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ABSTRACT 
 

Colour is a fundamental and most likely one of the primary attributes to be observed by the human 
senses, making it an essential part of human life and culture. This study investigates the 
bioproduction and potential application of bacterial pigments obtained from abattoir wastewater.  
Bacteria isolates recovered from abattoir wastewater were screened for pigment production and 
identified using the 16S rRNA gene sequence. Optimal physicochemical conditions of parameters 
were investigated and harnessed for bulk pigment production. Pigments produced were 
characterised using UV-Visible Spectrophotometer and Fourier Transform Infra-Red (FTIR) 
Analysis.  The antibacterial and dyeing ability of the extracted pigments were evaluated. Two 
bacteria namely, Chryseomicrobium palamuruense strain PUI and Micrococcus luteus strain 1k 
produced orange and yellow pigments respectively. The UV-visible spectrum of the orange pigment 
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produced by Chryseomicrobium palamuruense showed surface plasmon resonance peaks at 262, 
426, and 453 nm while that of the yellow pigment produced by Micrococcus luteus showed a single 
peak at 260 nm. The FTIR analysis of the extracted pigments indicated the presence of some 
functional groups namely hydroxyl (OH), C-H, primary and secondary C-O, and skeletal C-C 
vibrations.  Chryseomicrobium palamuruense and Micrococcus luteus showed no antibacterial 
activity against the selected typed bacterial isolates assessed in this study. The orange pigment 
extracted from Chryseomicrobium palamuruense was retained on cotton and polyester producing 
different shades of colour on the two fabrics when used as a dyeing agent. The pigment-producing 
potentials of these organisms suggest their relevance as promising dyes in textile industry. 
 

 
Keywords: Pigmented bacteria; Chryseomicrobium palamuruense; Micrococcus luteus; antibacterial 

activity; textile dye. 

 

1. INTRODUCTION 
 
The discovery of safe, biodegradable, and 
sustainable pigments from biological origin 
became a veritable alternative for synthetic 
pigments which have been reported to be toxic, 
posing a huge health risk for humans [1,2]. 
These biological pigments have been derived 
from various sources namely: plants [3], animals 
[4], and microorganisms such as microalgae 
[5,6], yeasts and filamentous fungi [7-9], bacteria 
and actinobacteria [10,11]. Having discovered 
microorganisms with an abundant source of 
novel bioactive compounds [12], its pigments 
were most preferred compared to other biological 
origins such as plants and animals due to their 
solubility, availability, and simple cultivation 
technique [13], the stability of the pigments 
produced [14], rapid growth rate leading to higher 
productivity without seasonal variation, ease of 
genetic modification [15]. 
 
Pigments, like other natural products such as 
vitamins, steroids, enzymes, and antibiotics, is a 
secondary metabolite mostly produced within the 
cytoplasm of microorganisms consist of various 
chemical components having biological functions 
often produced in response to normal or harsh 
ecological conditions [16,17]. For example, 
microorganisms use pigment molecules as safety 
against ultraviolet irradiation [18], energy source 
[19], and confrontational tool against extreme 
temperature and desiccation [20]. Pigment-
producing bacteria are ubiquitous hence, found 
in different ecological niches namely, air [10], soil 
[21-23], marine [24-27], freshwater and river [28- 
30], halophilic region [3], desert [31], organic 
residue [32], landfills [33], domestic and industrial 
effluent [34,35].  
 
Bacteria produce various hues of coloured 
pigments such as red (Serratia marcescens, 
Gordonia jacobae, Deinococcus sp.), yellow 

(Micrococcus luteus, Hymenobacter sp.), green 
(Pseudomonas sp., Bacillus cereus), orange 
(Erythrobacter sp., Planococcus maritimus), blue 
(Corynebacterium insidiosum, Erwinia 
chrysanthemi, Vogesella indigofera), red-yellow 
(Kocuria sp., Chryseobacterium artocarpi), and 
purple (Chromobacterium violaceum, 
Janthinobacterium lividum Duganella 
violaceinigra) pigments [36-38]. Aside from being 
used as colourants in textile industries, Bacterial 
pigments have found usefulness in the food 
industries as colouring agents in yoghurt, milk, 
carbonated drinks [39], meat [40], poultry feed 
[41], animal and fish feed [42,43], and as a 
source of Vitamin A [44,45]. They have also been 
found relevant in the biomedical industries as 
antioxidant agents [29,46,47,48], anticancer 
agents [49,50], antiviral agent [51], antitumor 
agent [27] and antimicrobial agent [52]. 
 

Although an array of pigment-producing bacteria 
has been reported, there is still a need to further 
discover the potential of untapped bacteria 
species which could be a suitable replacement 
for a more secure and low-cost microbial 
pigment. This study seeks to isolate pigment-
producing bacterial species from abattoir 
wastewater and harness their potential as 
antibacterial and dyeing agents. 
 

2. MATERIALS AND METHODS 
 

2.1 Sample Location 
 

Wastewater samples from Ola-Sheu 
slaughterhouse Ola-Olu (7

o
29’29.3”N, 4

o
33' 

08.9"E) were assessed for this study.   
 

2.2 Isolation and Screening of Pigment-
Producing Bacteria  

 

Ten-fold serial dilutions were prepared and 0.1 
mL of the diluents were spread-plated on 
Nutrient agar plates. The inoculated plates were 
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incubated at 37 
o
C for 24-48 hours, after which 

the plates were observed for pigmented colonies. 
The pigmented colonies were inoculated into 5 
mL Nutrient broth (HiMedia) and incubated at 37 
o
C for 24 hrs.  Following incubation, 0.2 mL 

aliquot was inoculated into 2% glycerol-
containing Nutrient broth and incubated at room 
temperature (25  2 

o
C) for 48 hours under 

shaking conditions.  The isolates with intense 
colour change in the broth after 48 hours and 
also with coloured pellets after centrifugation at 
3,500 rpm for 20 minutes were selected for 
identification and further studies [53]. The pure 
colonies were selected and stored in Nutrient 
agar slants for further use. 
 

2.3 Molecular Characterisation of the 
Bacterial Isolates 

 

Bacterial DNA was extracted using the modified 
method of Yamagishi et al. [54]. The Polymerase 
Chain Reaction (PCR) amplification was 
performed using a final reaction volume of 25 µL 
containing master mix (12.5 µL); forward primer 
5’ – CCAGCAGCCGCGGTAATACG -3’ (1 µL); 
reverse primer 5’ – ATCGGCTACCTTGTT 
ACGACTTC -3’ (1 µL) [55]; nuclease-free water 
(5.5 µL) and DNA template (5 µL). The reaction 
was performed in an automated thermal cycler 
(GeneAmp PCR System 9700) under the 
following optimized cycling program: an initial 
denaturation step at 94 °C for 4 min; 30 cycles of 
denaturation at 94 °C for 30 seconds, annealing 
at 53 °C for 1 min, extension at 68 °C for 2 
minutes; and a final extension at 68 °C for 5 
minutes. The temperature was maintained at 4 
°C till it was subjected to gel electrophoresis [56]. 
The amplified PCR fragments were subjected to 
electrophoresis using 1.5% agarose gel. The 
amplified PCR fragments were purified and 
sequenced. The resulting sequences were 
analyzed using Basic Local Alignment Search 
Tool (BLAST) and aligned with the most similar 
bacterial species found in the GenBank. 
 

2.4 Optimisation of Physicochemical 
Factors on Pigment Production 

 

For each physicochemical parameter considered, 
100 mL Conical flasks containing 25 mL of 
Nutrient broth were used for the optimization 
procedures. The optimum incubation period for 
pigment production was determined using 1% of 
the standardized inoculum volume equivalent to 
1.5×10

8
 cfu/mL.  Samples were withdrawn at 12 

hours intervals for up to 72 h. The agitation effect 
on pigment production was determined for 48 h 
both in an incubator and rotary shaker (120 rpm) 

[57]. Optimum inoculum volume supporting 
bacterial pigment production was conducted 
using different volumes namely, 0.5%, 1.0%, 
1.5%, 2.0%, and 2.5% [58]. Similarly, optimum 
pH validating adequate pigment production was 
determined by adjusting Nutrient broth pH with 
1N sodium hydroxide (NaOH) or 1N of 
hydrochloric acid (HCl) from pH 3 to 11 [57]. 
Suitable temperature was determined from 
varying temperatures namely, 25, 30, 35, 40, 45, 
and 50 °C [59]. All parameters excluding 
temperature were incubated at room temperature 
(25 2 °C), and shaking condition of 120 rpm. 
The absorbance readings of samples were 
determined using a visible spectrophotometer at 
a fixed wavelength of 590nm.  
 

2.5 Production and Extraction of Bacterial 
Pigment 

 

Bulk production of bacterial pigments was carried 
out using optimal conditions of the screened 
parameters. Thereafter, bacterial cells were 
harvested by centrifuging at 3,500 rpm for 20 
min, after which it was washed in distilled water 
and then centrifuged at 3,500 rpm for 20 min.  
The pellets were re-suspended in Ethanol for 
pigment extraction.  The mixture was vortexed 
and the suspension was centrifuged at 3,500 rpm 
for 20 min to collect the supernatant.  
Centrifugation was repeated till the cell pellets 
became colourless.  After centrifugation, the 
supernatants containing the diffused pigments 
were filtered using 0.45 mm Whatman filter paper 
followed by a 0.22 µm millipore membrane filter 
[53].  
 

2.6 Characterisation of the Extracted 
Pigment 

 

Characterisation of the pigments was carried out 
using UV-Vis Spectrophotometer and Fourier 
Transform Infra-Red (FTIR) Analysis. The 
surface plasmon resonance (SPR) of the 
extracted pigments was observed by a UV-Vis 
spectrophotometer (UV-1800 Series, Shimadzu, 
Japan) with a scanning range of 200-600 nm. 
Absorbance peaks for each pigment produced 
were observed. Similarly, spectral peaks of the 
extracted pigments were obtained using Fourier 
Transform Infra-Red Analyser (Agilent 
Technologies, USA) [60].  
 

2.7 Antibacterial Activity of Bacterial 
Pigments 

 

Evaluation of the antibacterial activity of the 
extracted pigments was carried out on some 
laboratory typed bacterial isolates using the agar 
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well diffusion method.  Six Gram-positive 
bacteria isolate namely, Clostridium sporogenes 
(NCIB 532), Bacillus polymyxa (NCIB 4747), 
Staphylococcus aureus (NCIB 8588), Bacillus 
stearothermophilus (NCIB 8222), Bacillus cereus 
(NCIB 6349), Bacillus subtilis (NCIB 3610) and 
four Gram-negative isolates namely, Proteus 
vulgaris (NCIB 67), Klebsiella pneumoniae (NCIB 
418), Proteus morganella (NCIB 10466), Proteus 
rettgeri were used as test isolates.  The test 
isolates were standardized (0.5 McFarland) and 
seeded on Mueller Hinton agar (MHA) plates. 
Bored wells in inoculated plates were filled with 
various volumes of the bacterial pigments 
solution (25 µL, 50 µL, 75 µL, and 100 µL). The 
plates were incubated at 37 

o
C for 24 h and the 

plates were observed for a zone of inhibition. 
 

2.8 Evaluation of dyeing properties of 
Bacterial Pigments 

 
A 2 cm

2
 area of three (3) white pieces of cotton 

and polyester fabric was soaked in 3 mL of the 
solvent extract of the pigments and subjected to 
incubation at room temperature for 48 h at room 
temperature.  After incubation, the pieces of cloth 
were allowed to dry and each fabric was treated 
with 0.1 M HCl (an acid solution), 0.1 M NaOH 
(an alkali solution), and soap solution for 15 
minutes. Effects of different mordants were 
observed relating to colour fixation, colour 
stickiness, and colour removal [61]. 
 

2.9 Statistical Analysis 
 
Experiments were conducted in triplicates, and 
values obtained are expressed as mean   
standard error.  Statistical analysis and graphical 
representation of data obtained were performed 
using Microsoft Excel software.  
 

3. RESULTS AND DISCUSSION 
 

3.1 Isolation and Identification of Isolates 
 
Two pigment-producing bacterial species were 
isolated (AW6 and AW8) and selected after 
screening for further studies. The 16S rRNA 
sequencing and BLASTN analysis of their 
amplified PCR products identified the bacterial 
isolates (AW6 and AW8) as Chryseomicrobium 
palamuruense strain PU1 with a percentage 
identity of 98.55% and Micrococcus luteus strain 
1k with percentage identity of 99.05% 
respectively. The pictorial representation of the 
isolates on Nutrient agar plates is presented in 
Fig. 1. Chryseomicrobium palamuruense first 

reported by Pindi et al. [62] was isolated from a 
sediment sample collected from drainage.  
Micrococcus luteus isolated from soil, water, and 
landfills has been established by several studies 
[24,33,53].   The precedence of these pigmented 
bacteria in the environment suggests their 
abundance in soil, agro-wastes, and wastewater 
as their natural ecological niche. 
 

3.2 Optimisation Conditions for Pigment 
Production of Identified Bacterial 
Isolates 

 

The result of the effect of the incubation period 
on pigment production revealed that 
Chryseomicrobium palamuruense showed the 
highest peak at 36 h with an absorbance of 1.894 
at 590 nm while Micrococcus luteus showed the 
highest peak at 60 h with absorbance of 2.677 at 
590 nm. Adaptability and varying generation 
times for these isolates could be attributed to the 
maximum incubation period as suggested by 
Hizbullahi et al. [57].  
 
In this study, it was observed that pigment 
production was higher under shaking conditions 
as both Chryseomicrobium palamuruense and 
Micrococcus luteus gave an absorbance of 1.546 
and 1.234 under shaking conditions as against 
0.224 and 0.272 respectively under static 
conditions (Fig. 3).  Availability and frequent 
circulation of oxygen are vital for bacteria growth 
and pigment production. Laboratory experiment 
subjected to shaking conditions increases 
microbial activities. Pigment under different 
shaking conditions was produced in high 
volumes as against static conditions as reported 
by Garg et al. [59] for Micrococcus luteus and 
Micrococcus varians and Hizbullahi et al. [57] for 
Salinococcus roseus. This validates the 
increased pigment production observed for 
Cryseomicrobium palamuruens and Micrococcus 
luteus under shaking as compared to the static 
condition. 
 
To study the effect of inoculum volume, the 
absorbance reading for the culture broths 
inoculated with different volumes of standardized 
inoculum (0.5-2.5%) as shown in Fig. 4.  It was 
observed that pigment production increased with 
an increase in inoculum volume from 0.5-1% and 
a decrease from 1.5% for Chryseomicrobium 
palamuruense with maximum absorbance at 1% 
inoculum volume.  For Micrococcus luteus, there 
was an increase in pigment production with an 
increase in inoculum volume up to 2.5%. Several 
studies have established the significance of 
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inoculum volume in pigment production. For this 
study, the maximum and workable inoculum 
volume was observed to be 1% for 
Chryseomicrobium palamuruense. Banerjee et 
al. [58] documented that pigment production 
increases with an increase in inoculum volume 
by up to 1%, however, a further increase in 
inoculum volume leads to a decrease in pigment 
production.  An increase in the inoculum volume 
suggests a rapid exponential phase and 
utilization of available nutrients with a rapid 
stationary and decline period. This might have 
some effect on pigment production as suggested 
in this study. A different finding was observed for 
Micrococcus luteus as 2.5% inoculum volume 
still showed a steady and significant increase in 
pigment production.  
 
The result of the effect of pH on pigment 
production of Chryseomicrobium palamuruense 
and Micrococcus luteus revealed that the rate of 
pigmentation was higher around neutral pH (Fig. 
5).  Growth was not observed for 
Chryseomicrobium palamuruense at pH 3 to 5 
while there was pigmentation at pH 6 to 11 with 
the maximum pH for pigmentation at pH 8.  For 
Micrococcus luteus, there was no growth 
observed between pH 3 to pH 5 and pH 10 to pH 
11 but the maximum pH for pigment production 
was observed at pH 8 (absorbance 1.875 at 590 
nm). In summary, at acidic pH 3-5, both 
organisms showed no growth and both showed 
the highest pigmentation at pH 8. The acidity and 
alkalinity of the culture medium guarantee 
microbial growth, especially pigment-producing 
bacteria. Roundabout neutral and slightly alkaline 
pH (7 and 8) was found to support both 
Chryseomicrobium palamuruense and 
Micrococcus luteus growth and pigment. Slight 
alkaline pH of 8 recorded the highest 
pigmentation for Chryseomicrobium 
palamuruense and Micrococcus luteus.  Similar 
findings reported by Pindi et al. [62] observed 
Chryseomicrobium palamuruense to grow at a 
pH range of 7-10 with optimum growth at pH 8 
corresponds to the findings of this study.  Similar 
pH conditions were reported for other bacteria. 
Hisbullahi et al. [57] observed that Salinococcus 
roseus and Pseudomonas aeruginosa showed 
the highest pigmentation at pH 7 while 
Chromobacterium violaceum showed the highest 
pigmentation at pH 8.  Also, Garg et al. [59] and 
Poddar et al. [35] in their reports observed 
Micrococcus varians and Enterobacter sp. PWN1 
to pigment at pH 7 and 7.2 respectively. It is 
important to state that at acidic pH of 3-5, both 
organisms showed no growth while at alkaline 

pH of 9-11, Micrococcus luteus showed no 
visible growth. A somewhat different report by 
Minal and Rohini [24] recorded the growth and 
survival of Micrococcus luteus at pH 2, 4, 7, 8, 
and 10 with optimum pH of 7.  As observed in all 
reported studies, this implies that the organisms 
require neutral pH and a slightly alkaline medium 
for their growth and pigment production as 
evidenced in the absence of growth in acidic. It 
could be suggested that acidic (strong and weak) 
and strong alkaline mediums could repress and 
stall their metabolic activities.        
 
The result of the effect of temperature on 
pigment production revealed that the highest 
pigment production was observed at 35 

o
C and 

30 
o
C in this study for Chryseomicrobium 

palamuruense and Micrococcus luteus while both 
had no growth at 50 

o
C (Fig. 6). Suitable 

temperature conditions have been established as 
an important requirement for bacteria growth. For 
pigment production by bacteria, the optimum 
temperature is pivotal for substantial yield. 
Different resultant effects of temperature on 
growth and pigment production were reported for 
this study. The highest pigment production 
temperature was observed at 35 

o
C for 

Chryseomicrobium palamuruense. A similar 
study by Hizbullahi et al. [57] reported 35 

o
C as 

the optimum temperature for pigment production 
in Chromobacterium violaceum. Interestingly, the 
first study reporting Chryseomicrobium 
palamuruense documented its optimum 
temperature as 37 

o
C [62]. For Micrococcus 

luteus isolated in this study, 30 
o
C was observed 

as its optimum temperature. Earlier reports by 
Garg et al. [59] and Minal and Rohini [24] 
isolated Micrococcus luteus as a yellow pigment-
producing bacteria from bioenhancer ‘Amrit pani’ 
and marine water respectively, jointly reported an 
optimum temperature of 30 

o
C thus, 

corroborating the finding of this study.   All 
organisms reported in all of these studies have 
been established as mesophilic bacteria whose 
optimum growth temperature ranges between 25 
– 45 

o
C.   

 

3.3 Production and Extraction of the 
Pigment 

 
The fermentation medium was produced using 
the best parameters of optimization for each of 
the isolates which are 36 hours incubation 
period, 1% inoculum volume, 35 

o
C incubating 

temperature, pH value of 8 under shaking 
conditions for Chryseomicrobium palamuruense 
and 60 hours incubation period, 2.5% inoculum 
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volume, 30 
o
C incubating temperature, pH value 

of 8 under shaking condition for Micrococcus 
luteus.  The pigmented broths were centrifuged 
at 3000 rpm for 20 minutes, the supernatant was 
discarded and the pellets were re-suspended in 
Ethanol. Approximately 10 mL ethanolic extract 
of bacterial pigment were obtained from 200 mL 
of the cultured broth. The pictorial representation 
of the production broth, coloured cell pellets, and 
ethanoic solvent extract of the pigments are 
shown in Fig. 7. The choice of solvent used for 
extraction was crucial as it must possess the 
ability to separate the significant analyte from a 
mixture of compounds [63].  In other words, 
pigment extraction was based on its affinity to the 
suitable solvent used. A study conducted by 
Sasidharan et al. [64], reported the use of 
ethanol as their organic solvent for the extraction 
of pigment from Chromobacterium sp. NIIST.  
This finding might imply that the chemical 
composition of each pigment influences the 
choice of solvent.  Since carotenoids are 
lipophilic, they are found to be soluble in organic 
solvents like methanol, ethanol, and acetone.  
 

3.4 UV-Visible Spectroscopy of Extracted 
Bacterial Pigment 

 

The UV-visible spectrum of the orange pigment 
produced by Chryseomicrobium palamuruense 
showed surface plasmon resonance peaks at 
262, 426, and 453 nm while the UV-visible 
spectrum of the yellow pigment produced by 
Micrococcus luteus showed a single peak at 260 
nm (Fig. 8). 
 

3.5 Fourier Transform Infra-Red (FTIR) 
Analysis of Extracted Bacterial 
Pigment 

 

The Fourier Transform Infra-Red (FTIR) 
spectroscopy of the pigments produced by 
Chryseomicrobium palamuruense and 
Micrococcus luteus indicate the presence of 
some functional groups such as hydroxyl (OH), 
C-H, primary and secondary C-O, skeletal C-C 
vibrations for the pigments. Spectral peaks and 
detailed interpretations of the pigments are 
presented in Fig. 9. 
 

3.6 Antibacterial Activity of Bacterial 
Pigment 

 

The extracted pigments (orange and yellow) of 
both isolates (Chryseomicrobium palamuruense 
and Micrococcus luteus) showed no antibacterial 
activity on the Gram-positive and Gram-negative 
test organisms obtained from the Department of 

Microbiology, Obafemi Awolowo University, Ile-
Ife.  This result was similar to a study conducted 
by Park et al. [65] where an increase in cell 
growth of Escherichia coli was observed when it 
was treated with flexirubin (FL) extracted from 
Chryseobacterium specie.  Although, several 
reports had supported the antimicrobial activity of 
different pigments obtained from pigmented 
bacteria.  The carotenoid pigment produced by 
Micrococcus luteus was found to be effective 
against Colletotricum gloeosporioides and 
Fusarium solani [59].  As part of control 
measures, this study and Park et al. [65] tested 
ethanol and (NaHCO3) respectively against the 
selected bacterial isolates with both solvents 
showing antibacterial activity. Park et al. [65] 
documented that a cell growth inhibition effect 
should be expected when the solvent with 
antibacterial activity was used for pigment 
extraction, as reported in their study against 
Escherichia coli. The antibacterial activity of 
pigment recorded in most studies might be a 
result of the bactericidal activity of some solvents 
used in the extraction process.  
 

3.7 Dyeing Potential of Bacterial Pigment 
 
The cotton absorbed the orange pigment more 
than the polyester while none of the fabric 
absorbed the yellow pigment.  It was noted that 
when the orange-stained fabrics were treated 
with an acid solution, alkaline solution, and soap 
solution, both fabrics retained their colour in the 
alkaline solution, the cotton fabric alone retained 
the pigment in the acid solution while both fabrics 
lost their pigmentation in soap solution. Fig. 10 
gives the pictorial representation. The 
mechanism by which dye were absorbed is 
influenced by the chemical composition of the 
textile fabric to be dyed.  In this study, it was 
observed that the orange pigment extracted from 
Chryseomicrobium palamuruense was absorbed 
by the cotton fabric than the polyester fabric 
retaining light orange colouration.  Alkaline 
mordant retained the colour in both fabrics 
however, acidic mordant could only retain the 
colour on cotton fabrics. The choice of suitable 
mordant was important for better fixation, 
adhesion, and sometimes a change in the colour 
shade of the pigment to the fabric [5].  Cotton 
fabric, as stated by Banerjee et al. [66], retained 
significant bacterial pigment while the silk fabric 
retained little bacterial pigment in their study. It is 
important to note that bacterial pigment have 
potential in textile industry as documented in this 
study and also reported in a recent study [67]. 
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Fig. 1. Pictorial Representation of Chryseomicrobium palamuruense strain PU1 (AW6), 
Micrococcus luteus strain 1k (AW8) 

 

 
 

Fig. 2. Effect of Incubation Period on Pigment Production of Chryseomicrobium palamuruense 
(AW6), Micrococcus luteus (AW8) 

 



 
 
 
 

Daramola and Awojobi; J. Adv. Microbiol., vol. 23, no. 8, pp. 36-50, 2023; Article no.JAMB.102775 
 

 

 
43 

 

 
 

Fig. 3. Effect of Agitation on Pigment Production of Chryseomicrobium palamuruense (AW6), 
Micrococcus luteus (AW8) 

 

 
 

Fig. 4. Effect of Inoculum Volume on Pigment Production of Chryseomicrobium palamuruense 
(AW6), Micrococcus luteus (AW8) 

 



 
 
 
 

Daramola and Awojobi; J. Adv. Microbiol., vol. 23, no. 8, pp. 36-50, 2023; Article no.JAMB.102775 
 

 

 
44 

 

 
 

Fig. 5. Effect of pH on Pigment Production of Chryseomicrobium palamuruense (AW6), 
Micrococcus luteus (AW8) 

 

 
 

Fig. 6. Effect of Temperature on Pigment Production of Chryseomicrobium palamuruense 
(AW6), Micrococcus luteus (AW8) 
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Fig. 7. Pigmented Cultured Broth (A), Pigmented Cell Pellets (B) and Ethanoic Solvent Extracts 
(C) of Chryseomicrobium palamuruense (i), Micrococcus luteus (ii) 

 

 
 

Fig. 8. UV-Vis Spectroscopy of Chryseomicrobium palamuruense (AW6), Micrococcus luteus 
(AW8) 
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Fig. 9. FTIR Spectrum of Chryseomicrobium palamuruense (A), Micrococcus luteus (B) 
 

 
 

Fig. 10. Dyeing Image of Extracted Pigments from Chryseomicrobium palamuruense (A), 
Micrococcus luteus (B) 

 

4. CONCLUSION 
 
The significant outcome of this study was the 
isolation of Chryseomicrobium palamuruense 
with little background information on its pigment 
production prowess.  Optimum conditions 
required for high-yield pigment production for 

each bacterial isolate were reported in this study. 
Likewise, contrary to expectations, this study                
was able to report that the pigments                               
have no antibacterial activity suggesting                     
most organic solvents possess antibacterial 
activity before the antibacterial                             
assessment.  
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