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Abstract
Plant-herbivore-natural enemies of herbivores interaction is one of the basic interactions that drives of the
ecosystem yields. In this interaction, plants are the primary food source for herbivores while natural enemies
of herbivores depends on herbivores for food and on plants for shelter. Harvesting of every species which is
common in many habitat may affect the population densities of the species and even the entire ecosystem.
Therefore, conservation and maintenance of the harvested species is critical for ecosystem balance. In this
paper, a model of plant-herbivore-natural enemies interactions with the constant effort harvesting of every
species was developed and analyzed. The positive invariant set, the conditions of existence and locally
asymptotically, stability of the equilibria were determined using the stability theory of ordinary differential
equations. The results shows that the species being harvested would become extinct if harvesting effort
exceeded a threshold value for the given population. While maintaining the coexistence of populations in the
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ecosystem requires sensible harvesting practices. Therefore, it is fair to choose a reasonable harvesting effort
to allow all species to coexist in order to govern the species’ dynamic behavior. The insights of the solutions
of this study are of great essence to ecologists and policy developers in environmental conservation. The
authorities to pay attention to the minimum number required based on the area coverage in deciding when to
harvest and also be cautious to the amount and effort of harvesting in view of conserving the species and the
environment.

Keywords: Ecology; harvesting; extinction.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction
Ecology is the study of how different species including humans relate to their surroundings [1, 2]. The diverse
behaviors displayed by these species in the ecosystem has sparked great interest in the formulation of dynamical
models to illustrate the interaction of the species and their environment [3]. The concept of ecosystem was
introduced by Jones et al. [4] who defined ecosystem engineers as species that generate, significantly modify,
maintain, or destroy the resources (other than themselves) that are available to other organisms by generating
physical change in living and non-living elements.

The biomass, productivity, and population size of each species within an ecosystem are all affected by interactions
between species. Since no species can survive on its own and all species depend on one another for survival[2].
For instance, the ecosystem is affected by the consumption of plants by herbivores and herbivores by predators.
Similarly, plants, herbivores and natural enemies are harvested from ecosystems by other factors including human
activities. As a result, for an ecosystem to function properly, all species must exist. The equilibrium of the
entire ecosystem will shift if one type is abundant or scarce, according to [5, 6].

The biological process of herbivory involves a species (herbivore) feeding on plants or their byproducts. This
is one of the fundamental interactions between species in an ecosystem that shapes the natural habitats found
in all ecosystems [7, 8]. All food chain start with energy source that is the sun. These energy is then captured
by plants. Thus the living part of the food chain always starts with plant life. Herbivores cannot make their
own food so they must eat plants while natural enemies of herbivores such predators consumers the herbivores
[9, 10]. Therefore, plant herbivore and natural enemies of herbivores interactions may have an impact on
ecosystem characteristics such as primary productivity and diversity of food webs among others [9].

Most species including plants, herbivores and natural enemies of herbivores have been harvested and mined from
the ecosystem. Harvesting involves elimination of the species from the ecosystem [1, 2]. For instance, through
forest fire, deforestation where plants are cleared for farming, settlement and charcoal burning. On the other
hand, herbivores and natural enemies of herbivores can be harvested through migration and natural calamities
like fire and drought or through human activities on the system such as hunting and poaching.

Harvesting of species have been incorporated in the interaction of the plant-herbivore models for instance, in[11].
However, the models did not incorporate the natural enemies of herbivores such as carnivores. In addition
[5, 3, 12] did not incorporate harvesting of species. On the other hand [13], formulated a tritrophic interaction
model with volatile compounds in plants this incorporated plants, herbivores and natural enemies of herbivores.
However, the model assumed harvesting of species that is common in the ecosystem which is resulting in the
unpredicted collapse of many harvested species.

In this paper, plant-herbivore-natural enemies of herbivores model with harvesting of every species is taken
into account. In this study, plants serve as food for herbivores and other plants are harvested. On the other
hand, herbivores serve as food to natural enemies while others are harvested through different ways such natural
calamities and human activities. In addition, natural enemies of herbivores are also harvested though human
activities and natural calamities. The objective of this paper is to develop and analyze a mathematical model
of plant-herbivore-natural enemies of herbivore interaction with harvesting of every species.
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This paper is structured as follows. In Section two, we present the model. Positivity and boundedness of solutions
of system are given in Section three. Dynamical behavior of the system and impact of harvesting is investigated
in Section four. In Section five, we discuss numerical simulations of the model to verify the theoretical results
obtained graphically and this paper ends with conclusion presented in the last section.

2 The Mathematical Model
In this study, different types of population densities with constant effort harvesting at time t are considered.
The plant population denoted by S(t) , the herbivore population is denoted by H(t) and Y (t) natural enemies
of herbivores population. The model is governed by the following system of ordinary differential equations:

dS

dt
= S[r(1− S

K
)− bH

1 + aS
− q1E1]

dH

dt
= H[

mbS

1 + aS
− c− βY

1 + µH
− q2E2]

dY

dt
= Y [εS +

pβH

1 + µH
− d− q3E3] (2.1)

With initial conditions given by S(0) > 0 , H(0) > 0 and Y (0) > 0

Where, r is the intrinsic growth rate of plants population, K is the environmental carrying capacity, b is the
plant-herbivores consumption rate and a is the preventive measures taken by plants to protect themselves from
invasion. The term, m and p are corresponding conversion rates of what is eaten to newborns by herbivores
and natural enemies of herbivores respectively. The parameters c and d are the removal rate of herbivores and
natural enemies of herbivore in the habitat respectively. The term ε is the enhanced attraction rate of natural
enemies of herbivores towards plant population and µ is the preventive measures taken by herbivores to protect
themselves from natural enemies.

E1 > 0 , E2 > 0 , E3 > 0 express the harvesting capabilities of plants, herbivores and natural enemies of
herbivores respectively. The terms q1E1S , q2E2H and q3E3Y represents the harvest of respective species
where q1 , q2 and q3 represents catch efforts coefficient of plants, herbivores and the natural enemies herbivores
respectively.

The assumption of this model are as follows:

(i) Herbivores feed on the plants and natural enemies feed on the herbivores only.

(ii) Plant population grows bounded by the carrying capacity of the environment in absence of herbivores
and harvesting.

(iii) The species interaction and consumption are assumed to be of the same type in any ecosystem. The only
difference could be due to different kingdom or families which is typical for ecological systems.

The first equation in (2.1) represents plant population which grows logistically in the absence of herbivores and
harvesting which eventually reaches the carrying capacity of the environment. Herbivores consumes plants at
the rate bHS

1+aS
. The second equation in (2.1) represents the average herbivore reproduction rate at the rate

mbSH
1+aS

. This reflect the fact that herbivores reproduce more when food is available and in the absence of plants,
the herbivores goes to extinction. The third equation in (2.1) represents the average number of natural enemies
of herbivores in the habitat. The natural are attracted to plant population and they depend on herbivores as
food. In addition, removal rates among herbivores and natural enemies of herbivores may be caused by various
events such as scarcity of food, nutrients, water, grass or forest fire, migration etc.
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3 Model Analysis

3.1 Invariant Region
It is crucial to demonstrate positivity and boundedness of the solutions of the system of equation (2.1) since
the variables indicate biological population densities. Positivity denotes population survival, and boundedness
denotes a growth limitation brought on by natural resource constraints. For the model to be mathematically
and biologically well posed, the state variables S(t) , I(t) , H(t) and Y (t) at all time must be non-negative.
This is shown by the lemma as follows:

Lemma 3.1. (Positivity) All solutions [S(t), H(t), Y (t)] of the system of equation (2.1) starting in (S0, H0, Y0) ∈
R+

3 remain positive for all t > 0 .

Proof. The positivity of S(t), H(t), Y (t) can be verified as shown:
Let u = t then du = dt . Substituting in each equation of system of equation (2.1) and integrating both sides
and introducing exponential in each case we obtain
S(t) = S0exp

∫ t
0
[r(1− S(v)

K
)− bH

1+aS(v)
− q1E1]dv

H(t) = H0exp
∫ t
0
[ mbS
1+aS

− c− βY
1+µH

− q2E2]dv

Y (t) = Y0exp
∫ t
0
[εS + pβH

1+µH
− d− q3E3]dv

Since S(0) = S0 > 0 , H(0) = H0 > 0 and Y (0) = Y0 > 0 for all t > 0 then S0, H0, Y0 > 0 . Hence int(R+
3 )

is positively invariant set.

Lemma 3.2. (Boundedness) All solutions of system of equation (2.1) lie in the region = [(S,H, Y )|S ≤
K∗, ηS +H + 1

q
Y ≤ (ηr + ε

q
− q1E1 + 1)K∗

ω
] where ω = min ( 1

η
, n, σ) and K∗ =Max(S0,K)

Proof. Let S(t) , H(t) , Y (t ) be any solution of system of equation (2.1) with positive initial condition (S0 ,
H0 , Y0) . Since dS

dt
= rS(1− S

K
) is given as S(t) = KS0

S0+(K−S0) exp−rt , by a standard comparison theorem [14]
we have
Limt−→∞S ≤ K∗
Let N(t) = ηS +H + 1

q
Y

= η(rS(1− S
K
)− bSH

1+aS
− q1E1S) +H( mbS

1+aS
− c− βY

1+µH
− q2E2) +

1
q
(εSY + pβHY

1+µH
− d− q3E3Y )

≤ η(rS(1− S
K
)− q1E1S)−H(c+ q2E2) +

1
q
(εSY − d− q3E3Y

≤ (ηr − q1E1 +
ε
q
)S − nH − σY

≤ (ηr − q1E1 +
ε
q
+ 1)S − S − nH − σY

≤ (ηr − q1E1 +
ε
q
+ 1)K∗ − ωN

Then N(t) ≤ (ηr + ε
q
− q1E1 + 1)K∗

ω

Therefore, 0 ≤ N(t) ≤ (ηr + ε
q
− q1E1 + 1)K∗

ω
for t sufficiently large so all solution of system of equation (2.1)

are bounded and enter the region

3.2 Equilibrium Points
In order to find the equilibrium points or steady states of the model system, we set the right hand side of the
system of equations (2.1) equal to zero[2]. The following equilibrium points are clearly present in the system of
equation (2.1) :
Ea = (0, 0, 0) , Eb = ( k(r−q1E1)

r
, 0, 0) , E∗ = (S∗, H∗, Y∗) Where

S∗ =
1
ε
(d+ q3E3 − pβH∗

1+µH∗
)

H∗ = (r − rS∗
K
− q1E1)

1+aS∗
b

Y∗ =
mbS∗
1+µS∗

− c− q2E2)
1+µH∗
β
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3.3 Local Stability
To examine the local stability of the equilibrium points Ea , Eb ,and E∗ , the eigenvalues of the Jacobian matrix
of the system of equation (2.1) around the equilibrium points is determined. The Jacobian matrix of the system
of equation (2.1) at any given point J(S,H, Y ) is given by:

J(E) =

 b11 − bS
(1+aS)

0
mbH

(1+aS)2
mbS
1+aS

− c− βY
(1+µH)2

− q2E2 − βH
1+µH

εY pβY
(1+µH)2

− εY S εS + pβH
1+µH

− d− q3E3

 (3.1)

Where, b11 = r(1− 2S
K
)− bH

(1+aS)2
− q1E1

Evaluating the Jacobian matrix (3.1) at the population free equilibrium point E0 = (0, 0, 0) takes the form;

J(Ea) =

 r − q1E1 0 0
0 −c− q2E2 0
0 0 −d− q3E3

 (3.2)

Where the eigenvalues of J(E0) are give by λ1 = r − q1E1 ,λ2 = −(c + q2E2) , and λ3 = −(d + q3E3) which
are real. Clearly, E0 = (0, 0, 0) is stable for r < q1E1 and unstable for r > q1E1 .

At equilibrium point Eb = ( k(r−q1E1)
r

, 0, 0) , the Jacobian matrix (3.1) takes the form:

J(Eb) =


−r + q1E1

−bK(r−q1E1)
r

r+aK(r−q1E1
r

0

0
mbK(r−q1E1)

r
r+aK(r−q1E1

r

− c− q2E2 0

0 0 εr−εq1E1−d−q3E3
r

 (3.3)

The eigenvalues of J(Eb) are given by λ1 = −r + q1E1 , λ2 =
−bK(r−q1E1)

r
r+aK(r−q1E1

r

− c− q2E2 , λ3 = εr−εq1E1−d−q3E3
r

which are real. Therefore Eb is locally asymptotically stable when r > q1E1 , εr − εq1E1 − d − q3E3 < 0 and
mbK(r−q1E1)

r
< 0 otherwise unstable. This shows that the population of susceptible plants can grow logistically

up to the environmental carrying capacity in the absence of herbivores and when intrinsic growth rate of plants
is greater than the constant effort harvesting rate.

The Jacobian matrix (3.1) evaluated at the equilibrium point E∗ is given by B11 B12 0
B21 B22 B23

B31 B32 B33

 (3.4)

Where B11 = r(1− 2S∗
K

)− bH∗
(1+aS∗)2

− q1E1

B12 = − bS∗
(1+aS∗)

B21 = mbH∗
(1+aS∗)2

B22 = mbS∗
1+aS∗

− c− βY∗
(1+µH∗)2

− q2E2

B23 = − βH∗
1+µH∗

B31 = εY∗
B32 = pβY∗

(1+µH∗)2 − εY∗S∗
B33 = εS∗ +

pβH∗
1+µH∗

− d− q3E3

The characteristic equation at E∗ is
λ3 + b1λ

2 + b2λ+ b3 = 0 where
b1 = −B11 −B22 −B33

b2 = B11B22 +B11B33 +B22B33 −B12B21 −B23B32
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b3 = −B11B22B33 −B12B23B31 +B12B21B33 +B11B23B32

b1b2 − b3 = (−B11 −B22 −B33)(B11B22 +B11B33 +B22B33 −B12B21 −B23B32) +B11B22B33 +B12B23B31 −
B12B21B33 −B11B23B32

= −B11B22B33 +B11B23B32 −B11(B11B22 +B11B33 −B12B21)−B22(B11B22 +B11B33 +B22B33 −B12B21 −
B23B32) +B11B22B33 +B12B23B31 −B12B21B33 −B11B23B32

Now using the Routh-Hurwitz criteria, the coexistence equilibrium point will be stable if the equation λ3 +
b1λ

2 + b2λ+ b3 = 0 will satisfy the conditions b1 > 0 , b2 > 0 , b3 > 0 , b1b2 > b3 and have negative real parts.
Therefore, the interior equilibrium point E∗ exists and it is locally asymptotically stable. This ensures the
coexistence of plant population, herbivore population and natural enemies of herbivores in the system.

4 The Effect of Harvesting Species
The aspects discussed here include;E1 which denote harvesting of plants, E2 denote harvesting of herbivores
and E3 which denote harvesting of natural enemies of herbivores.

4.1 Harvesting of plant population
The increase in the harvesting effort E1 , decrease the quantity of plant population and not the quantity of
herbivores and natural enemies of herbivores. For instance, from stability analysis, at population free equilibrium
Ea , plant population will not be established when E > r

q1
. In the long run, extinction of plant population will

affect herbivore population which in turn affects the natural enemies leading to the collapse of the ecosystem.
For plant population to be established at Eb then E1 <

r
q1

, this will enable plants to support other species
including herbivores and natural enemies of herbivores. For coexistence of all species the harvesting effort should
be strategically controlled such that

r − r
K
− q1E1 > 0 that is E1 >

rK−r
Kq1

Therefore, optimal level of harvesting effort will be rK−r
Kq1

< E1 <
r
q1

4.2 Harvesting Herbivores
Increase of harvesting effort E2 may decreases the quantity of herbivores and natural enemies of herbivores
not change the quantity of the plant due lack of food for natural enemies of herbivore to feeds on. In the long
run, overharvesting of herbivores results to extinction of the herbivores and the natural enemies of herbivores.
Therefore, for herbivores to be established and sustain the natural enemies, the harvesting effort should be
strategically controlled, that is,
mbS∗
1+aS∗

− c− q2E2 > 0 implying

E2 <
mbS∗−c(1+q1)
q2(1+aS∗

4.3 Harvesting Natural enemies of herbivores
Increasing the harvesting effort E3 can result in decrease of the quantity of natural enemies of herbivores
and increase in the quantity of herbivores. Increase of herbivore quantity will also affect the plant population
that acts as food to herbivores. This results in decrease of plant population due to increased consumption by
herbivores. This cycle continues over and over and some species may end up being wiped out. Therefore there
is need to control harvesting of each species for coexistence of all species, that is, For natural enemies harvesting
effort should be controlled such that

d+ q3E3 − pβH∗
1+µH∗

> 0
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E3 <
pβH∗−d(1+µH∗)

1+µH∗q3

5 Numerical Simulation of the Model
In this study, numerical simulations are performed by the use of MATLAB software using secondary data
obtained from [2, 13]. These simulations are performed to analyze the effect of harvesting of species effect on
the ecosystem where time is in years. where, r = 20 , k = 1000 , a = 0.5 m = 0.45 , b = 0.4 , c = 011 , p = 0.2 ,
d = 0.02 , β = 0.03 , µ = 0.1 , ε = 0.3 . By assuming some parameters from perspective of practical problem
and changing different parametric values of q1 , q2 , q3 , E1 , E2 ,E3 we obtain the graphs in Fig. 1, Fig. 2.
and Fig. 3.
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Along with q1E1 increasing, and decreasing q2E2 and q3E3 the plants and herbivores begins to tend to 0 as
shown in Fig. 1 . This leads to increase of natural enemies of herbivores population at first due to availability
of food(herbivores). When plant population becomes extremely small, the herbivores decrease and goes to zero
implying the herbivores dies out or some migrate away as they look for food hence extinction of herbivore at
that confined habitat. Similarly, the natural enemies of herbivores also die out or migrate to different habitat
looking for food due to decrease of herbivore. In long run, the susceptible plant population regenerates, grows
and eventually reaches the carrying capacity of the environment. This attract the herbivores who in turn attract
their natural enemies back in the same habitat and the cycle occurs again as seen in Fig. 2 . The cycle occurs
again and again over time.

Along varying the values of q1E1 , q2E2 and q3E3 the plants, herbivores and their natural enemies population
coexists without attaining the specific equilibrium at first. However in the long run, the system becomes stable
and the species coexists as shown in Fig. 3 . The coexistence of the three species demands strategically
harvesting of species to avoid overharvesting or exploitation of species. Therefore, we can chose different
harvesting of each species to control their existence.

6 Conclusion
Amathematical model of plant-herbivore-natural enemies of herbivores interaction with constant effort harvesting
of every species was formulated. Plant population was assumed to observe logistic growth rate, initially it seems
to grow exponentially but eventually it grows only up to the carrying capacity of the environment. This is
biologically observable because the plant population in a certain land with enough water resource and nutrients
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in the soil and without herbivore interference can grow only as much as the land can hold. On the other hand,
feed on plants while natural enemies of herbivore feeds on herbivores.

Multiple equilibrium points were obtained that is Ea , Eb , and E∗ . Local stability conditions for equilibrium
points were obtained in terms of system parameters where Ea , Eb , E∗ are locally asymptotically stable
under certain conditions. The equilibrium point E∗ guarantees coexistence plants, herbivores and their natural
enemies. The stability analysis showed that harvesting effort must be less than certain threshold value for all
species to be established and sustain each other. It also shows that the intrinsic growth rate of plants must be
greater than the harvesting rate of plant population for plants to get established.

Numerical analysis of the model was performed and showed that all the species depend on each other and coexist
as seen in figure 1, figure 2 and figure 3. The population densities increases when there is sufficient resources
whereas limited resources lead to extinction of the species in certain habitat. Excessive harvesting is a danger
to vegetation, herbivores and natural enemies of herbivores.

These results have implications for the management of game parks where the park area is confined but the
herbivore population and their natural enemies are allowed to increase and culling takes place at irregular
intervals. The herbivore population could affect the quality of the park. For examples in support of this
model revelations. First, the elephant population will increase rapidly in the parks, due to availability of
water supplementation and better vegetation which have provided a conducive environment for the elephant
population.

However, the increase in the population has fluctuated depending on food availability and drought for instances,
recently, due to prolonged drought in Kenya, many herbivore have died in many parks, including Nairobi National
Park. On the other hand, the antelope number has been reduced due to frequent droughts, increased predation
by lions and loss of habitat due to human invasion. The provision of artificial water-points within the antelope
range also resulted in extensive habitat degradation and competition with other herbivores. This affects their
natural enemies including lions and other predators. Therefore, policy makers and authorities to pay attention
to the minimum number required based on the area coverage in deciding when to harvest and also be cautious
to the amount of harvesting. The authorities in the game park should also be cautious on when to allow or ban
hunting depending on this threshold.
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