs usually
consist of a large number of small sensors equipped
with some processing circuit, and a wireless transceiver.
The sensors have small size, low battery capacity, small
processing power and each sensor contains a low-
power radio. They can measure distance, direction,
speed, humidity, wind speed, temperature, light, and
various other parameters. One of the unique features
of a WSN is that they can be randomly deployed in
inaccessible terrains.

Because of this surveillance goal, coverage is important
for any sensor network. In order to fulfill its designated
surveillance tasks, a sensor network must cover the
Region of Interest (ROI) without leaving any internal
sensing hole. The sensors can detect events inside a
surrounding disc (called sensing disc) of some radius
(called sensing radius). The aim of the well-known
coverage problem is to place sensors in ROI such a
way that they cover the ROI with minimum number of
sensors or to cover maximum area of ROI by a fixed
number of sensors.

Placement of the sensors may be done in two different
ways deterministic placement and random deployment
from air. In case of deterministic placement ROI can
be fully covered with a sufficient number of sensors.
But in case of random deployment some points ROI
may be uncovered even if we used large number of
sensors. Coverage is main goal for WSN but due
shortage of sensors or random deployment of sensors
we cannot avoid uncovered region fully. In that case
we should calculate the uncovered area. To the best of
our knowledge there is no work on uncovered area in
random deployment scenario. In this paper our target
is to calculate and develop strategies to reduce the
uncovered area of ROI.

We consider a completely new problem: how the
uncovered area changed with the number of sensors
or how the uncovered area depends on the strategy
of deployment of the sensors when the sensors are

deployed on ROI in a random manner. It is enough
to cover each point of ROI by exactly one sensor, so
if some portion of the ROI is covered by more than
one sensor then we have in some sense ‘wastage’ of
sensing area of sensors. Since the sensing area of a
sensor is a circular disc, we cannot avoid the wastage.
Our target will be reducing the wastage. One idea is
deploying the sensor in some pre-deterministic points
such that if they actually placed on that points then the
wastage is minimum or in the other words, coverage is
maximum. In this paper we try to find the answer of
this problem. Now after deployment there will be some
uncovered area due to lack of sensors or due to random
placement of the sensors. So, to reduce the uncovered
area we need some extra sensors. The problem is that,
how we deploy this extra sensor such that the wastage
is minimize. In this paper we try to give some idea of
the solution of this problem.

In this paper, we try to solve the coverage problem in
R3. We have described different coverage criteria and
studied the minimum number of sensors to cover an
area. We also consider that sensors may not be placed
at the required target but may be placed at any point in
the plane. We assume that the distance between these
two points follows i.i.d. uniform or normal distribution.
For uniform we calculate theoretically the uncovered
area of ROI. For both the distributions we have done
computer simulations. To reduce the uncovered area
or volume we have introduced two different strategies
using extra sensors and have compared these two
strategies. We see that one strategy is better for
distributions with higher variance and other strategy
is better for distributions with smaller variance.

Application of WSNs are as follows. WSNs are used
for measuring distance, direction, speed, humidity, wind
speed, temperature, light, etc. They also provide co-
operative effort that offers unprecedented opportunities
for a broad spectrum of civilian and military applications;
such as industrial automation, military tactical
surveillance, national security, emergency health
care, etc. Sensor networks aim at monitoring their
surroundings for event detection and object tracking
also.

1.1 Related Works
Many works have been done in packing problem as
it has many applications in error-correcting codes,
spherical codes etc.[1, 2]. Analysis and application of
this problem is also done in various interesting area of
research [3]. Linear programming bounds are the most
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powerful known techniques is producing upper bounds
in such problems [4].

Several works have been done to find an efficient
algorithm for placing sensors to cover a specific convex
region in R2, like squares and equilateral triangles.
When the set is a convex and bounded set, the problem
is referred to as covering problem in literature. Several
variations can be found in [5, 6]. Silva et al. present
homological criteria for covering in two-dimensional
space [7]. Also, a number of movement-assisted sensor
placement algorithms have been proposed. An survey
on these topics is presented by Li et al. [8]. Fletcher et
al. [9] present randomized algorithms using more than
one robot for coverage repair in WSN. They propose
two algorithms for grid-based ROI and simulate the path
travelled by the robots for different values of parameters
(number of sensors, number of robots etc.). There
is an extensive literature on sensor positioning and
repositioning. Younis and Akkaya [10] provide a survey
of models, requirements and strategies that would affect
sensor deployment.

Li et al. describe carrier-based sensor relocation by
robot to repair sensing holes [11]. They consider
grid structure of ROI and use virtual force algorithm.
Analysis are done for maximum distance covered and
expected distance covered by the robot(s) or by the
mobile sensors to achieve the full coverage [12, 13].
There are several works on connectivity and energy
saving strategy also. Three-dimensional deployment of
sensors using lattice pattern is considered [14]. Almost
all the works shows their efficiency in terms of energy,
either the consumption battery power of sensors or the
length traveled by the robot(s). In almost all previous
works on WSNs, the uncovered area is covered either
by placing new sensors using an actuator (known as
Actuator-Sensor Networks) or by activating passive
sensors. Nandi and Li develop an algorithm for actuator
to reduce the uncovered area [13].

One variation of the coverage problem with minimum
wastage available in literature is the case when centers
of the congruent discs are fixed and the objective is
to cover a given set of points with minimum number
of discs. Stochastic formulations of variations of this
problem can be found in [15]. There is another problem
on coverage, called k-coverage. If every point of the
ROI is covered by not less than k many sensors then
ROI is called k-covered [16]. Sensors may detect the
direction of other sensors and the desired event(s), the
network consists of these types of sensors are known
as direction sensor networks. One can suitably activate

some passive sensors and deactivate the active sensor
such a way that the life time of the network is maximize
[17].

2 ASSUMPTIONS AND DEFINITIONS

In this Section we define different terms and prove some
theoretical results.

Packing of a disc: Consider a disc D of radius r,
centered at origin. A packing or covering of this disc
is a set of complex numbers S ⊂ C if D ⊂

⋃
x∈S

B(x, 1),

where B(x, 1) be the unit disc centered at x.

Hexagonal packing: Consider a disc D of radius
r, centered at origin. Hexagonal packing of this

disc is a packing S(n) if S(n) =

n⋃
k=0

Sk for some

nonnegative integer n, where S0 = {0} and for

positive integer k, Sk =

5⋃
t=0

Sk,t, where Sk,0 =

{ 3
2
l + i

√
3

2
(2k − l) : l = 0, 1, . . . , k − 1} and

for j = 1, 2, . . . , 5, Sk,j = exp(iπ/3)Sk,j−1 ={
exp(iπ/3)

(
3
2
l + i

√
3

2
(2k − l)

)
: l = 0, 1, . . . , k − 1

}
.

Note that, this packing is not unique, if S(n) is a packing
of D for some nonnegative integer n then for larger n
also S(n) is a packing for the same D.

Consider the coverage problem in WSNs which are
composed of static sensors (equivalently, sensing discs)
dropped stochastically in a region of interest (ROI).
The ROI is partitioned into several identical regular
hexagons of side a. Although the topology of the ROI
may so that partitioning into hexagons is not possible, if
we consider the ROI to be the whole of R2, we do not
have such a problem. To cover each hexagon by one
sensor one should take a ≤ r, where r is the sensing
radius. If r = a each regular hexagon is covered by the
sensor (also known as node) at its center if the sensor
is placed exactly at the center of that hexagon. We
assume that the ROI is R2 or a convex and bounded
subset of R2. Consider that the sensors are so small,
that, we can think of a sensor as a point.

Now we define some useful terms. Node is the point
where a sensor or the center of a disc is placed after
deployment. In this paper we use the term node to
mean the point as well as the corresponding sensor.
Vertex is the point where the center of a disc is targeted
to be placed. N(V ) is the node correspond to the vertex
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V , i.e., the center of a disc is placed at N(V ) when
the target was to drop at V . Similarly, V (N) is the
corresponding vertex of a node N . Sensing Disc SN
of a node N is a closed disc of radius r and center N ,
which is covered by the disc or sensor placed at that
node. The radius r is known as Sensing Radius, which
is assumed to be same for all discs. More generally one
can consider discs with different radius. Throughout the
paper, by the word ‘disc’ we consider closed discs only.
In higher dimensions we call this Sensing Ball.

Adjacent vertex of a particular vertex means the vertex
which is at the distance not more than 2r from that
particular vertex. Therefore, the sensing disc of a vertex
has nonempty intersection with the sensing disc of its
adjacent vertex and empty intersection with the sensing
disc of a non-adjacent vertex (which is not an adjacent
vertex).

We define V is the set of all vertices and define AdjV is
the set of all the adjacent vertices of a vertex V . Similar
definitions and notations apply for nodes also, and the
respective notations are N and AdjN for N ∈ N .
Denote distance between two points A and B in Rn as
d(A,B). A point P ∈ Rn is said to be covered by a
node N if d(P,N) ≤ r and the point P is said to be
covered by a set of nodes N if P is covered by at least
one node in N . A point P ∈ Rn is said to be uncovered
by a node N if it not covered by N and the point P is
said to be uncovered by N if P is uncovered by all the
nodes in N . Note that when there is no randomness,
then the vertex and the corresponding node is same,
i.e., N(V ) = V and V (N) = N . Sensing hole in Rn
(resp. ROI) is a connected subset of Rn (resp. ROI)
whose elements are uncovered byN . Adjacent sensing
hole of a particular node means the sensing hole whose
boundary intersects with the boundary of the sensor
disc of that node. Rn (resp. ROI) will be called covered
by a set of nodes of sensing radius r if every point of Rn
(resp. ROI) is covered by at least one node. Volume of
a set B will be denoted as Vol(B).

Now we will define an important term say, wastage. Let
S be a bounded subset of Rn, which is covered by a set
of finite nodes N . Define the wastage in S for N as

WN (S) =

∑
N∈N

Vol(S ∩ SN )− Vol(S)∑
N∈N

Vol(S ∩ SN )
.

If N be such that |SN1 ∩ SN2 ∩ SN3 | ≤ 1 for distinct
N1, N2, N3 ∈ N (see figure 1a), then

WN (S) =

∑
N1 6=N2∈N

Vol(S ∩ SN1 ∩ SN2)∑
N∈N

Vol(S ∩ SN )
.

Intuitively, the denominator represents the sum of the
volume (common with S) of all spheres. Numerator
denotes the difference between the previous volume
and the volume what we cover by these spheres, i.e.,
the volume of the sets whose points are covered by
exactly two sensors, which can be thought as the
wastage (in layman sense) of volume. Hence wastage
the represent the proportion of wastage to the total
volume.

LetN be a set of nodes which cover Rn such thatN ∩S
is finite for any bounded subset S of Rn. Then wastage
in Rn for N is defined by

WN (Rn) = lim
x→∞

WN∩Bx(Bx),

where Bx be the ball in Rn of radius x and centered at
origin (equivalently, at any point).

Intuitively, wastage in Rn is the proportion of wastage
volume in Rn. Note that we can take any increasing
sequence of sets whose union is Rn other than Bx,
e.g., for n = 2 partitioned R2 into hexagons or octagons
and then take an increasing sequence of union of finitely
many such polygons with the property that limit of this
sequence is R2. In that case we can similarly define
wastage. It can be proved that these two definitions are
equivalent.

3 A RESULT ON COVERAGE
PROBLEM

Theorem 3.1. Let ROI be a bounded and convex
subset of Rn and number of nodes in ROI is finite. Then
the ROI is covered by the set of nodes N if and only
if any interior point of the ROI which also belongs to
boundary (i.e., circumference) of a sensing ball belongs
to another sensing ball.

Moreover, if ROI ⊂ R2 then ROI is covered by a set of
nodes if and only if the set of interior points of ROI which
is on the boundary of a sensing ball of a node and does
not belong to the interior of any other sensing ball, is
finite.
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Proof. Let the ROI be covered by a set of nodes
N . Suppose there is point A which belongs to the
intersection of the boundary of sensing ball SN of node
N (denoted as Bd(SN )) and interior of the ROI, but
does not belong to the any other sensing ball.

Then d(A,N) = r and d(A,N ′) > r for all N ′ ∈
N \ {N}. Let d = min{d(A,N ′) : N ′ ∈ N \ {N}}.
Therefore, d > r as N is finite. Hence the ball
B(d−r)/2(A) with center A and radius (d − r)/2 has no

intersection with the sensing ball of any node except
one node N . Since A ∈ Bd(SN ), B(d−r)/2(A) 6⊂ SN ,
hence ROI cannot be covered by N .

Moreover, if ROI ⊂ R2, the set of interior points of
ROI which is on the boundary of the sensing disc of a
node and does not belong to the interior of any other
sensing disc is finite because there are finitely many
points which belong to the intersection of boundaries
of more than one sensing discs.

(a)

(b)

(c)

Fig. 1. Sensing discs in different situations

80



Nandi; Asian J. Res. Com. Sci., vol. 16, no. 3, pp. 76-86, 2023; Article no.AJRCOS.102527

0

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

22

Fig. 2. Different classes of hexagons (center of 0-th class hexagon is the origin)

. . .
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A D
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Fig. 3. Nearest point on the boundary from origin

Conversely, let ROI be not covered by a set of nodes N . Then there is a point A such that d(A,N) > r for all
N ∈ N . Let, d = min{d(A,N ′) : N ′ ∈ N}, then the boundary of the ball Bd−r(A) intersects at most one point
with boundary of each sensing ball and there is a sensing ball whose boundary, say Bd, such that Bd ∩ Bd−r(A)
is a singleton set, say, {B}. Then B is a point which belongs to the intersection of the boundary of sensing ball of
a node and interior of the ROI but neither belongs to the interior nor on the boundary of any other sensing ball.
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Moreover, if ROI ⊂ R2, in that case, the set of interior points of ROI which is on the circumference of sensing disc
of a node and does not belong to the interior of any other sensing disc is infinite (a suitable arc containing B).

Remark 1. It seems that when Rn is covered by a set of nodes with minimum wastage then intersection of interior
of three balls centered at three distinct nodes is empty. In this paper we consider only the situations like Fig 1a
and 1c but not like Fig. 1b.

Remark 2. Consider the regular unit hexagons centered at elements of S(n) then interior these hexagons are
disjoint and two different hexagons have at most one side common and three different hexagon intersect at most
at a single point. If union of these hexagons cover a disc then their centers form a packing of that disc. Throughout
the paper by the word hexagon we mean hexagon with its interior.

Remark 3. A hexagon H(x) centered at x ∈ C is a subset of B(x, 1) and
⋃

x∈S(n)

H(x) is simply connected subset

of C. Hence, if D ⊂
⋃
x∈S

H(x) for some S ⊂ S(n) then S is a packing of D.

k-th class hexagon: Define Hk =
⋃
x∈Sk

H(x) and we say any hexagon whose center is a point of Sk as a k-th

class hexagon.

Also define H(n) =

n⋃
k=0

Hk and Hki is the set of all points of i-th hexagon in the k-th class.

Remark 4. Total number of hexagon of k-th class is 6k.

Theorem 3.2. Marked vertices in Figure (C,E etc.) are nearest points in Bd(Sn) ∩Hni from origin.

Proof. The line CD is parallel to horizontal axis, hence ∠OCD > π/2. So, any point on CD has a greater distance
than C from O. Similar thing happens for DE also.

Theorem 3.3. Between two rays from origin and perpendicular to two consecutive sides of class 0 hexagon, there
are n− 1 class n hexagon.

Proof. Centre of A is (0,
√
3n +

√
3

2
). Centre of B is ( 3n

2
,
√
3n
2

). Centre of ni-th hexagon is ( 3i
2
,
√

3
2
i). Coordinate

of marked corner is ( 3i−1
2
,
√
3
2
(2n+ 1− i)) for i = 1, 2, · · · , n. Distance from origin is

tn,i =
1

2

√
(3i− 1)2 + 3(2n+ 1− i)2

=
√

3i2 − 3i(n+ 1) + (3n2 + 3n+ 1).

Minimum value is

tn =

{
3n+1

2
if n is odd ,√

(3n+1)2+3

2
if n is even ,

(3.1)

Theorem 3.4. Centers of Hki form a hexagon of for each n.

Proof. Starting from the center lies on the positive part of the vertical axis k+1 consecutive centers are collinear.
Then starting from the k-th centered k + 1 consecutive centers are collinear and so on. Since there are 6k many
center we have the theorem.
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4 SPHERE PACKING AND
COVERAGE PROBLEM WITH
MINIMUM WASTAGE

The sphere packing problem in Rn is trivial for n =
1. For n = 2, the standard hexagonal packing is
optimal. For n = 3 it was a long-time open problem
and for n ≥ 4 the problem remains unsolved. For
n = 3, Hales has proved that the face-centered cube
packing is optimal [18]. Some basic background on
sphere packing problem may be found in [19]. In two
dimensional case, sphere packing problem known as
circle packing problem. Circle packing problem is to
arrange circles (of equal or varying radii) on a given
surface such that no overlapping occurs and so that
all circles touch another. A circle packing algorithm is

presented in [20]. We use the idea of sphere packing
problem to find the answer of the first problem. We
use exactly the same patterns for sphere packing in our
covering in two and three dimensional space.

The hexagonal placement is optimal for sphere packing
problem in R2. We discuss the hexagonal placement
of nodes for coverage problem in R2 in previous two
sections. It is well known that face-centered cube
packing (see Fig. 4) is optimal for sphere packing
problem in R3 and for n > 3 optimal placement is
not known [18]. In various situations WSNs may be
three dimensional. In this section we discuss a similar
type of placement of nodes (similar to face-centered
cube packing) to cover R3. Consider the set N =
{(2k, 2l, 2m) : k, l,m ∈ Z} ∪ {(2k + 1, 2l + 1, 2m) :
k, l,m ∈ Z} ∪ {(2k + 1, 2l, 2m + 1) : k, l,m ∈ Z} ∪
{(2k, 2l + 1, 2m+ 1) : k, l,m ∈ Z}.
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Fig. 4. Face-Centered Cube (dots are center of spheres)

Table 1. Simulation for proportion of coverage area for two strategies in R3

U(0.5) U(1) N(0, 0.10) N(0, 0.25) N(0, 0.50)

p St. 1 St. 2 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2
0.00 0.97091 0.97090 0.92352 0.92331 0.96579 0.96419 0.93854 0.93470 0.93480 0.93301
0.05 0.96900 0.97104 0.92905 0.92918 0.96853 0.96876 0.94403 0.94552 0.94084 0.93266
0.10 0.97590 0.97374 0.93385 0.93346 0.96949 0.97082 0.94702 0.94751 0.94383 0.94559
0.15 0.97752 0.97814 0.94230 0.93677 0.97233 0.97790 0.95402 0.95051 0.95284 0.94584
0.20 0.98108 0.98248 0.94602 0.94501 0.97968 0.97653 0.96180 0.95500 0.95301 0.95184
0.25 0.98531 0.98503 0.95684 0.94392 0.98232 0.97869 0.96454 0.95771 0.96202 0.96002
0.50 0.99179 0.99148 0.97301 0.96253 0.99134 0.98588 0.97873 0.97053 0.98028 0.96689
0.75 0.99552 0.99451 0.99033 0.97067 0.99579 0.99357 0.99302 0.98172 0.98701 0.97846
1.00 0.99847 0.99753 0.99450 0.97950 0.99802 0.99518 0.99530 0.98653 0.99428 0.98272

We partition R3 as a cube grid and take the nodes at
the 8 corners and the center of the 6 faces of all the
cubes. If r be the sensing radius then we consider set
of nodes {rN : N ∈ N}. The placement of nodes in
our case is similar to the choice of center of spheres in
face centered cube packing, only difference being that
the distance between the two nodes is less in our case
which confirms the covering.

Theorem 4.1. Consider a partition of cube C of side
2nr unit into n3 many cubes of side 2r unit. Then
number of nodes required to cover the cube C is 4n3 +
6n2 +3n+1, where the nodes are placed as discussed
above (similar to face-centered cube). The proportion
of wastage volume is 1 − 8n3

(4n3+6n2+3n+1)× 4
3
π

, which is

approximately 1− 3
2π

for large n.

Proof. Clearly there are (n + 1)3 many corner nodes
and n2(n+1) many nodes at the center of faces parallel
to one of the three coordinate planes. Hence number of
nodes is (n+ 1)3 + 3n2(n+ 1) = 4n3 + 6n2 + 3n+ 1.

We need 4n3 + 6n2 + 3n + 1 spheres of radius r to
cover the cube of side 2nr. Total volume of the spheres
is (4n3 + 6n2 + 3n + 1) 4

3
πr3 and they cover volume of

8n3r3 units. Hence the proportion of wastage volume is
(4n3+6n2+3n+1)× 4

3
πr3−8n3r3

(4n3+6n2+3n+1)× 4
3
πr3

. Hence the result.

4.1 Simulation Results

We consider n = 13 and r = 1. So, we have 9842
many nodes. Hence the volume of ROI is 133 × 23

unit. We simulate the proportion for covered volume
using two strategies, Strategy 1 (St. 1) and Strategy
2 (St. 2), which are exactly same as in case of R2. If
we use p% extra nodes then for Strategy 2, we have
to partition ROI of volume 133 × 23 unit
into m3 many cubes where 4m3+6m2+3m+1 =
9842× (1 + p

100
).

We simulate the proportion of coverage for two different
strategies, for five different distributions as described in
the previous section (in case of R2) and for nine different
values of p (see Table 1). Uniform distribution with
parameter t has the density function f(x) = 3x2

t3
I(0,t).

It is noted from the simulation results that, St. 1 is
better than St. 2 in higher variance cases. For lower
variance cases St. 2 is better for most values of p. This
observation is almost same as in the two-dimensional
case. So, we can conclude that Strategy 1 is
better for distributions with higher variance and
Strategy 2 is better for distributions with lower
variance.
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5 CONCLUSION AND FUTURE
WORKS

In this paper, we try to solve the coverage problem in
Ri for i = 2, 3 which is similar to packing problem.
We show the connection between the coverage and
packing problem in continuous domain. We have
described different coverage criteria and studied the
minimum number of sensors to cover an area. We
also consider that sensors may not be placed at the
required target but may be placed at any point in the
plane. We assume that the distance between these two
points follows i.i.d. uniform or normal distribution. For
uniform we calculate theoretically the uncovered area of
ROI. For both the distributions we have done computer
simulations. To reduce the uncovered area or volume
we have introduced two different strategies using extra
sensors and have compared these two strategies. We
see that strategy 1 is better for distributions with higher
variance and strategy 2 is better for distributions with
smaller variance.

In future, we will try to find the theoretical results
for normal distribution and will consider the coverage
problem for higher dimensions to find optimal placement
of sensors. We will consider ROI as a square grid in
two dimensions and the other interesting distributions.
Here we consider only two strategies but there may be
other strategies which may be better for some specific
distributions. We will try to classify them in future with
respect to uncovered volume for different distributions
and different type of partitions. In future, we will try
to solve coverage problem of deployment of sensor
randomly, and dropping of extra sensors and use of
actuators.

We expect in future work that strategy 1 may be better
for any arbitrary probability distributions with higher
variance and strategy 2 may be better for any arbitrary
probability distributions with smaller variance. May be
proper mixing of these two strategies is better in many
situations. By mixing we mean that some of the extra
sensor are used for increasing the side length and rest
are used for double dyploying.
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