Asian dournal of Advanced
Rescarch and Reports

Asian Journal of Advanced Research and Reports

Volume 17, Issue 10, Page 41-57, 2023; Article no.AJARR.103503
T ISSN: 2582-3248

B

On the Norms of Toeplitz Matrices with the
Generalized Oresme Numbers

[ *
Sevda Aktas * and Yuksel Soykan *
@Department of Mathematics, Faculty of Science, Zonguldak Blilent Ecevit University, Zonguldak-67100, Turkey.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final
manuscript.

Atrticle Information
DOI: 10.9734/AJARR/2023/v17i10532
Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer
review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/103503

Received: 15/05/2023
Accepted: 20/07/2023
Original Research Article Published: 31/07/2023

ABSTRACT

In this article, we present results on Toeplitz matrices with Oresme numbers components. First, the Toeplitz
matrices with Oresme numbers components are created and then the Frobenius(Euclidian), row and column
norms of these matrices are found. Furthermore lower and upper bounds are obtained for the spectral norms
of these matrices. In addition, the upper bounds for the Frobenius and spectral norms of the Kronecker and
Hadamard product matrices of the Toeplitz matrices with the Oresme numbers are calculated.
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1 INTRODUCTION

In recent years, many articles have been published on the norms of special matrices with the entry of special
cases of Horadam numbers. Solak [1] calculated the spectral norms of Toeplitz matrices with Fibonacci and Lucas
numbers. Akbulak and Bozkurt [2] obtained some special norms of Toeplitz matrices given with Fibonacci and
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Lucas numbers and lower and upper bounds for the spectral norm. Later, Shen [3] obtained some special norms
for Toeplitz matrices with k-Fibonacci and k-Lucas numbers components, and bounds for the spectral nhorms of
these matrices, lower and upper bounds for the spectral norms of Hadamard and Kronecker products of these
matrices. Eylem G. Karpuz [4] made a study on the norms of Toeplitz matrices whose elements are Pell numbers.
Similarly, Dagdemir [5] gave a few special norms of Toeplitz matrices such as Pell, Pell-Lucas and Modified Pell
numbers, and lower and upper bounds for spectral norm. Uygun, [6], obtained some special norms of Toeplitz
matrices with Jacobsthal and jacobsthal-Lucas numbers, lower and upper bounds for the spectral norm, and the
upper bound of the Frobenius norm of the Kronecker and Hadamard products of these matrices. Furthermore,
Uygun [7] present a parallel study of the k-jacobsthal and k-jacobsthal-lucas numbers.

Now, in the light of previous articles, we present some special norms of Toeplitz matrices with Oresme numbers
and this study in which we obtained the bounds of these norms.

A generalized Oresme sequence {Wn.}, ., = {Wn (Wo,W1)}, -, is defined by the second -order recurrence
relation B -
Wa = Was = ;Was (1.1)

with the initial values Wy = ¢y, W1 = ¢1 not all being zero.

The sequence {W,}, -, can be extended to negative subscripts by defining
W_on =AW_ (1) — AW_(n_2)

forn =1,2,3,---. Therefore, recurrence equation (1.1) holds for all integer n.

The first few generalized Oresme numbers with positive subscript and negative subscript are given in the following
Table 1.

Table 1. A few generalized Oresme numbers

n W, W_n.

0 Wo Wo

1 W AWy — AW,

2 Wi — :Wo 12W, — 16W)

3 SWh — AW 32Wo — 48W

4 sWi — EWo 80Wo — 128W)
5 =Wy — Wo 192Wo — 320W,
6 Wi—ZWo 448Wo — 768 W4
T W= & W 1024Wo — 1792W;
8 Wi - =Wo  2304Wo — 4096,
9 e Wi— g Wo o 5120Wo — 9216W1
10 2:Wi — 105 Wo  11264Wo — 20480W1

For more information on generalized Oresme numbers, see for example, Soykan [8].

Modified Oresme sequence {Gx},,,, Oresme-Lucas sequence {H,},, and Oresme sequence {O.}, -, are
defined respectively, by the second order recurrence relations;

Guiz = Gupi—2Gn, Go=0,Gr=1, (1.2)

Hn+2 = Hn+1 - iHny HO = 27H1 - 1, (13)
1

On+2 - On+1 - ion Oo = 0701 = 5 (14)
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The sequences {Gn},,», , {Hn}, 5o @and {On}, -, can be extended to negative subscripts by defining

G = 45G—(n—1) - 4G—(n—2)7
H_, = 4H,(n,1) - 4H7(n72),
Ofn = 407(7171) - 407(n,2).

forn =1,2,3, - respectively.
Therefore recurrence Equ. (1.2), Equ. (1.3) and Equ. (1.4) hold for all integer n.

Next, we present the first few values of the modified Oresme, Oresme-Lucas and Oresme numbers with positive
and negative subscripts:

Table 2. The first few values of the special second-order humbers with positive and negative subscripts

n 0 1 2 3 4 5 6 7 8 9 10 11
3 T 5 3 7 T 9 5 11
Gn 0 1 1 1 3 76 15 o T 356 356 To2d
G, ... —4 —-16 —48 —-128 =320 -—-768 —1792 —4096 —9216 —20480 —45056
I 9 1 1 1 1 n 1 1 B 1 1 1
n 2 4 8 16 32 64 128 256 512 1024
H_, 4 8 16 32 64 128 256 512 1024 2048 4096
o o L 1 3 1 5 3 R 1 9 5 11
n 2 2 8 4 32 32 128 32 512 512 2048
O_n ... =2 —8 —24 —64 —160 —384 —896 —2048 —4608 —10240 —22528

Characteristic equation of generalized Oresme sequence {W,},, -, is given as the quadratic equation

2 1
—x4+-=0
T T 1 ,

whose roots are «, 3 and
1

Binet’s formula of Generalized Oresme sequence is given as

W, = (nW1 - % (n—1) WO) (%)H :

Binet’s formulas of modified Oresme, Oresme-Lucas and Oresme numbers are

n—1 n
Gn = na = onoi
1
n
n = 2« = onsi
n
n
On = n«a :27,

and Binet’s formulas of modified Oresme, Oresme-Lucas and Oresme numbers at the negative index are

G_n, = —-4"Gn=-nx2""
H_, = 4"H,=2"""
O_, = —-4"0,=-nx2".
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2 PRELIMINARIES

A matrix T = [t;;] € M, (C) is called a Toeplitz matrix if it is of the form ¢;; = ¢;—; for

to t_1 t_o -+ ti—n

tl t() t—l e t2—n

T, = ta t1 to t3—n
tn—l tn—2 tn—3 tO

Now, we give some preliminaries related to our study. Let A = (a;;) be an m x n matrix. The £, norm of the matrix
A is defined by

1A, = 30 Ja )b (1< p < oo).

=1 j=1
If p= oo, then [|A]| , = limp— oo [|A]l, = maxi; |as;] .
The well-known Frobenius (Euclidean) and spectral norms of the matrix A are defined respectively by

1AL = OO0 fayl?)?

i=1 j=1

IAll, =, / max || (2.1)

where the numbers \; are the eigenvalues of matrix A7 A and the matrix A” is the conjugate transpose of the
matrix A. The following inequality between the Frobenius and spectral norms of A holds.

and

1
7n 1Al < [|All, < Al - (2.2)
It follows that

All, < Al < VallAlly-

In literature, there are other types of norms of matrices. The maximum column sum matrix norm of n. x n matrix
A= (aij) iS

n
14l = o 3 lass (23)
1=
and the maximum row sum matrix norm is
n
4l = e 3o (2.4
i=

The maximum column lenght norm ¢; (.) and maximum row lenght norm 74 (.) of on matrix of order m x n are
defined as follows

[N

o () = max, (Z '“”"2) = e llealizallz 25

=1

and

(2.6)

<
-,
=
I
iE
&
|§\><
PR
[
B
=
~
[N

= max H[a]"
T a<i<m || =t

respectively.
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Forany A, B € M., (C), the Hadamard product of A = (a;;) and B = (b;;) is entrywise product and defined by
Ao B = (ai;bi;) and have the following properties

[AoBll, <ri(A)ei(B), (2.7)
and
[A e Bll, <[|All, 1Bl - (2.8)
In addition,
Ao Bz < AllgIBllp- (2.9)
Let A € My (C), and B € M., (C) be given, then the Kronecker product of A, B is defined by
a11B e alnB
[A® Bl = :
amiB - amn B
and have the following properties
A Bll, = [AllBl,, (2.10)
A@ Bl = [lAllpIBllg-

In the following theorem, we present some sum formulas of generalized Oresme numbers.

Theorem 2.1. For generalized Oresme numbers, we have following sum formulas:
(@) [8, Proposition 26. a] If + (z — 2)* # 0,i.e.,x # 2, then

n _ n+1 n+1 _
Zkak: (x 4)$ Wn +x Whn_1 +4W0+4(W1 W())Z' (211)
k=0

(—2)°

(b) [8, Proposition 26. d] I (2z — 1)* # 0,i.c., z # %, then

"\ 4" W pir + 4z — D™ W, + Wo — 4zW,
E T W_k = .
pard (2z —1)2

(c) [9, Proposition 2.1. a] If & (x — 4)® # 0,i.e.,x # 4, then

D ——
k=0 (@—4)

where
A=(z—4)(z—8) "MW + (z — )" W2, +16(x — 4)W5 — 16a(z — 4)(Wo — W1)? — 272" F5(Wp —
2W1)3(22" — 2™)a.

(d) [9, Proposition 2.1. d] If (4z — 1)® # 0,i.e.,x # % then

” A
DT AT ——
= (4z — 1)

where
A = 164z — D)z W2, 4 + 82z — )4z — DT W2, + (4o — DWE — 16(dax — D)W + 8(Wo —
2W1)% (27" 2™ — 1)

If we set x = 1 in the last Theorem, we have the following corollary.
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Corollary 2.2. For generalized Oresme numbers, we have following sum formulas:

(a)

> Wi = —3W, + Wy +4W1. (2.12)
k=0
(b)
> O Wop =AWy + Wo — 4W. (2.13)
k=0
(c) §
S Wi = _2i7(21w,3 C3WE, — A8WL(2Wo — W) — 2725 (W — 22277 — 1)), (2.14)
k=0
(d) i
d>owz = %(48W3n+1 +24W2, + 3W§ — 48W7 + 8(Wy — 2W71)% (2> — 1)). (2.15)
k=0
3 MAIN RESULTS
In this paper, we use the notation A = T (Wy, W1, --- ,W,_1) for the Toeplitz matrix with generalized Oresme
numbers, i.e.,
Wo Wi W - Wi,
W1 Wo Wfl e W27n
A= Wa Wi Wo e Waop (3.1)
Who1 Wpoo Wy_3 - Wo
For special cases, we get
Go G.1 G2 -+ Gi-n 0 —4 —16 Gi-n
G1 Go G - Gap 1 0 —4 Gan
A= Gz Gl G() cee Gg_n — 1 1 0 G3_n (32)
Grn-1 Gn-2 Gp_3 --- Go Grn-1 Gn-2 Gp_3 0
for the Toeplitz matrix A = T (Go, G1, - - - , Gn—1) with modified Oresme numbers and
Ho H_, H, --- Hi_, 2 4 8 Hi_,
H; Hy H., --- Hy_, 1 2 4 Hy_
A= Ho Hy Hy <o Hs_p _ % 1 2 Hs_, (3.3)
Hn—l Hn—2 H’n—S et HO Hn—l Hn—2 H’n—S 2
for the Toeplitz matrix A = T (Ho, H1, - - , Ho—1) with Oresme-Lucas numbers and
Oo O-1 O—2 -+ Oi_p 0 -2 -8 O1-n
Ol OO O—l T 02—n % O _2 02—n
A= 02 01 Oo ++ Oz—n | _ i i 0 Os3-n (3.4)
On-1 On-—2 On-3 - Oo On-1 On—2 On-3 0
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for the Toeplitz matrix A = T (O, O1, - - - , On—1) With Oresme numbers.

In the following theorem, we present the norm value of ||Al|, and || 4|, of the largest absolute column sum and
the largest absolute row sum of A.

Theorem 3.1. Let A = T (Wo, W1, -- ,W,_1) be a Toeplitz matrix with generalized Oresme numbers then the
largest absolute column sum (1-norm) and the largest absolute row sum (co-norm) of A are

||A H . HAH . —AW_pp1 —Wo+4W1 +W_,, if |W7k| > ‘Wk‘ andW_, <0 , ke N,—ke N~
P oo =V AW + Wo — AWy — Wy, if [Wog| > |[Wi| andW_, >0 , ke N,—ke N~

wherek=i—j:4,7=0,1,--- ,n—1.

Proof. Consider A = T'(Wy, W1, --- , W,_1) which is given as in (3.1). By the definitions of 1 —norm and co—norm
and Equ. (2.3) and Equ. (2.4) and Equ. (2.13), we conclude that

(i) If |W_i|>|Wi|,ke Nand W_, <0,k € N, then we get

n n
1A, = max Y ay| = max {|ai;| + |az;| + lazj| + -+ |ans[} = D lain
<j<n‘ ;
i=1 i=1
n—1
= ‘aln|+‘a2n|+|a3n|+"'+‘ann| = Z‘Wfk‘
k=0

n—1 n

B U .
k=0 k=0

= —AW_,p1 —Wo+4W1 +W_,

and if |W_g| > |Wi|,k € N and W_, > 0,k € N, then we obtain

n n
IAll, = max Y lag| =max{ai;| + |az;| + |as;| + - + |ans|[} =Y |ain]
=1 =1

1<j<n
n—1
= |atn| + lazn| + asn| + - + lann| = > [Wek|
k=0
n—1 n
S ST S
k=0 k=0
= 4W_n+1 + Wo —4W7, — W_,.

(i) If [W_y| > |[Wk|,k € Nand W_j, < 0,k € N, then it follows that

n

n
max Y |ag| = max{|an| + |ais| + |ais| + - + [an]} = D |ay;|
J=1

14l = max >
=

= |au| + |ei2| + |as] + - - + |a1n]

n—1 n

EE DL ) S
k=0 k=0

= 74W—n+1 - WO + 4W1 + W—n
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and if |W_z| > |Wg|,k € N and W_;, > 0,k € N, then we get

n n
Al = max > |ai;| = max {|ai| + |aiz| + ai| + -+ |am|} = Y ]
j=1 j=1

1<i<n <

= lau|+ |a12] + |ais| + -+ + |a1n]

n—1 n
SED DL DL
k=0 k=0
= 4W7n+1 + Wy —4W71 — W_,.
Thus, the proof is completed. O

Remark. In the statement of the theorem 3.1 the condion on W,,, W_,., n € N is given to calculade ||.||, and||.||
norms of modified Oresme, Oresme-Lucas, Oresme numbers. The other cases can be handled similarly.

From the last Theorem 3.1, we have the following corollary which present norm values of | A||, and || A]|_ of A
with modified Oresme numbers, Oresme-Lucas numbers and Oresme numbers, respectively, (set W,, = G, with
Go =0,G1 = 1and W,, = H,, with Ho = 2, H; = 1 and W,, = O,, with Op = 0,01 = 1, respectively).

Corollary 3.2.

(@) For A =T(Go,G1,---,Gn-1), the values of norms of Toeplitz matrices with modified Oresme numbers have
the following property:
Al = 4]l = —4G —n41 + G—n + 4.
(b) For A = T (Ho, H1,---,Hn_1), the values of norms of Toeplitz matrices with Oresme-Lucas numbers have
the following property:
Al = Al =4H -nt1 — Hon — 2.
(¢) For A = T(Oo,01,---,0,_1), the values of norms of Toeplitz matrices with Oresme numbers have the

following property:
All, =[]l = —40—n41 4+ O—pn + 2.

Next theorem presents the Frobenious (Euclidian) norm of a Toeplitz matrix A.

Theorem3.3. Let A =T (Wy, Wh,---,W,_1) be a Toeplitz matrix with generalized Oresme numbers components,
then the Frobenious (Euclidian) norm of matrix A is

[Allp = Vi
where

Q= é(96W3—2412/I/En—15W§,12+240W3n+1+(72(22")+192(2‘2")—96)W02+(576—288(22”)—768(2‘2"))W0W1+
(288(2°™) + 768(272™) — 1056)W7?).

Proof. The matrix A is of the form

Wo Wfl W72 e Wlfn
Wi Wo W_i o W,
A | W W Wo o o Waa
anl Wn72 Wn73 ot WO
Then we have
|AIZ = aWi+(n—1D)W2 +(n—2)W2, + (n —3)W25 + -+ Wi,

+(n =W+ (n—2)Ws + (n—3)W5 4+ -+ W;_,
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and so

n—1 n—1

7 1
lAlz = (2-n) 0*§ZW1¢+92W1¢ 1+ ZW—k+1

92W2k+—ZW1 2Wo — Wh)

13 Z 27245 (1 — 21,2 (22F — 1)

tor
n—1 n—1 n—1
= zw DS WE o S (Wo - 2w - 1),
27
k=1 k=1
By using the equalities
n—1
16 16
9 ;Wﬂ WO Wl) 9 (TL )Wl( Wo Wl)
1= 1
2 2
§ZWO = §(n—1)W07
k=1
n—1
16 2 16 2
k=1
n—1 2
1 —2k+5 _ 2002k _ (Wo —2W1) 5 oTig—2n _
27;12 (Wo —2W1)*(2* —1) = —=——-(302" +27(2 1)),
8 "i(wo Comre o1y = SN2 en oy
27 &~ 81
we obtain
16 n—1 1 n—1 5 16 n—1 )
Po= 5 Wi(2Wo— W)+ QZWO —32W1
k=1 k=1 k=1
1 n—1 8 n—1
+on 275 (W — 2w )2 (2% — 1) + 5= 2 (Wo —2W1) (2% — 1)
k=1 k=1
and it follows that
16 1 16
P o= 3 (n—1) W1 (2Wo — W1) + 9(n - )W — 5(n — WP
_ 2 _ 2
4 (Wo = 2Wh)7 812W1) (8n2° 4 27(272 — 1)) 4 S0 = 2Wh )7 812W1) (2°" —3n—1)

Moreover, we use equation 2.14 and equation 2.15 in Corollary 2.2.
Therefore, we get

[AIg = (2= n) W§ —§ 3202y Wi+ 5 S0y Wiy + 39 300 W2y 4§ 500, W2+ P = g (96W,; — 242, —
15W2_ +240W2, 1 +(72(22™)4+192(272") —96) WG +(576—288(22™) —768(2 ")) Wo W1 +(288(22") +-768(272") —
1056)W3).

This complates the proof. O
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From the last Theorem 3.3, we have the following corollary which gives Frobenius norm formulas of modified
Oreme numbers, Oresme-Lucas numbers and Oresme numbers, respectively, (take W,, = G, with Go = 0,G1 =
Land W, = Hy, with Ho = 2, Hy = 1 and W,, = Oy, with O = 0,01 = 3, respectively).

Corollary 3.4. Forn > 0, Toeplitz matrices with the modified Oresme, Oresme-Lucas and Oresme numbers,
respectively have the following properties:

@) [Allp = v
where A is given as in (3.2)
_ 1 2 2 2 2 2n —2n
Qp = g(QGGn —24GZ,, — 15GZ,, 11 + 240GZ,, 11 + 288(2°") + 768(2™ ") — 1056).
(b) [[Allp = v

where A is given as in (3.3)

Q3 = 8%(96H2 —24H?, —15H._, +240H?, ., — 288).

© Al = v

where A is given as in (3.4)

Q (9605 — 2402, — 150 _; + 24002, + 72(2°") +192(27>") — 264).

_ 1
-8l
In the following theorem, we present the lower and upper bounds of the spectral norms of the Toeplitz matrices
with the modified Oresme numbers, Oresme-Lucas numbers and Oresme numbers, respectively, (set W,, = G,
with Go = 0,G1 = 1 and W,, = H,, with Hy = 2, H; = 1 and W,, = O,, with Oy = 0,01 = 3, respectively).

Theorem 3.5.
(@) Consider A=T(Go,G1,--,Gn-1) Which is given as in (3.2). Let
1 G G_o -+ Gi-n 1 —4 —-16 - Gi-n
1 GO G*l ot G27n 1 0 —4 ot G277L
c=|1 G Go -+ Gs_n | _| 1 1 0 - Gs_p
1 Gnoo Gp_3z --- Go 1 Gpoa Gp-3z --- 0
and
Go 1 1 --- 1 o 11 .-+ 1
G, 1 1 --- 1 r 1 1 --- 1
D= G2 11 - 1 _ 1 11 --- 1
Gpr 11 -+ 1 Gpor 11 - 1
such that A = C o D (Hadamart Product of C' and D).
(M
1
Al = /0
where Q- is as in Corollary 3.4.
(i)
HAHQSQ5
where 1
Qs = (5= (48G2 100 = 3G2, + 3227 — 1) — 21))2 x ¥n.
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(b) Consider A=T(Ho, H1,---,H,_1) which is given as in (3.3). Let
1 H_1 H_2 Hl—n 1 4
1  Hp H_, Hy_, 1 2
C = 1 H, Hy Hsz , — 1 1
1 Hp—2 Hp-3 Hy 1 Hpo
and
Hy 1 1 1 2 1
Hi 1 1 1 1 1
p—| H: 1 1 1] i1
anl 1 1 e 1 anl 1
such that A = C o D (Hadamart Product of C' and D).
(M
1
Al 2 /-0
where Qs is as in Corollary 3.4.
(ii)
[All; < Q6

where

.

(g7 (48H2 4y —BH, —117))% x V/n
(— L (48H2 — 3H2 | — 144))7 x (% (48H2, 4 — 3H?, — 117))

(c) Consider A =T(0Oy,O1,---,0n_1) Which is given as in (3.4). Let

1 01 O-2 Oi_n
1 (o) O_1 O2_n
c-| 1 o o O3

1 On—2 On—3 OO

and

Oop r1r - 1
O1 11 -+ 1
p_| 0 11 - 1
Op-1 1 1 -+ 1

such that A = C o D (Hadamart Product of C' and D).
(M
Al

where Q4 is as in Corollary 3.4.

(ii)
1A

where
1

Q7 = (==(4802 11 —30%, + 15 +8(2°" —

27

51

1 —2
1
1

- Nk O

1 On—2

s NIENIE O

Q
3
L
—_

> /o,
n

|2§Q7

8 . Hi_,

4 . Ho_,

2 e H37n
H,_3 2
1 1
1 1
1 1
1 1

n>6

[NE
—_
IN
AN
=2}

_8 Ol—n
—2 02771,
0 03771

On_3 0

1 1

1 1

1 1

1 1

[NE

)% x Vi
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Proof.
(a)

(i) We use equation (2.2).
(ii) By definition, we get

n n—1

1 1 1

ri(C) = miax(z leig|)2 = O le )2 = (14> W23
j j=1 k=1

[N

- (2i7(4gain+1 _3G2, — 24G2 — 48G2 + 8(Go — 2G1)2(2*" — 1)) + 1)

= (2%(48@2_"+1 —3G2, +32(2°" — 1) — 21))2
and
1
a(D) = H}?X(Z |dij|?)?
= V/n(0<G;<1, for (i>0and n>1)).

So, from inequality (2.7),

[All, < 71(C)er(D) = Q5 = (%(486’2,,1“ —3G%, +32(2°" — 1) —21))? x Vi
(b)
(i) We use equation (2.2).
(ii) We get
1 n 1 no! 1
r(C) = m;fix(z leig])2 = O lens )2 = (1+ Y H2,)?
J j=1 k=1
= (%(48H3n+1 —3H?, — 24HZ — 48H? + 8(Ho — 2H)?(2*" — 1)) + 1)2
— (LusH?, ., —3H%, —117))
27
and
>6
D) = dz 2 % — \/ﬁ ) n =
(D) mﬁx(zi] i) { (—L(48H2 — 3HZ_, — 144))% | 1<n<6
so by defination of Hadamard product and from inequality (2.7)

(&(48H2, , —3H?, —117))2 x/n , n>6

< — 1 2 2 i

|A]l, < r1(C)er(D) = Qe ( 127(48];In 3Hn,; 144))2l  0<n<6
x (% (48H2, 1 —3H?, — 117))2
(c)

(i) We use equation (2.2).
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(ii) We get
r(0) = max(}leyl?)? = et =1+ 0%k
J Jj=1 k=1
= (%(4803“1 —30%,, — 2407 — 4807 + 8(00 — 201)(2°" — 1)) +1)2
= (%7(4803,”1 —30%, +15+8(2°" — 1)))?
and

er(D) = max(}] ldyl*)?

= V/n(0<0;<1, for (i>0 and n>1)).
so, from inequality (2.7)
€
27

[NE

[All, <71(C)er(D) = Qr = (55 (4807 ,,41 — 307, + 15+ 8(2°" — 1)))2 x V/n.

This complates the proof. [
From the equation (2.10) and Corollary 3.4, we have the following corollary which gives the Frobenius norms of
the Kronecker products of the Toeplitz matrices with special cases of generalized Oresme numbers.
Corollary 3.6.

(@) Let A = T(Go,G1, -+ ,Gn-1) and B = T(Ho, H1,--- ,H,—1) be Toeplitz matrices with modified Oresme
numbers and Oresme-Lucas numbers, respectively, then we have the following property.

IA® Bllx = IlAlly Bl
= V02vQs
where Q2 and Q3 are as in Corollary 3.4 (a) and (b),
(set W, = G,, with Go =0,G1 =1 and W,, = H,, with Hy = 2, H, = 1, respectively).

(b) Suppose that A = T(Go,G1,--+ ,Gn—1) and B = T(0o, 01, --- ,0,_1) be Toeplitz matrices with modified
Oresme numbers and Oresme numbers, respectively, then we obtain the following property:

[A@Bllp = |AlglBlr
= Vv

where Q2 and Q4 are as in Corollary 3.4 (a) and (c),

(set Wy, = G With Go = 0,G1 = 1 and W,, = O, with Og = 0,0; = 1, respectively).

(c) Given A = T(Ho,H1, -+ ,Hn,—1) and B = T(Oo, 01, - ,0,_1) be Toeplitz matrices with Oresme-Lucas
numbers and Oresme numbers, respectively, then we get the following property:

[A@Bllp = [AllplBllg
= VQ3vVQ
where Q3 and Q4 are as in Corallary 3.4 (b) and (c),
(set Wy, = Hy, with Hy = 2, Hy = 1 and W,, = O,, with Op = 0,0, = 1, respectively).
Proof. (a), (b) and (c) follows from equation (2.10) and Theorem 3.3 and Corollary 3.4. [
From the above inequality (2.9) and Theorem 3.3 and Corollary 3.4, we have the following result, which gives an

upper bound for the Frobenius norm of Hadamard products of Toeplitz matrices by exclusive cases of generalized
Oresme numbers.
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Corollary 3.7.

(a) Let A = T(Go,G1,--+ ,Gn-1) and B = T(Ho, H1,--- ,H,—1) be Toeplitz matrices with modified Oresme
numbers and Oresme-Lucas numbers, respectively, then we have the following property:

Ao Bllg 1Al g 1Bl

Vv Q3

<
<

where Q2 and Q3 are as in Corollary 3.4 (a) and (b),

(set W,, = G, with Go = 0,G1 = 1 and W,, = H,, with Hy = 2, H, = 1, respectively).

(b) Suppose that A = T(Go,G1,--+ ,Gn-1) and B = T(Oq,O1,--- ,0,_1) be Toeplitz matrices with modified
Oresme numbers and Oresme numbers, respectively, then we obtain the following property:

[A e Bllp 1Al Bl »

Vv

IN A

where Q2 and Q4 are as in Corollary 3.4 (a) and (c),
(set W, = G,, with Go =0,G1 =1 and W,, = O,, with Og = 0,01 = %, respectively).

(c) Assume that A = T(Ho, H1,--- ,Hn—1) and B = T(Og, 01, -+ ,0,_1) be Toeplitz matrices with Oresme-
Lucas numbers and Oresme numbers, respectively, then we have the following property:

[AoBllp < [AllglBllg
< V3V

where Q3 and Q4 are as in Corollary 3.4 (b) and (c),
(set Wy, = Hy, with Hy = 2, H; = 1 and W,, = O,, with Op = 0,01 = 1, respectively).

In the last inequality (2.8) and Theorem 3.5, we have the following Corollary, which gives an upper bound for the
spectral norm of Hadamard products of Toeplitz matrices with special cases of generalized Oresme numbers.

Corollary 3.8.

(a) Given A = T(Go,G1, - ,Gn-1) and B = T(Ho, H1,--- , Ho—1) be Toeplitz matrices with modified Oresme
numbers and Oresme-Lucas numbers, respectively, then we have following property:

||AOBH2 S Q5 X Q6
where Qs and Qg are as in Theorem 3.5,

(take W,, = G, with Go = 0,G1 = 1 and W,, = H,, with Hy = 2, H; = 1, respectively).

(b) Let A = T(Go,G1, -+ ,Gn—1) and B = T(0Oo,O1,--- ,0n—1) be Toeplitz matrices with modified Oresme
numbers and Oresme numbers respectively, then we have the following property:

Ao B, < Qs x Qr

where Q5 and Q7 are as in Theorem 3.5,
(set Wy, = G With Go = 0,G1 = 1 and W,, = O, with Op = 0,0; = 1, respectively).

(c) Suppose that A = T'(Ho, H1,--- ,Hp—1) and B = T(Oo, 01, -+ ,0n—_1) be Toeplitz matrices with Oresme-
Lucas numbers and Oresme numbers respectively, then we get the following property:

[[Ao B, < Q6 x Q7

where Q¢ and 27 are as in Theorem 3.5,
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(set Wy, = Hy, with Hy = 2, H; = 1 and W,, = O,, with Op = 0,01 = 1, respectively).
Proof. For (a), (b) and (c) see inequality (2.8) and Theorem 3.5.0J

From the related equation (2.10) and Theorem 3.5, we have the following Corollary which gives an upper bound for
the spectral norm of Kronocker products of Toeplitz matrices with special cases of generalized Oresme numbers.

Corollary 3.9.

(@) Let A = T(Go,G1, -+ ,Gn-1) and B = (Ho, H1,--- ,Hn—1) be Toeplitz matrices with modified Oresme
numbers and Oresme-Lucas numbers, respectively, then we have the following property:

14 B, < Q5 x Qg
where Qs and Qg are as in Theorem 3.5,

(set W,, = G\, With Go = 0,G1 = 1 and W,, = H,, with Hy = 2, H, = 1, respectively).

(b) Let A = T(Go,G1,--- ,Gp—1) and B = T(Oo,01,--- ,0,_1) be Toeplitz matrices with modified Oresme
numbers and Oresme numbers respectively, then we get the following property:

|A® B, < Qs x Q
where Qs and Q; are as in Theorem 3.5,

(set W,, = G, with Go = 0,G;1 = 1 and W,, = O,, with Oy = 0,01 = %, respectively).

(c) Let A = T(Ho,H1, - ,Ho—1) and B = T(0Og,O1, - ,0,_1) be Toeplitz matrices with Oresme-Lucas
numbers and Oresme numbers respectively, then we obtain the following property:

|A® Bll, < Qs x O

where Qg and 2, are as in Theorem 3.5,
(set Wy, = Hy, with Ho = 2, H; = 1 and W,, = O,, with Op = 0,01 = 3, respectively).
Proof. For (a), (b) and (c) see equation (2.10) and Theorem 3.5.0

4 CONCLUSIONS * In chapter 3, We obtain special norms of Toeplitz
matrices with Oresme numbers and find upper

The sequences of numbers were widely used in and lower bounds for spectral norms of Toeplitz

many research areas, such as physics, engineering, matrices with Oresme numbers components.

architecture, nature and art. Recently, there have
been so many studies of the sequences of numbers in
the literature that concern about subsequences of the
Horadam numbers which have second order recurrence
relations. Generalized Oresme numbers are special « For the applications of Gaussian Fibonacci and
cases of Horadam numbers. Gaussian Lucas numbers to Pauli Fibonacci and
Pauli Lucas quaternions, see [10].

Linear recurrence relations (sequences) have many
applications. Now, we present some applications of
second order sequences.

In this paper, we obtain results on Toeplitz matrices with
Oresme numbers Components_ « For the application of Pell Numbers to the

solutions of three-dimensional difference

* In chapter 1, We present some known results ;
equation systems, see [11].

on Oresme numbers such as recurrence relation,
characteristic equation and Binet's formulas. » For the application of Jacobsthal numbers to

« In chapter 2, We give some basic definitions and special matrices, see [12].

result of special norms of the Toeplitz matrices » For the application of generalized k-order
and find sum formulas of Toeplitz matrices with Fibonacci numbers to hybrid quaternions, see
Oresme numbers. [13].
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For the applications of Fibonacci and Lucas
numbers to Split Complex Bi-Periodic numbers,
see [14].

For the applications of generalized bivariate
Fibonacci and Lucas polynomials to matrix
polynomials, see [15].

For the applications of generalized Fibonacci
numbers to binomial sums, see [16].

For the application of generalized Jacobsthal
numbers to hyperbolic numbers, see [17].

For the application of generalized Fibonacci
numbers to dual hyperbolic numbers, see [18].

For the application of Laplace transform and
various matrix operations to the characteristic
polynomial of the Fibonacci numbers, see [19].

For the application of Generalized Fibonacci
Matrices to Cryptography, see [20].

For the application of higher order Jacobsthal
numbers to quaternions, see [21].

For the application of Fibonacci and Lucas
Identities to Toeplitz-Hessenberg matrices, see
[22].

For the applications of Fibonacci numbers to
lacunary statistical convergence, see [23].

For the applications of Fibonacci numbers to
lacunary statistical convergence in intuitionistic
fuzzy normed linear spaces, see [24].

For the applications of Fibonacci numbers to
ideal convergence on intuitionistic fuzzy normed
linear spaces, see [25].

For the applications of k-Fibonacci and k—Lucas
numbers to spinors, see [26].

For the application of dual-generalized complex
Fibonacci and Lucas numbers to Quaternions,
see [27].

For the application of special cases of Horadam
numbers to Neutrosophic analysis see [28].

For the application of Hyperbolic Fibonacci
numbers to Quaternions, see [29].
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