
Advances in Pure Mathematics, 2023, 13, 725-731 
https://www.scirp.org/journal/apm 

ISSN Online: 2160-0384 
ISSN Print: 2160-0368 

 

DOI: 10.4236/apm.2023.1311050  Nov. 1, 2023 725 Advances in Pure Mathematics 
 

 
 
 

Partial Groups, Simplicial K(G, 1)’s and Kan 
Complexes 

Solomon Jekel  

Department of Mathematics, Northeastern University, Boston, USA 

 
 
 

Abstract 

In our paper Simplicial K(G, 1)’s we constructed a sub-complex of the nerve 
of a group G determined by a partial group structure, and we proved, under a 
generalized associativity condition called regularity, that the sub-complex 
realizes as a K(G, 1). This type of sub-complex appears naturally in several 
topological and algebraic contexts. In this note we prove that regularity of a 
partial group implies that the Kan extension condition is satisfied on its nerve 
in dimensions greater than one, and in dimension one a weaker version of the 
extension condition holds. 
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1. Introduction 

In our paper Simplicial K(G, 1)’s [1], we constructed a sub-complex of the nerve 
of a group G determined by a partial group structure, and we proved, under a 
generalized associativity condition called regularity that the sub-complex realizes 
as a K(G, 1). The purpose of this note is to prove (Theorem 3.5) that regularity 
implies that the classical Kan extension condition is satisfied on its nerve, but 
only in the following weaker sense. The extension condition can be defined in 
each dimension separately, and in the case of a partial group regularity implies 
that the extension condition is satisfied in dimensions 2 and higher, and in di-
mension 1 a weaker extension condition holds. The converse is not true. Impli-
cations of the result are discussed at the conclusion of the article. The motivation 
for our work comes primarily from two topological contexts where partial 
groups occur naturally: co-dimension 1 real analytic foliations, whose classifying 
space is the realization of the nerve of a partial group [2], and the discrete group 
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of homeomorphisms of the circle where the partial group exhibits the discrete 
Euler class [3]. Other applications are discussed in [4], and in Section 4. By 
comparing regularity to the extension condition an objective is to bring the con-
structions into a more classical setting, and thereby enhance our understanding 
of the applications as well as encourage the search for more examples. 

Concerning the terminology “partial group”: in our paper [1] the starting 
point was a group G presented by generators with relations coming from a bi-
nary operation satisfying a condition that we called regularity. In particular, we 
were interested in describing the homotopy type of the classifying space for real 
analytic co-dimension 1 foliations, [2]. Only later did we come to focus on the 
relations themselves and call a set of generators with such a binary operation a 
partial group [5]. In [6], pp.106-107, partial groups were referred to as group-like 
and arise from partial actions of groups. Independently partial groups were in-
troduced in [7] in connection with Fusion Systems.  

2. Partial Groups and K(G, 1)’s 

Definition 2.1. A set P is a partial group if associated to each pair ( ),f g P P∈ ×  
there is at most one product element fg P∈  so that the following conditions 
are satisfied.  

1) There exists an element 1 P∈  satisfying 1 1f f f= =  for each f P∈ .  
2) For each f P∈  there exists an element 1f P− ∈  so that 1 1 1ff f f− −= = .  
3) If fg h=  is defined then so is 1 1 1g f h− − −= .  
Naturally associated to partial groups are simplicial constructions which we 

now describe. Let kP P P= × × , k times, and kk
P=



 . Let an arrow →  
denote the transitive relation on   generated by ( )1, , k kf f P∈

 is related to 
( ) 1

1 1, , , , k
i i kf f f f P −

+ ∈   when 1i if f +  is defined. We refer to ( ),→  as the 
arrow diagram associated to P.  

Definition 2.2. A partial group P is said to be regular if the following is satis-
fied. Let , ,f s t∈ . If f s→ , s P∈ , and f t→  where t is minimal with re-
spect to → , then s t= .  

The regularity condition says that if some sequence of multiplications reduces 
a given k-tuple of elements to an element of the partial group, then no other way 
of composing the entries can terminate until a single, and necessarily unique, 
element is attained. Critical features of multiplication in a regular partial group 
appear in the main examples. Given , ,f g h P∈  with fg  and gh P∈ , it does 
not follow, in general, that ( )fg h P∈  nor that ( )f gh P∈ . Moreover, it’s 
possible that ( )f gh  is defined, whereas fg  is not. Effectively regularity 
compensates for the failure of associativity. Each partial group P has a simplicial 
nerve NP and a classifying space BP which is the realization NP . We recall one 
such construction for a partial group which is a group G, and then generalize to 
all partial groups. Let q

qN G G= , and take 0 1G = . For 1q =  the two face 
maps 1 0N G N G→  are constant. For 1q ≥  the face maps 1q qN G N G+ →  are 

0 1, , q+∂ ∂  where  
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( ) ( ) ( ) ( )0 0 1 1 0 0 1, , , , , , , , , ,q q q q qf f f f f f f f+ −∂ = ∂ =     

and otherwise ( ) ( )0 0 1, , , , , , .i q i i qf f f f f f−∂ =    
Degeneracies are 1:i q qs N G N G+→  where 1 is inserted in the i-th place.  

( ) ( )0 1 0 1, , , ,1, , .i q qs f f f f− −=    

The nerve realizes as the classifying space BG of the group G, and BG is a 
( ),1K G . We now generalize to partial groups. Let { }0 1N P = , 1N P P=  and 

define inductively  

( ) ( ){ }1 0 0, , | , , , 0 1q q i q qN P f f f f N P i q+ = ∂ ∈ ≤ ≤ +   

where the i∂  and is  are defined as for NG above. So, the set of 1q +
-simplices consists of those 1q + -tuples of elements of P that reduce to a 
unique element of P with all orders of operations. We refer to this condition as 
full associativity, and call any 1q + -tuple with this property fully associative. 
The universal group of P, denoted P̂ , is the free group on P modulo the rela-
tion f g fg⋅ =  whenever fg  is defined in P. Here f g⋅  denotes the product 
in the free group. P̂  is the fundamental group of BP. The formal inverse of an 
element in P̂  is identified with its inverse in P, and the identity in P̂  is iden-
tified with the identity in P. The vertices of the arrow diagram correspond to 
unreduced words in the elements of P, and each arrow corresponds to a reduc-
tion of the word to one of smaller length. The elements of P̂  correspond to 
equivalence classes of elements of P under the equivalence relation 1 2~v v  if 
there exist v so that 1v v→  and 2v v→ . 

The following statement is verified in [1]. (It is however an easy consequence 
of the definitions.) In a regular partial group P every word other than 1 which is 
minimal in the arrow diagram represents a non-trivial element in P̂  and every 
word representing 1 in the universal group reduces to 1 under the arrow relation. 
(This solves the identity problem in P̂ .) The main result of [1] is the following. 

Theorem 2.3. The classifying space BP is a ( )ˆ,1K P  whenever P is regular.  

3. Partial Groups and the Extension Condition 

Definition 3.1. A simplicial set is said to satisfy the extension condition if for 
every collection of 1q +  q-simplices 0 1 1 1, , , , ,k k qx x x x− + +   which satisfy the 
compatibility condition 1i j j ix x−∂ = ∂ , i j< , i k≠ . j k≠ , there exists a 
( )1q + -simplex x such that i ix x∂ =  for i k≠ . A simplicial set which satisfies 
the extension condition is called a Kan complex [8]. See [8] as well for all basic 
definitions and constructions involving simplicial sets.  

The nerve of a partial group is a Kan complex only when the partial group is a 
group, for otherwise ,f g P∈  does not imply fg P∈  in general. However we 
will see that the nerve of a regular partial group satisfies a weaker version of the 
extension condition for 1-simplices.  

Definition 3.2. A simplicial set satisfies the extension condition in dimension 
r if the extension condition holds for every collection of 1r +  r-simplices satis-
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fying compatibility.  
Definition 3.3. A simplicial set satisfies the weak extension condition in di-

mension 1 if for every trivial loop 0 1 my y y y=   in ( )1 ,Kπ φ  there exists a 
pair of consecutive 1-simplices 1,i iy y + , i mod (m + 1), which satisfy the exten-
sion condition in dimension 1.  

Remark 3.4. After replacing 1i iy y +⋅  by the “missing face” a trivial loop of 
smaller length, homotopic to y is obtained. The process can be continued until 
the constant degenerate loop is obtained.  

The following is our main result.  
Theorem 3.5. If a partial group P is regular then its nerve NqP satisfies the 

extension condition for all 2q ≥ , and the weak extension condition in dimen-
sion 1q = .  

We begin with a lemma which adapts compatibility to our context.  
Lemma 3.6. Let { }0 1ˆ, , , ,k qx x x +   be a collection of 1q +  q-simplices of 

NqP satisfying the compatibility condition. The there exists a ( )1q + -tuple 

( )0 , , qf f f=   of elements of P so that ix  has the form i ix f= ∂  for all i, 
0 1i q≤ ≤ + .  

Proof. Note the Lemma does not claim that f is in 1qN P+ . It will require the 
regularity condition to reach that conclusion. Suppose first that 0 1k q< < + , 
and that ( )1 0 1, ,q qx f f+ −=  . Then ( )0 1 1, , ,q qx f f f−=   for some qf P∈ , and 
that determines ( )0 , , qf f . If 0k =  again let ( )1 0 1, ,q qx f f+ −=  . Then 

( )0 1, ,q q qx f f f−=  , and that determines ( )0 , , qf f . Note that the face maps 
determine the “missing face” kx  of the compatible collection as well as all the 
other faces. There is therefore one and only one f so that i if x∂ =  for all i.  

Returning to a consideration of the Theorem, and applying the previous 
Lemma, we must verify that whenever each of 

0 1, , , ,k qx x x +   is in NqP it fol-
lows, under the condition of regularity, that kx  is in NP as well. For then the 
definition of NP implies that ( )0 , , qf f  is in 1qN P+ . Now recall a q-tuple of 
elements of P is a q-simplex of NqP if and only if it is fully associative. We are 
therefore reduced to verifying that when a particular kx  is excluded from the 
set of ix  and all the remaining ix  are fully associative, then kx  is fully asso-
ciative as well. Before proving the general case we check directly that regularity 
implies the extension condition when 2q = . Consider ( )0 1 2,x g g=   

( )1 0 1 2,x g g g=  ( )2 0 1 2,x g g g=  ( )3 0 1,x g g=  Whichever ix  is excluded, note 
that the initial products 0 1g g  and 1 2g g  are defined. If 1k =  then 2x NP∈  
implies ( )0 1 2g g g  is defined. By regularity if 0 1g g  is defined then ( )0 1 2g g g  
must be defined as well, hence 1x  is fully associative. The case 2k =  is essen-
tially identical, and when 0k =  or 3k =  the verification is trivial.  

Proof. For the general case of Theorem 3.5, regardless of which kx  is ex-
cluded, every initial product 1i ig g−  is defined. For the sake of definiteness, let 
us assume 1k = . The verification for 0 1k q< < +  is the same, and for 0k =  
and 1k q= +  is trivial. We claim that ( )0 1 1, , qg g g +  is fully associative. Now 

1i ig g−  is defined. Assume first that 3 1i q≤ ≤ + , and consider  
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( )0 1 1 1, , , ,i i qg g g g g− +  . Since this simplex can also be obtained by first apply-
ing the product 1i ig g−  to ix  and then 0 1g g  the simplex  

( )0 1 1 1, , , ,i i qg g g g g− +   is fully associative. Hence by regularity  

( )0 1 1 1, , , , ,i i qg g g g g− +   is fully associative, as claimed. The only remaining 
non-trivial case to verify is that ( )( )0 1 2 1, , qg g g g +  is fully associative. But, by 
the case 2q =  that simplex is also the reduction of ( )0 1 2 1, , , qg g g g +  which 
is fully associative. This completes the proof of Theorem 3.5.  

We’ve observed when 1q = , despite regularity, the extension property fails 
unless the partial group is a group. The simplest example of a partial group 
which is not a group and satisfies regularity is the generating set of a free group. 
The only allowable products are the trivial ones—that is those required by defi-
nition.  

4. Remarks 
4.1. Algebra 

Group-like structures have an extensive history and have played a role in a va-
riety of fields, [9]. Some examples like monoids and groupoids fit into a categor-
ical setting, others like semigroups and quasigroups do not. At the time of [1] 
and [2] the closest construction appearing in the literature was that of pregroup, 
defined by J. Stallings [10], in his work on 3-manifolds. Pregroups are regular 
partial groups, but not conversely. The regular partial group ( )0 1

ωπ Γ  provides 
a counterexample [2]. More recently pregroups have been generalized [11], and 
the theory has evolved in various ways. In [6] partial group actions are defined 
and applied. We mention three papers which involve partial groups, fusion sys-
tems and homotopy theory: [7] [12] [13]. For a more formal algebraic treatment 
of partial groups see [14]. The converse of Theorem 3.5 does not hold. That is to 
be expected since by definition the simplices of the nerve of a partial group are 
fully associative, whereas the condition that has to be satisfied for regularity re-
quires testing arbitrary n-tuples. So to find a counterexample it is only necessary 
to produce a partial group which is not regular. Note that in a partial group a 
product f g , other than one that is trivially required by the axioms, can be 
removed, along with its inverse, from the set of allowable products and the par-
tial group structure is maintained. Choose a partial group P that is “big enough”, 
in the sense that there are elements , , ,f g h k  which together with their inverses 
are all distinct, different from the identity, and no products are trivial. This can 
be done, for example, in ( )0 1

ωπ Γ  which is uncountable. Assume furthermore 
that f , f g , ( )f g h 

, ( )( )f g h k   , and g h  are all defined. Re-
move ( )f g h 

 and ( )g h k 
. Then the partial group 0π  is no longer reg-

ular for ( ), , ,f g h k t→  for some t P∈ , but ( ), ,f g h k
 is minimal. 

4.2. Homotopy 

As follows from the general theory of Kan complexes when the extension condi-
tion is satisfied it can be used to define homotopy groups intrinsically and sim-
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plicially, and the results agree with those defined topologically by way of their 
realizations ([8], see p. 7). The nerve ˆNP  is a completion to extendability of the 
compatibility condition on NP.  

Definition 4.1. Let X be a simplicial set with one vertex. The e-completion Y 
of X is defined as follows For every horn of 1-simplices which doesn’t already sa-
tisfy the extension condition attach a 2-simplex so that the Kan extension condi-
tion is satisfied in dimension 1. Now consider horns of 2-simplices which do not 
already satisfy the Kan extension condition and attach 3-simplices. Since the Kan 
extension condition is satisfied in dimension 2 for simplices which are in X no 
3-simplices are attached to X. Continue attaching simplices in this manner to 
obtain Y which satisfies the extension conditions in all dimensions without 
changing X in dimensions greater than 1.  

Theorem 4.2. Suppose X satisfies the Kan extension condition in dimensions 
greater than or equal to 2. Let Y be the e-completion of X. Then the inclusion 
X Y→  induces a monomorphism ( ) ( )n nX Yπ π→  for all 2n ≥ , and an 

epimorphism for 1n = . If, in addition, X satisfies the weak extension condition 
in dimension 1 then ( ) ( )1 1X Yπ π→  is an isomorphism.  

Proof. Because Y  is a Kan complex topological and simplicial homotopy 
class agree. Consider a homotopy class in X  which is trivial in Y . In Y  
the topological class is represented by a simplicial homotopy class and, by the 
definition of simplicial homotopy, if it bounds then it bounds simplicially in 
X . This shows that the induced homomorphism on homotopy groups is a 

monomorphism for all 2n ≥ . 
In dimension 1, by construction of Y, every 1-simplex in Y is a product of 

1-simplices of X so that every loop of 1-simplices representing an element of 

( )1 Yπ  is homotopic to a loop in X , showing that ( ) ( )1 1X Yπ π→  is onto. 
Now, by definition of the weak extension condition, any loop in X representing a 
trivial loop in Y  bounds in X so that ( ) ( )1 1X Yπ π→  is one to one.  

For example, when X is the nerve of a partial group satisfying the regularity 
condition the simplicial set Y is the nerve of the universal group of the partial 
group, and the Theorem implies X Y→  induces a homotopy equivalence on 
realizations. Theorem 2.4 is a consequence. Perhaps one can check directly, in 
specific cases, for example when the partial group is the one arising from the 
classification of co-dimension 1 real analytic foliations, that the hypotheses of 
Theorem 4.2 are satisfied without deducing the result from regularity. 

4.3. Applications 

Further applications are discussed in [4] and reveal an intriguing confluence of 
themes. The word problem, real analytic Γ-structures, the non-existence of 
co-dimension 1 real analytic foliations on spheres, the Poincare-Bendixson 
Theorem, the discrete Euler class, and Fusion Systems are all connected by re-
sults involving partial groups, simplicial K(G, 1)’s and, as we have observed here, 
the extension condition. 
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