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Abstract: Societies tend to partition into factions based on shared beliefs, leading to sectarian conflict in soci-
ety. This paper investigatesmistrust as a cause for this partitioningby extending an establishedopiniondynam-
ics model with Bayesian updating that specifies mistrust as the underlying mechanism for disagreement and,
ultimately, polarisation. We demonstrate that mistrust is at the foundation of polarisation. Detailed analysis
and the results of rigorous simulation studies provide new insight into the potential role ofmistrust in polarisa-
tion. We show that consensus results whenmistrust levels are low, but introducing extreme agentsmakes con-
sensus significantly harder to reach and highly fragmented and dispersed. These results also suggest amethod
to verify the model using real-world experimental or observational data empirically.
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Introduction

1.1 Truth is hard to glean from information that we obtain from interactions. A common method we use to assess
the integrity of a newpiece of information is to compare the latest information towhatwe already assume to be
true. If the information is consistent with what we already believe, then the new information is deemed more
likely to be true. Otherwise, if this latest information contradicts our current understanding, we aremore likely
to disregard it. Psychology explains this phenomenon by appealing to the notion of cognitive dissonance and
confirmation bias.

1.2 Cognitive dissonance results from new information conflicting with a person’s beliefs (Festinger 1957), causing
psychological stress. People tend to avoid stress and resolve their cognitive dissonances. People use confirma-
tion bias as one way to relieve this stress. Confirmation bias is placingmore emphasis or focus on information,
or parts of information, which conform to wanted or expected results (Oswald & Grosjean 2004). Confirmation
biasnaturally results in less cognitivedissonance. As someone focusesmoreon informationconforming to their
expectation, which is informed by what they believe, they focus less on anything that contradicts expectation.
Confirmation bias describes human action, but it is not a cause, leaving a question as to why people rely on
confirmation bias.

1.3 Mistrust of a source is a common reason to reject new information, implying that mistrust is a cause of confir-
mation bias. We o�en rationalise dismissing information from sources we mistrust, assuming it is likely misin-
formation, either incidentally or deliberately, and therefore safe to ignore. So if we believe there is no reason to
mistrust a source, would we lose our propensity to accept only that information that conforms to our belief? Is
it the possibility of deception that allows us to disregard any evidence that contradicts our internal narrative?
Would it eliminate confirmation bias?
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1.4 These are di�icult questions to answer, and this paper will attempt to shed some light on amodel that inspires
these questions. Understanding how individuals come to adopt their beliefs, how they spread those beliefs to
the next individual, and how that individual accepts or rejects those beliefs allows for powerful predictions of
human behaviour from the scale of individuals to whole societies.

Background

1.5 Opinion Dynamics is the field of study interested inmodelling opinion dissemination, specifically howopinions
spread fromperson topersonandacross a social network. Opiniondynamicshasa richhistory andhas received
contributions frommany di�erent disciplines, ranging from statistical physics (Castellano et al. 2009; Holley &
Liggett 1975; Sznajd-Weron & Sznajd 2000), to psychology (Abelson 1967; French Jr 1956), to social network
science (Christakis & Fowler 2009). Given the rich history of contribution to this field, there is now interest in
coalescing these variousmodels into a unified framework (Coates et al. 2018). This paperwill focusmore on the
modelling area of opinion dynamics, particularly howmodels have created disagreement in their simulations.

1.6 Acentral concept inopiniondynamics, and the focusof this paper, is polarisation, i.e.when individuals partition
themselves inopinion space into twoormoredistinct opinion clusters. Themotivation for studyingpolarisation
is that many important controversial issues polarise individuals. If we understand why polarisation happens,
this leads, for instance, to understanding political factions and other social divisions.

1.7 There are two classes of models in opinion dynamics di�ering in how they represent opinions. One class of
models represents opinions as discrete values, e.g. selecting candidates in an election, and the other class of
models represents opinions as continuous values, e.g. level of support for a candidate or their policies. One
of the first opinion dynamics models, investigating continuous opinions (French Jr 1956; Abelson 1967), origi-
nated in the social sciences. Later models of discrete opinions, broadly classed as cellular automata models,
(Cli�ord & Sudburry 1973; Sznajd-Weron & Sznajd 2000) originated in statical physics. These early models of
both discrete and continuous opinion formed the foundation of opinion dynamics modelling.

1.8 The early models (both for discrete and continuous opinions) are structurally limited in creating polarisation.
Based on the French model, the first opinion dynamics models focus on finding the individual that had the
most influence over the final opinion consensus, a concept called ‘social power’ rather than attempting to in-
duce polarisation (French Jr 1956). Inspired by the behaviour of atoms in a lattice of ferromagnetic materials,
statistical physicists constructed cellular automata models of opinion dynamics where individuals or cells in
a lattice structure held discrete opinions and obeyed rules defining their interactions (Castellano et al. 2009).
Although ferromagnetic materials are broadly analogous to real-world voting populations, voters in the real
world are more connected (and more complicated in their connections) with other voters than atoms in a lat-
tice. As a result, cellular automatamodels always resulted in consensus (Castellano et al. 2003; Sood & Redner
2005).

1.9 These models represented a major step in developing the field of opinion dynamics, but they both su�er from
the drawback that they produce consensus under realistic conditions. Abelson (1967) first identified what is
known as the cleavage problem with respect to the French model by posing the question: if the French model
(and its derivatives) mostly predicted consensuses, then why in society is there so much polarisation around
contentious issues? While the original cleavage problem statement is directed at the French model, it has
broader implications for all opinion dynamics models.

1.10 The continuousopiniondiscrete action (CODA)model addresses the cleavageproblem indiscrete opinionmod-
els (Martins 2008). The CODAmodel allocates agents latent opinions in an unobservable continuous space, but
these opinions are only observable by others in a discrete space. In the model, there are two discrete events,
e.g. A or B, an agent’s latent opinion is their belief in the likelihood of A or B occurring. An agent expresses
their latent opinion by predicting that either A or B will occur. Agents update their latent opinion by a fixed
quantityα based onwhich event their partner predicted in an interaction. So if agent i predictedA, then agent
j would increase their opinion thatA occurs by some function of α.

1.11 The CODAmodel addresses the cleavage problem by allowing agents to become extreme in their discrete opin-
ion. The updatingmechanism for their latent opinion allows it to reach the extremes of the opinion space, lead-
ing to polarisation. Later extensions of the CODAmodel introduce concepts like trust between agents (Martins
2013), building on the model’s ability to induce polarisation. Specifically, trust naturally introduced contrari-
anism, where an agent adopts the opposite choice of their interaction partner. Other models have introduced
contrarianismexplicitly, but CODAderives contrarianism from the trust between agents. TheCODAmodel influ-
enced much of modern opinion dynamics through introducing a latent continuous opinion driving the choice
of discrete opinions and has inspired manymodels (Jiao & Li 2021; Ceragioli & Frasca 2018; Zino et al. 2020).
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1.12 The bounded confidence model addresses the cleavage problem for continuous opinions taking inspiration
from Axelrod (1997), which introduces similarity bias, i.e. individuals will only interact if they are similar to each
other. The bounded confidence models (De�uant et al. 2000; Weisbuch et al. 2002; Krause 2000; Hegselmann
& Krause 2002) only allow agents to interact if their opinions are within ε in the opinion space. The parameter
ε induces polarisation by restricting interactions between agents with divergent opinions. The extent of polari-
sation depends on ε; small values of ε yield more opinion clusters, and larger values of ε yield fewer clusters.

1.13 Although ε creates polarisation in bounded confidence models, it is unclear if or how ε manifests real-world
interactions. As amathematical concept, ε is a distance, but the crucial question for interpreting bounded con-
fidence models is how “distance” is measured in real interactions. An extension to bounded confidence (Def-
fuant et al. 2002) implies that ε is the confidence of an agent, i.e. the greater ε, the more unsure an agent is of
their opinion. Yet this interpretation lacks any guidance on measuring ε for real people, and it isn’t clear how
cognitive processes which guide individuals to accept or reject others’ opinions relate to ε.

1.14 Themodel framework inMartins (2009), later elaborated on inMartins (2012), uses Bayesian inference to estab-
lish opinion updating rules. The rules derive from treating an agent’s knowledge as a normally distributed prior
and their interaction partner’s knowledge as data to update via Bayes’ Theorem. This framework produces two
distinctmodels: a ‘trivial’model and a ‘developed’model. The ‘trivial’model is similar to the Frenchmodel and
only exhibits consensus. The ‘developed’ model introduces a global trust rate p into the ‘trivial’ model, and the
result is that agents in simulations polarise.

1.15 The non-trivial Martins model creates polarisation behaviour similar to the bounded confidence models. The
Martins model gives each agent uncertainty in their opinion. In the Martins model, uncertainty is the standard
deviation of the density function representing the agent’s opinion. Uncertainty in the Martins model functions
similarly to ε in the bounded confidence models, following the same inversely proportional relationship with
the number opinion clusters. It was speculated in Martins (2009) that, if the prior was step-functions instead
of a Gaussian distribution in the Martins model, the Martins model would be identical to bounded confidence
models, and claimed that the bounded confidence models approximated the Martins model at fixed uncer-
tainty. Since uncertainty as a standard deviation is congruent with how people think of confidence (Stankov
et al. 2015), themodel framework of Martins (2009) explains why the bounded confidencemodel work, thereby
pointing to insights into the causes of polarisation.

1.16 The work (Martins 2009) leaves some gaps not addressed in the modern opinion dynamics literature. First,
the model assumes that agents cannot share their uncertainties. This trait leads to agents assuming their in-
teraction partner has the same uncertainty as themselves. We call this the unshared uncertainty assumption.
Second, Martins only investigated the trust rate through simulations. A deeper analysis needs to performed on
p since it is the cause of polarisation in the model.

1.17 The present paper seeks to address the gaps of Martins (2009) by re-deriving the model without the unshared
uncertainty assumption and analytical investigating the impact of the trust rate p. We first summarise the
derivationof themodel inMartins (2009). Then theunshareduncertaintyassumption is relaxed, creatingourex-
tendedmodel. Our extendedmodel is thoroughly investigated by simulation studies, comparing the extended
model to the original Martins model. We also present a new analytical investigation of the model giving close
attention to how p influences themodel outputs, and briefly investigate extremism in a small simulation study.
We concludewith a discussion of the extendedmodel, a discussion about the simulation results, and an outline
for future directions for the Martins modelling framework.

A Bayesian Inference Model for Opinion Dynamics

2.1 This section will first summarise the derivation of the model in Martins (2009) and then re-derive themodel by
relaxing the shared uncertainty assumption made in the original model, thereby creating an extendedmodel.

Themodelling framework

2.2 Themodel developed in Martins (2009) establishes θ as a random variable whose value all agents are trying to
guess. Agent i’s opinion, xi, is their ‘guess’ at θ. Agent i’s uncertainty of xi is quantified as σi. Both xi and σi
are part of a normal distribution fi(θ) = 1√

2πσi
e−(θ−xi(t))2/(2σ2

i ), where xi is the mean and σi is the standard
deviation. This normal distribution fi(θ) describes agent i’s understanding of θ.
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2.3 When agents interact, they share information such as their opinion and uncertainty. The unshared uncertainty
assumption restricts this interaction so that only opinion is shared. Suppose agent i and agent j interact in
the model at some time t. Because of the unshared uncertainty assumption, agent j is only able to share their
opinionxj . Agent i requires the reliability ofxj for Bayesian inference towork, and therefore has to assume that
xj has the same uncertainty as they have σi. As a consequence, although this makes the derivation of opinion
updating easier, it obscures the meaning of a heuristic created in the derivation of the updating equations.

2.4 The updating rules in the model of Martins (2009) are derived as follows: Suppose agent i recently interacted
with agent j and learned their opinion xj . Under the unshared uncertainty assumption agent i assumes that
agent j shares agent i’s uncertainty σi. With the data xj and a measure of variance on the data σi, a likelihood
can be constructed for θ with respect to xj . As outlined in Martins (2009) a true likelihood of xj would need
to account for the influences on agent j, including agent i’s influence. This is impractical to implement and
furthermore unrealistic. A reasonable and convenient likelihood for θ is a normal distribution, with θ as the
mean and the uncertainty on xj , σi, as the standard deviation. Therefore,

xj |θ ∼ N(θ, σ2
i ) (1)

Using both the likelihood fi(xj |θ) and prior fi(θ) in Bayes’ Theorem creates a posterior fi(θ|xj). Agent i’s
opinion updates to the mean of the posterior fi(θ|xj). Similarly, agent i’s uncertainty updates to the square
root of the posterior’s variance.

2.5 An important consequence of using (1) in the derivation of agent i’s new opinion is that, in the application of
Bayes’ Theorem, the new opinion at time t+ 1will be

xi(t+ 1) =
xi(t) + xj(t)

2
(2)

Thus, no matter the network structure, if (2) is used as the opinion update rule, the model will always lead to
consensus.

2.6 To create a more compelling model Martins introduces a probability p that agent j is sharing erroneous in-
formation. This new parameter p represents the proportion of valid information on θ and by extension is the
probability that a generic agent j is not misinforming agent i. This modifies the likelihood to

xj |θ ∼ pN(θ, σ2
i ) + (1− p)U (3)

where U is a function such that 1 =
∫∞
−∞ Udx and dU/dx = 0 for all x. This creates a posterior with a more

dynamic mean, leading to the opinion updating rule for agent i’s opinion at time t+ 1 as

xi(t+ 1) = p∗
xi(t) + xj(t)

2
+ (1− p∗)xi(t) (4)

where

p∗ =
p(1/(2

√
πσi))e

−(xi(t)−xj(t))2/(4σ2
i )

p(1/(2
√
πσi))e−(xi(t)−xj(t))2/(4σ2

i ) + (1− p)
(5)

Whereas the updating rule given by (2) leads inexorably to consensus, the new updating rule (4) addresses the
cleavage problemwith the parameter p∗, defined by (5), creating the potential for polarisation. In particular p∗
controls whether agent i will be completely stubborn (p∗ = 0) or completely open minded (p∗ = 1). Martins
also derived the uncertainty update at t + 1 through calculating the variance of the posterior originating from
(3). The result is

σ2
i (t+ 1) = σ2

i (t)

(
1− p∗

2

)
+ p∗(1− p∗)

(
xi(t)− xj(t)

2

)2

(6)

2.7 The introduction of p into (1) creates the new parameter (5) which allows agents to discriminate against other
agents with very di�erent opinions depending on their confidence. As the ratio of opinion di�erence |xi −
xj | to uncertainty σi tends to zero, (5) approaches unity, allowing agent i and j to share opinions. Otherwise
if the ratio tends towards infinity then (5) approaches 0 making agent i stubborn towards agent j’s opinion.
This is reflected in the modelling of Martins (2009) where models that froze uncertainty updating exhibited
polarisation similar to the bounded confidence models. The bounded confidence models were justified by the
idea that agents with large disagreement in opinion tend not to compromise. The work (Martins 2009) lends
credence to that idea, but also supplies a plausible reason why agents don’t listen to other agents with very
di�erent opinions through the introduction of mistrust in the form of p. The model encapsulates the concept:
“Based on howmuch I already know, how likely is this new information false?”

JASSS, 24(4) 4, 2021 http://jasss.soc.surrey.ac.uk/24/4/4.html Doi: 10.18564/jasss.4624



Relaxing the unshared uncertainty assumption

2.8 Relaxing the unshared uncertainty assumption allows agent j to share their uncertainty on their opinion xj .
This eliminates the need for agent i to make an assumption about the uncertainty on xj and use σj as the
standard deviation in (1). This changes the likelihood (3) to

xj |θ ∼ pN(θ, σ2
j ) + (1− p)U (7)

2.9 The process of re-deriving agent i’s newopinion and uncertaintywithout the unshared uncertainty assumption
remains the same, although the algebraic manipulation becomes more complicated. Without the unshared
uncertainty assumption, agent i updates their opinion and uncertainty to

xi(t+ 1) = p∗
(xi/σ

2
i ) + (xj/σ

2
j )

(1/σ2
i ) + (1/σ2

j )
+ (1− p∗)xi(t) (8)

and

σ2
i (t+ 1) = σ2

i (t)

(
1− p∗ σ2

i (t)

σ2
i (t) + σ2

j (t)

)
+ p∗(1− p∗)

(
xi(t)− xj(t)

1 + (σj(t)/σi(t))2

)2

(9)

where

p∗ =
pφ
(
xi(t)− xj(t),

√
σ2
i + σ2

j

)
pφ
(
xi(t)− xj(t),

√
σ2
i + σ2

j

)
+ (1− p)

(10)

and

φ
(
xi(t)− xj(t),

√
σ2
i + σ2

j

)
=
(

1/
(√

2π(σ2
i + σ2

j )
))

e−(xi(t)−xj(t))2/2(σ2
i+σ2

j ) (11)

2.10 Relaxing the unshared uncertainty assumption has created some new dynamics. Themost significant changes
are from (4) and (6) to (8) and (9). The update formula (8) now replaces (4) with a weighted average, weighted
according to each agents’ uncertainty. The consequence is that agents that are highly confident compared to
their interaction partner shi� their opinion less, regardless of p∗. Likewise, agents that have less confidence
than their interaction partner are more willing to shi� their opinion, depending on p∗ as given by (10). This is
consistentwith the idea that confident individuals have strongarguments for their beliefs andhavemore inertia
when shi�ing their opinions, andmore momentumwhen changing another individual’s opinion.

2.11 The changes in both (8) and (9) result in low uncertainty agents having more influence relative to agents with
high uncertainty. The weighted average in (8) results in low uncertainty agents being barely a�ected by those
with high uncertainty, even when they are compatible through high (10). In the uncertainty update (9) high
confidence agents are less likely to increase in uncertainty because the second term of (9) controls how much
uncertainty increase, which is maximized at p∗ = 0.5. A p∗ = 0.5 places limits on how small σj can be along
withhowbig thedi�erencebetweenxi andxj canbe, thus limiting thepool of agents that can convince ahighly
confident agent to be less confident. Leaving highly confident agents to become more confident on average.
Overall this extensionmainly gives the original model an additional dimension that reinforces highly confident
agents.

2.12 More interestingly is the subtle change in p∗. The only change between (5) and (10) is all instances of 2σ2
i are

replaced with σ2
i + σ2

j . This does not change the dynamics of p∗ and p∗ will behave similar in both the original
and extended models, but the change does reveal the meaning of p∗. In the original model, if σi 6= σj , using
(5) to generate p∗ would mean an interacting pair of agents, i and j, would produce di�erent p∗s. Only when
σi = σj would they produce the same p∗. In the extended model however, using (10) to generate p∗ would
make agent i and j produce p∗s that are equal regardless of σi or σj . The change of replacing 2σ2

i with σ2
i + σ2

j

has created a p∗ which is symmetrical through agent interaction. This suggests that p∗ is measure of agent
compatibility,whenp∗ is 1 agentsarecompletely compatibleandwhenp∗ is 0 theyarecompletely incompatible.

Shared Uncertainty Modelling

3.1 This section will detail the implementation of the extended martins model, including a comparison between
the extended and original models.
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Themodel

3.2 Themodel creates n agents with an initial state in opinion and uncertainty, and specify an array of time points
T , where agent states of the simulation at those time points will be recorded all the states. The model then
feeds the agents and T into Algorithm 1 while pre-initialising Algorithm 2 to have a fixed third input of p equal
to a specific value.

Algorithm 1: Network Algorithm
input : Initial state of agents; Time points to record agent states: T ;
output: Agent states at each recorded time point;
Predefine Output;
TCounter ← 1;
for t = 0 to Final T do

Assign i and j as a pair of random numbers between 1 and total number of agents where i 6= j;
Make agent i and agent j interact using Algorithm 2;
if t = T (TCounter) then

Save the current agent state into output at TCounter;
Increment TCounter;

end
end

Algorithm 2: Interaction Algorithm
input : Initial state of agent i: ai; Initial state of agent j: aj; Global trust rate: p;
output: New state of agent i; New state of agent j;
Calculate p∗ according to (10);
Calculate ai’s new opinion according to (8);
Save ai’s new opinion into new state;
Calculate aj’s new opinion according to (8) with i and j swapped;
Save aj’s new opinion into new state;
Calculate ai’s new uncertainty according to (9);
Save ai’s new uncertainty into new state;
Calculate aj’s new uncertainty according to (9) with i and j swapped;
Save aj’s new uncertainty into new state;

3.3 Algorithm 2 can be easily modified to support the models found in Martins (2009) by replacing (10) with (5),
(8) with (4) and, if uncertainty is evolving for Martins, replacing (9) with (6); otherwise, when the uncertainty is
fixed, the uncertainty updating part of Algorithm 2 is skipped.

Results

3.4 Figures 1 and 2 compare the two simulations inMartins (2009) of fixed and evolving uncertainty, with the extend
model. The simulations use p = 0.7 and had 10 000 agents as in Martins (2009). The simulation ran according
to Algorithms 1 and 2, but the Martins simulations replaced (10) with (5), (8) with (4) and, (9) with (6).

3.5 Figure 1 shows a substantial di�erence between the original Martins models and the extended model. The ex-
tendedmodel follows the same trend as the twoMartinsmodels, but the extendedmodel createsmore opinion
clusters. Consequently, the critical point in the graph changes when simulations reached a consensus for the
di�erent initial σs of the agents. In the extend model it is at initial σ = 0.14, in fixed uncertainty it is at initial
σ = 0.08 and, for evolving uncertainty it is at initial σ = 0.12. The cause for the more opinion cluster in the
extended model is likely that agents with high confidence have more power over less confident agents. In the
original Martins models, less confident agents ‘bridged the gap’ between high confidence agents, allowing all
agents to reach consensus at low initial uncertainty. Less confident agents hold less sway in theextendedmodel
and are more likely to be consumed by clusters of highly confident agents.
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Figure 1: This figure compares the number of final opinion clusters between three di�erentmodels. Themodels
fromMartins (2009) of fixed andevolving uncertainty are in red andgreen respectively, and the extendedmodel
is in blue. Twenty-two simulations ran for each of the three di�erent models for all of the di�erent initial σ.
The width of the error bars is the standard deviation of those simulations of a particular value of initial σ. The
centre of the error bars is the mean. Opinion clusters were counted using the MatLab function subclust while
introducing two phantom agents with opinions 0 and 1. The phantom agents were introduced to force the
subclust algorithm to take the valid range of opinion to be between 0 and 1.

3.6 Figure 2 supports the conclusion of Figure 1, but provesmore specific detail. The fixedMartinsmodel is exhibit-
ing the expected ‘bounded confidence like’ behaviour from Martins (2009) and the evolving model is showing
the expected fragmented behaviour from Martins (2009), which is reminiscent of how fractal shapes behave;
where better resolutions on a fractal shape reveal greater complexity of that shape. The extended model dif-
fers from Martins evolving by being more ‘clumpy’. Agents in the evolving Martins are more di�use than in the
extended model. An explanation could be that a particular agent is getting highly confident, and because the
agent is highly confident, they’re able to convince the lower confidence agents around them to adopt their
opinionmore readily. Due to the weighted average in (8), the low confidence agents will closely adopt a higher
confidence opinion, which creates tighter opinion clusters. The tighter the opinion cluster means that more
clusters can form, explaining Figure 1.
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Figure 2: This figure compares three di�erent models at both initial σ = 0.06, Figure 2a, and initial σ = 0.1,
Figure 2b. Individual dots represents an agents opinion a�er some amount of interactions. The dot’s position
along the y-axis is the opinion of an agent. The position along the x-axis is the total number of interactions
that occurred before the agent obtained that opinion. The colour represents the simulation in which the agent
was apart. The models from Martins (2009) of fixed and evolving uncertainty had agents in red and green,
respectively, and the extendedmodel had agents in blue.

3.7 Figures 1 and 2 demonstrate that the newmodel results inmore polarisation. Compared to the fixed and evolv-
ingMartins, in the extendedmodel, a higher initial uncertainty is required for agents to reach a consensus, likely
due to high confidence agents beingmore influential and low agents being less influential in the extended. Un-
der the extendedmodel, high confidence agents in an opinion cluster can swi�ly recruit low confidence agents,
themselves quickly becoming highly confident a�er being recruited. This is radicalisation, and this more e�ec-
tive radicalisation of the extendedmodel is demonstrated in Figure 2. The weighted average in (8) is the cause
for the distinct behaviour of the extended model. When interacting with a high confidence opinion, a low con-
fidence agent will shi� their opinion closer to the high confidence opinion. The opposite e�ect will be the case
for high confidence agents.

Analysing the Impact of the Trust Rate p

4.1 To further understand the influence of p on the newmodel equations (8) and (9) need to reformatted such that
change in opinion and uncertainty is explicit, i.e. xi(t + 1) = xi(t) + h(∆x,Rσ) and σ2

i (t + 1) = σ2
i (t) +

k(∆x,Rσ),where∆x = xj − xi andRσ = σj/σi. When (8) and (9) are organised in this way, the functions h
and k are

h(∆x,Rσ) = p∗
∆x

1 +R2
σ

, (12)

k(∆x,Rσ) = p∗
(

1

1 +R2
σ

)(
(1− p∗) (∆x)2

1 +R2
σ

− σ2
i

)
, (13)

where

p∗ =
pφ
(

∆x, σi
√

1 +R2
σ

)
pφ
(

∆x, σi
√

1 +R2
σ

)
+ (1− p)

(14)

and
φ
(

∆x, σi
√

1 +R2
σ

)
=
(

1/
(
σi
√

2π(1 +R2
σ)
))

e−(∆x)2/2σ2
i (1+R2

σ) (15)
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Figure 3: Two figures depicting a surface plot of both (12) and (13) over the∆x andRσ plane at di�erent values
of p, where (12) and (13) indicate howmuch an agent shi�s their opinion and uncertainty respectively. Figure 3a
shows (12), and Figure 3b shows (13).

4.2 As shown in Figure 3, at lower values of p, (12) and (13)maintain their critical point locations while compressing
into the plane. This means that the dynamics of the simulation will remain similar while slowing the speed of
the simulation. This is congruent with the analysis in Martins (2009) where p controlled the speed of consensus
or polarisation. At p = 0.99, however, there is a clear shi� in critical locations in both (12) and (13), particularly
in (13).

4.3 Investigating the critical points of both (12) and (13) reveal that their location in ∆x space is governed by the
intersection of (15) with

1− p
p

(
2

σ2
i (1 +R2

σ)
(∆x)2 − 1

)
. (16)

for the critical points of (12) and

1− p
p

(∆x)2/σ2
i (1 +R2

σ)− 3

2(∆x)2/σ2
i (1 +R2

σ) + 3
. (17)

for the critical points of (13).

4.4 The e�ect of p on (12) and (13) is to shi� their critical points along the ∆x axis. As p → 1, both (16) and (17)
approach 0. This shi�s the intersection with the normal (15) further from 0, carrying the critical points with
them. The shi� of the critical points of (16) and (17) from 0 allows the agent to interact with more di�erent
opinion, essentiallymaking the agentmore trusting. It is reasonable that this behaviour is occurring while p→
1, because agents are less likely to be lying, allowing agents to trust other ‘outlandish’ opinions. This process of
the agents becomingmore trusting as p→ 1 is evidence that (8) reduces to the ‘trivialmodel’ continuously - the
‘trivial model’ being the model of (2), where p was not included in the likelihood and thus no misinformation
was accounted for. More evidence to support this is the fact that, atp = 1, (4) becomes the ‘trivialmodel’. Figure
4 illustrates the e�ect on the model as p→ 1. The final opinions when p is not close to 1 start to migrate closer
to the center and combine to form a consensus as p→ 1.
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Figure 4: A simulation of the extended model using di�erent values of p, with p = 0.7 (Figures 4a and 4d),
p = 0.99 (Figures 4b and 4e) and p = 0.9999 (Figures 4c and 4f). Figures 4a, 4b and 4c show the individual
trajectories of agents. Figures 4d, 4e and 4f show agent density of the same simulation depicted in the figure
above it. The simulations had 10 000 agents, and each agent had an initial uncertainty of σ = 0.1 - the same as
in Figure 2b.

4.5 Interestingly as p→ 0 the critical point locations of (12) and (13) converge to specific values. This explains why
there was little variation in critical point location for (12) and (13) with low p. Figure 5 shows the relationship of
p with the intersections of (15) with (16) and (17), and illustrates the nature of (17)’s flattening as ∆x becomes
large. This makes the intersection of (17), and with it the critical point of (13), shi� faster away from 0 than for
the quadratic governing (12)’s critical point location. This explains why (13)’s critical point shi�s more in Figure
3 when p = 0.99.
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Figure 5: A figure demonstrating the relationship the intercept (15) (shown in black) and the two quadratics (16)
and (17) have with p over∆x space. Figure 5a shows the intercepts that (15) has with (16) di�erent values of p,
and Figure 5b shows the same relationship but with (17) instead of (16). Of particular note is the shape of (17),
which flattens faster than (16) as p→ 1.

Mistrust and Extremism

5.1 In this section, we investigate the impact ofmistrust on polarisation in the presence of extremeagents. We have
defined an extreme agent as an agent that begins a simulation with lower initial uncertainty than the average
agent’s and holds an initial opinion close to the boundaries of opinion space. Figure 6 is the result of running
simulations with di�erent distributions of extreme agents along with varying rates of trust p.
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Figure 6: This figure shows the result of three di�erent agent simulations. In Figures 6a and 6d agents are
uniformly distributed; in Figures 6b and 6e a quarter of the agents are extreme and have an opinion of 0; and,
in Figures 6c and 6f a quarter of the agents where extreme with one half of those extreme agents having an
opinion of 1 while the other half had an opinion of 0. Figures 6a through 6c had p = 0.7 and Figures 6d through
6f had p = 0.999. Extreme agent had an initial σ = 0.14 and normal agents had an initial σ = 0.2. There were
a total of 10 000 agents in each simulation.

5.2 Figure 6 shows interesting impacts of mistrust with extremism on polarisation. The simulations of Figures 6a
and 6d with no extreme agents and p = 0.7 and p = 0.999 demonstrate the expected results. With no extreme
agents and initialσi = 0.2∀i the agents converged to consensus, for both p = 0.7 and p = 0.999, which follows
from Figure 1.

5.3 The simulations depicted in Figures 6b and 6e had extreme agents with opinions of 0 and σi = 0.14. When
p = 0.7, shown in Figure 6b, a dense opinion cluster formed at 0.2. This opinion cluster consists of the original
extreme agents. More interestingly, there is a secondmore di�use opinion cluster centred at approximately 0.6.
Themore di�use cluster contains regular agents whowere not persuaded by the extreme agents and thus tend
to consensus. The simulation results with extreme agents and p = 0.999 shown in Figure 6e exhibit multiple
disparate opinion clusters. Interestingly there seem to be no opinion clusters around 0 and, instead, the bulk
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of the clusters are between 0.2 to 0.6. More interestingly, there seems to be an opinion cluster at 1, despite the
initial extreme agents at 0. This is a very intriguing result that occurs consistently in multiple simulations.

5.4 The simulation results shown in Figure 6c and 6f had extreme agents at 0 and 1. The simulation results shown
in Figure 6c have a trust rate p = 0.7 and exhibit bi-polarisation. There are two opinion clusters one at 0.7 and
the other at 0.3 and these cluster contain the extreme agents that began closest to them. In contrast to the
simulation results shown in Figure 6c the simulation results for extreme agents at 0 and 1, and p = 0.999 shown
in Figure 6f are di�use and indistinct. The agents in the simulation appear to be in a state of ‘confusion’ and
can’t reach consensus, despite high levels of trust between agents.

Discussion

6.1 In this paper we have extended the model in Martins (2009) and investigated a critical part of the models, the
global trust rate p.

6.2 The extended model produced more closely clustered opinions in simulation as compared to results for the
simulations with evolving uncertainty in Martins (2009). The likely cause is that agents who gain confidence
early can then easily attract low confidence agents to their opinion. The extended model also introduces sym-
metry in p∗ i.e. if two agents switch roles in an interaction they produce the same p∗, this suggests that p∗ is a
compatibility score between two interacting agents.

6.3 In principle, the extended model is more adaptable in representing opinion exchange than the models in Mar-
tins (2009). In the Martins model, agents assume other agents had equivalent uncertainty to themselves. Such
an assumption is reasonable when you don’t know your interaction partner’s confidence but may not be valid
in di�erent contexts. For example, an agent could infer that other agents are less ormore confident than them-
selves. The extended model makes it easier to investigate these di�erent agent’s perceptions of others’ confi-
dence.

6.4 Furthermore, in real-world interactions, it is generally clear howconfident someone is in their opinion. Whether
it is subtle, like body language, or more explicit, like direct declarations of confidence, the extendedmodel can
capture these real-world exchanges, whereas the Martins model can not.

6.5 The mistrust rate p of the extended model plays an important role in the emergence of polarisation in simula-
tions. We confirmedwhatwas found inMartins (2009), that pmostly controls howquickly simulations achieve a
steady-state. How simulations from the extendedmodel behave as p→ 1 seems reasonable; as trust increases,
consensus becomes more coherent, as seen in Figures 4c and 4b. There is consensus, particularly in Figure 4c,
but variation in opinion still exists. Despite the agents being more trusting, they seem to be less certain of a
single consensus. Mathematically the reason this is happening is clear. Global trust is a static variable, whereas
uncertainty decays exponentially, according to (9), so uncertaintywill quickly reach the pointwhen the amount
of mistrust in p = 0.999 is important, stopping a strong consensus. What it means in terms of real-world opin-
ion dynamics is less clear. Perhaps it suggests that even a small amount of global mistrust can inhibit strong
consensus.

6.6 As a consequence of analysing p, we derive an implicit form for the maximum opinion and uncertainty change
for an interactionasa functionof thedistancebetween the twoagents’ opinions. Asp→ 1 theoptimumopinion
distance between two agents to maximise change in opinion and uncertainty approaches infinity. For p → 0
these optimum distances approach fixed values. For change in opinion this optimal value is

∆x =

√
2

2
σi
√

1 +R2
σ, (18)

=

√
σ2
i + σ2

j

2
(19)

and for change in uncertainty

∆x =
√

3σi
√

1 +R2
σ (20)

=
√

3(σ2
i + σ2

j ). (21)

6.7 These values are proportional to the quantity
√
σ2
i + σ2

j , the standard deviation of φ. The optimal distance for

uncertainty is larger by a factor of
√

6 than the optimal distance for opinion, meaning that agents which induce
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the most opinion change do not e�ect the most uncertainty change, and vice versa. Further, it is useful to note
that as p→ 0 the relationship between the change in uncertainty k and the opinion distance∆x

∆x <
√
σ2
i + σ2

j , k > 0 (22)

∆x >
√
σ2
i + σ2

j , k < 0. (23)

In other words, there is an inflection point
√
σ2
i + σ2

j , for ∆x in increasing or decreasing uncertainty. The in-
fluence of φ in this relationship is not surprising since p∗, which depends on φ, substantially impacts the mag-
nitude of opinion and uncertainty change. These observations merit further exploration beyond the scope of
this work.

6.8 Analysingmistrust in the extendedmodel allows empirical investigations into the influences of mistrust on po-
larisation. Controlling for mistrust as an independent variable in an experimental trial is straightforward. For
example, an experiment could give participants an initial opinion and uncertainty; then, participants would
receive information about another participant’s opinion, uncertainty, and trustworthiness. Data from the ex-
periment can be used to create an influence map, similar to Moussaïd et al. (2013), and compared to influence
maps created by the model in Figure 3. If the model is accurate in how real individuals adopt opinions, then
the influence map the model produces should be similar to the one generated from the experiment, thereby
validating themodel. If themodel is valid, this addresses the gap identified in Flache et al. (2017), implying that
mistrust is the foundation of polarisation.

6.9 The results of the extended model simulations with extremism with mistrust are interesting. Figure 6f shows
that high trust leads to ahighly disorganised final state. Compared to the two clear opinion clusters of Figure 6c,
Figure 6f shows extremely di�use consensus. As explained previously, this e�ect is likely from how uncertainty
decays exponentially while p remains fixed. So uncertainty would reach zero quickly, thereby locking agents
intoa statebefore reachingclearpolarisationor consensus. Figure6e isperplexing. Despite therebeingextreme
agents only at 0when p = 0.999, an opinion cluster forms close to 1 while no cluster forms close to 0. The likely
explanation is the extremeagents at 0 attracted agents located at 0.8 or closer to 0while failing to attract agents
further away than 0.8. As a result, the agents with opinions above 0.8 form their opinion cluster. In contrast
Figure 6b is easier to understand and explain. The cluster at 0.2 is formedmainly by the original extreme agents
shi�ed slightly from 0 to 0.2. The cluster at 0.6 results from the attraction of regular agents initially closer to 0
to the pole at 0.2 and the remainder of the regular agents, whose initial opinionwas closer to 1, forming amore
di�use consensus at 0.6.

6.10 This paper shows that the models devised in Martins (2009), and the extended model, are fertile ground for
research in opinion dynamics. These models present interesting behaviour with extremism along with novel
behaviour without extremism. The extension made to Martins (2009) increased the model’s flexibility and al-
lowed for more realistic agent interaction. Most importantly, these models can address the cleavage problem
fundamentally, and if we can empirically verify themodels, wewill establish a deeper understanding of opinion
dynamics.
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Model Documentation

Themodelusedwasdeveloped inMatLab. Thecode isavailablehere: https://www.comses.net/codebases/
4ec9835f-1d89-4948-82cd-8426c05f2659/releases/2.0.0/. The implementation of both Algorithm 1
and2canbe foundathttps://www.comses.net/codebases/4ec9835f-1d89-4948-82cd-8426c05f2659/
releases/2.0.0/. Archivedathttps://web.archive.org/web/20210514042105/https://www.comses.
net/codebases/4ec9835f-1d89-4948-82cd-8426c05f2659/releases/2.0.0/.
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