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Abstract 
The traditional numerical computation of the first and higher derivatives of a 
given function ( )f x  of a single argument x by central differencing is 

known to involve aspects of both accuracy and precision. However, central 
difference formulas are useful only for interior points not for a certain num-
ber of end points belonging to a given grid of points. In order to get approx-
imations of a desired derivative at all points, one has to use asymmetric dif-
ference formulas at points where central differencing doesn’t work. This must 
surely affect the accuracy and precision of the approximation. In this paper, 
we study the dependence of the orders of the five-point and the seven-point 
central difference formulas for the second derivative of ( )f x  on the oscil-

latory properties of this function and the value of the sampling period h in 
the case where it is necessary to use forward and backward formulas to ap-
proximate the derivative at some points belonging to a given grid of equally 
spaced points. As an illustrative example, we consider the case where 
( ) ( )sinf x xα= . 
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1. Introduction 

Numerical differentiation is an elementary and essential part in scientific mod-
eling and numerical analysis [1]. It is widely used for the differentiation of the 
functions which are difficult to differentiate analytically, and for finding the de-
rivative of the sampled data for which the generating function is not known. 
This is the case when solving the ordinary or partial differential equations nu-
merically. 

Many methods have been introduced and discussed to determine the deriva-
tives numerically [2]. These methods can be classified into two approaches [2]. 
The first approach aims to develop formulas for calculating the derivatives nu-
merically. This includes the Taylor expansion based finite difference method [3] 
[4] [5] [6] [7], the operator method [3] [8], the interpolating polynomial method 
[4] [5] [6] [8] [9], and the lozenge diagram method [10]. The second approach 
does not give an explicit formula for the derivative; it just aims to evaluate it by 
using the function data [1]. 

The Taylor series based finite difference approximation is used to numerically 
evaluate the derivative of a function at a grid reference point by using data sam-
ples at the other neighboring points within the domain of this function. De-
pending on the pattern of the samples used in calculation, the most commonly 
used approximation formulas for derivatives are classified as forward, backward 
and central difference formulas. Forward difference approximations use the 
samples at a mesh point and next (forward) equally spaced points of analysis for 
calculating the derivative at the mesh point. In contrast, backward difference 
approximations use the samples at a mesh point and the previous (backward) 
equally spaced points, whereas central difference approximations use both for-
ward and backward samples in calculating the derivative at the specified mesh 
point. Forward and backward differencing are part of a larger group of what 
might be called lateral (as distinct from central) differencing methods, including 
extrapolative differencing that might be appropriate for singularity [11]. 

We have to emphasize that the number of points used to approximate the de-
rivative defines the order of the approximation and generally, the greater is this 
number, the more is the accuracy of the approximation. For example, a finite 
difference approximation of the second derivative using pn  points is said to be 
of order 1pn −  for the central approximation and 2pn −  for both the forward 
and backward approximations, which means that central difference formula gets 
an extra order of accuracy for free. The central differencing is therefore the most 
accurate of the above three methods for a given number of equidistant data 
samples [12]. However, central difference formulas are useful only for interior 
points not for end points. For example, if we have a grid of 1xN +  points ix  
given by 0ix x ih= + , ( )0,1,2, , xi N=   for some fixed tabular interval h, and 
some integer x pN n> , the pn -point central difference approximation for the 
second derivative of a certain function ( )f x  can be used only at grid points 

jx , ( ) ( )1 2, 1 2p x pj n N n ∈ − − −   but not for  
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( )0, 3 2pj n ∈ −   or ( )3 2,x p xj N n N ∈ − −  , pn  being an odd integer 
such that 3p xn N≤ < . In order to get approximations of ( )jf x′′  at the 

( )3 2pn −  first points (resp. last points) while preserving the accuracy of the 
results, one can theoretically use a ( )1pn + -point forward difference (resp. 
backward difference) formula, which must surely affect the accuracy and preci-
sion of the results.  

The main purpose of this paper is to study the dependence of the orders of 
central difference approximations for the second derivative of a function on the 
oscillatory properties of this function and the value of the sampling period h in 
the case where it is necessary to use forward/backward approximations for this 
derivative at some points belonging to a given grid of equally spaced points. 

The rest of this paper is organized as follows. Section 2 contains a brief pres-
entation of Khan and Ohba’s closed-form expressions for finite difference ap-
proximations of first and higher derivative based on Taylor’s series, which have 
been shown to be suitable for computing derivatives of any degree with arbitrary 
order of accuracy over all the known function sampling points with a minimum 
effort [13]. Thereafter, we use these expressions to establish forward, backward 
and central difference formulas of several orders for the first two derivatives. In 
Section 3, we show how to determine numerically and graphically the order of a 
finite difference formula for a derivative of a certain degree q. In Section 4, we 
present and comment our results concerning the orders of some finite difference 
formulas for the second derivative of the function ( )f x  defined by  
( ) ( )sinf x xα= , α being a positive real parameter which allows working with 

various oscillation frequencies of the function under consideration. We concen-
trate on the behavior of the order of each formula as a function of the α parame-
ter and the sampling period h. The conclusion is given in Section 5.  

2. Finite Difference Formulas of the First and Second  
Derivatives Based on Taylor Series 

Following the notations as found in [13], the Taylor series defines the relation 
between the discrete time values of a time function ( )f t  sampled at t kh= , 
where 0, 1, 2,k = ± ±  , and h is the sampling period, to the value of the function 
and its derivatives at origin 0t = . It can, mathematically, be written as [13] 

( ) ( ) ( ) ( ) ( ) ( )
2

1 2 1
0 0 0 02! !

n
n n

k

kh kh
f f khf f f h

n
+= + + + + + O          (1) 

where kf  denotes the value of ( )f t  at t kh= , ( )
0

kf  denotes the value of the 
kth derivative of f at 0t =  and ( )1nh +O  is a term of the order of 1nh +  coming 
from the truncation of the series after 1n +  terms. The value of the kth deriva-
tive of f at t ih=  is denoted by ( )k

if . 
In this Section, we are mainly interested in the forward, backward and central 

difference approximations of the first and second derivatives of a function. We 
found it clarifying to use the notations of Ishtiaq Rasool Khan and Ryoji Ohba 
[13]. The advantage of this notation is that it is suitable for calculating deriva-
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tives of any degree with arbitrary order of accuracy over all the known function 
sampling points with a minimum effort. 

The following paragraphs summarize a number of expressions for finite dif-
ference approximations of first and second derivatives found in [13]. 

2.1. Case of the First Derivative 

Based on forward values of the function, we have [13] 

( ) ( )1 ,1
,

0

1 n
F n

i k n k i
k

f g f h
h +

=

= +∑ O                      (2) 

where ,1
,

F
k ng  denotes the coefficient of a term kf  in a forward approximation 

of first derivative of order n.  
Ishtiaq Rasool Khan and Ryoji Ohba calculated the ,1

,
F
k ng  coefficients for dif-

ferent orders of approximation, and observed that they can be expressed by the 
following explicit formulas [13]: 

,1
0,

1

1n
F

n
j

g
j=

= −∑                            (3) 

and  

( ) 1
,1

,

1
, 1,2, , ,

k
F n
k n kg C k n

k

+−
= =                     (4) 

where b
aC  is defined as 

( )
!

! !
a

b a b−
. 

Similarly based on the backward values of the function, we may write  

( ) ( )
0

1 ,1
,

1 B n
i k n k i

k n
f g f h

h +
=−

= +∑ O                      (5) 

where the superscript B refers to backward difference approximations. The ,1
,

B
k ng  

coefficients are such that  

,1 ,1
0, 0,

1

1n
B F

n n
j

g g
j=

= − =∑                          (6) 

and 

( ),1 ,1
, ,

1
, 1,2, , .

k
B F n
k n k n kg g C k n

k
−

= − = =                   (7) 

According to Khan I. R. and Ohba R. [13], a central difference approximation 
of order 2n for the first derivative is, for its part, given by the following Equa-
tion: 

( ) ( )1 ,1 2
,2

1 n
C n

i k n k i
k n

f g f h
h +

=−

= +∑ O                     (8) 

where 
,1

0,2 0C
ng =                              (9) 

and 
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( ) ( )
( ) ( )

2
1,1

,2

!
1 , 1, 2, , .

! !
kC

k n

n
g k n

k n k n k
+= − = ± ± ±

− +
           (10) 

The approximations of the first derivative for some values of n are listed be-
low (See Table 1). 

2.2. Case of the Second Derivative 

For this case we have [13]: 
 
Table 1. Backward, forward and central difference approximations of ( )1

if  for some 
values of n. 

n Finite Difference Formulas 

 Forward Difference Formulas 

1 ( ) ( )1i if f h h+− + +O  

2 ( ) ( ) ( )2
1 23 4 2i i if f f h h+ +− + − +O  

3 ( ) ( ) ( )3
1 2 311 18 9 2 6i i i if f f f h h+ + +− + − + +O  

4 ( ) ( ) ( )4
1 2 3 425 48 36 16 3 12i i i i if f f f f h h+ + + +− + − + − +O  

5 ( ) ( ) ( )5
1 2 3 4 5137 300 300 200 75 12 60i i i i i if f f f f f h h+ + + + +− + − + − + +O  

6 ( ) ( ) ( )6
1 2 3 4 5 6147 360 450 400 225 72 10 60i i i i i i if f f f f f f h h+ + + + + +− + − + − + − +O  

 Backward Difference Formulas 

1 ( ) ( )1i if f h h−− + +O  

2 ( ) ( ) ( )2
2 14 3 2i i if f f h h− −− + +O  

3 ( ) ( ) ( )3
3 2 12 9 18 11 6i i i if f f f h h− − −− + − + +O  

4 ( ) ( ) ( )4
4 3 2 13 16 36 48 25 12i i i i if f f f f h h− − − −− + − + +O  

5 ( ) ( ) ( )5
5 4 3 2 112 75 200 300 300 137 60i i i i i if f f f f f h h− − − − −− + − + − + +O  

6 ( ) ( ) ( )6
6 5 4 3 2 110 72 225 400 450 360 147 60i i i i i i if f f f f f f h h− − − − − −− + − + − + +O  

 Central Difference Formulas 

1 ( ) ( ) ( )2
1 1 2i if f h h− +− + +O  

2 ( ) ( ) ( )4
2 1 1 28 8 12i i i if f f f h h− − + +− + − +O  

3 ( ) ( ) ( )6
3 2 1 1 2 39 45 45 9 60i i i i i if f f f f f h h− − − + + +− + − + − + +O  

4 ( ) ( ) ( )8
4 3 2 1 1 2 3 43 32 168 672 672 168 32 3 840i i i i i i i if f f f f f f f h h− − − − + + + +− + − + − + − +O  
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 Forward formulas 

( ) ( )2 ,2
,2

0

1 n
F n

i k n k i
k

f g f h
h +

=

= +∑ O                   (11) 

where  

( ),2
,

1

1 1, 1,2, , ,
k n n

kF
k n

j
j k

C
g k n

k j=
≠

−
= =∑                  (12) 

and  

,2 ,2
0, ,

1

n
F F

n k n
k

g g
=

= −∑                        (13) 

 Backward formulas  

( ) ( )
0

2 ,2
,2

1 B n
i k n k i

k n
f g f h

h +
=−

= +∑ O                  (14) 

where ,2
,

B
k ng , the coefficient of kf , is the same as the corresponding kth coeffi-

cient in forward difference approximation given by Equations (12) and (13). 
 Central difference formulas 

( ) ( )2 ,2 2
,22

1 n
C n

i k n k i
k n

f g f h
h +

=−

= +∑ O                 (15) 

where  

,2 ,2
0,2 ,2

1

n
C C

n k n
k

g g
=

= −∑                       (16) 

and  

( ) ( )
( ) ( )

2
1,2

,2 2

!2!1 , 1, 2, , .
! !

kC
k n

n
g k n

n k n kk
+= − = ± ± ±

− +
        (17) 

Table 2 presents finite difference approximations of the second derivative for 
some values of n.  

3. Numerical and Graphical Determination of the Order of a  
Finite Difference Formula 

It is possible to calculate numerically and graphically the order of a given finite 
difference formula for a derivative of a function. To achieve this, it is necessary 
to choose a function whose successive derivatives are exactly known in a certain 
interval [ ],a b  of the independent variable. We then consider several values of 
h and compute for each of them the error [ ] ( )qE h  defined as  

[ ] ( )
[ ]

( ) ( ) ( )
0,

max
x

q qq
i ii N

E h f x f
∈

= −                  (18) 

where ( ) ( )q
if x  denotes the value of the qth derivative of the function f at 

ix x= , xN  is a positive integer such that  

( ) xh b a N= − ,                       (19) 

which means that we discretize the interval of interest by 1xN +  points, i.e., 

0 1 2, , , , Nxx a x x x b= = . If 
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Table 2. Forward, backward and central difference approximations of ( )2
if  for some values of n.  

n Finite Difference Formulas 

 Forward Difference Formulas 

2 ( ) ( )2
1 22i i if f f h h+ +− + +O  

3 ( ) ( )2 2
1 2 32 5 4i i i if f f f h h+ + +− + − +O  

4 ( ) ( ) ( )2 3
1 2 3 435 104 114 56 11 12i i i i if f f f f h h+ + + +− + − + +O  

5 ( ) ( ) ( )2 4
1 2 3 4 545 154 214 156 61 10 12i i i i i if f f f f f h h+ + + + +− + − + − +O  

6 ( ) ( ) ( )2 5
1 2 3 4 5 6812 3132 5265 5080 2970 972 137 180i i i i i i if f f f f f f h h+ + + + + +− + − + − + +O  

7 ( ) ( ) ( )2 6
1 2 3 4 5 6 7938 4014 7911 9490 7380 3618 1019 126 180i i i i i i i if f f f f f f f h h+ + + + + + +− + − + − + − +O  

 Backward Difference Formulas 

2 ( ) ( )2
2 12i i if f f h h− −− + +O  

3 ( ) ( )2 2
3 2 14 5 2i i i if f f f h h− − −− + − + +O  

4 ( ) ( ) ( )2 3
4 3 2 111 56 114 104 35 12i i i i if f f f f h h− − − −− + − + +O  

5 ( ) ( ) ( )2 4
5 4 3 2 110 61 156 214 154 45 12i i i i i if f f f f f h h− − − − −− + − + − + +O  

6 ( ) ( ) ( )2 5
6 5 4 3 2 1137 972 2970 5080 5265 3132 812 180i i i i i i if f f f f f f h h− − − − − −− + − + − + +O  

7 ( ) ( ) ( )2 6
7 6 5 4 3 2 1126 1019 3618 7380 9490 7911 4014 938 180i i i i i i i if f f f f f f f h h− − − − − − −− + − + − + − + +O  

 Central Difference Formulas 

1 ( ) ( )2 2
1 12i i if f f h h− +− + +O  

2 ( ) ( ) ( )2 4
2 1 1 216 30 16 12i i i i if f f f f h h− − + +− + − + − +O  

3 ( ) ( ) ( )2 6
3 2 1 1 2 32 27 270 490 270 27 2 180i i i i i i if f f f f f f h h− − − + + +− + − + − + +O  

 
[ ] ( )q pE h Ch≈                         (20) 

for h sufficiently small (as 0h → ), then p is the order of the finite difference 
formula. Here, C is a constant depending on the function, the degree of the de-
rivative and the finite difference formula. From Equation (20), we have  

[ ] ( )( ) ( ) ( ) ( )log log log logq pE h Ch C p h≈ = + .         (21) 

Using the logarithmic scale resulting from the change of variable ( )logX h=  
and [ ] ( )( )log qY E h= , we obtain the expression 

( )logY C pX≈ + ,                     (22) 
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which is the equation of a straight line. The slope of this line is therefore the or-
der of the finite difference approximation.  

4. Numerical Experimentation 

In order to study orders of finite difference formulas for the second derivative, 
we consider the periodic function ( )f x  defined by  

( ) ( ) [ ]0sin , , 0,2f x x xα α += ∈ ∈ π .              (23) 

The parameter α allows working with various oscillation frequencies of the 
function under consideration. 

Figure 1 shows the dependence of the function ( )f x  on the independent 
variable x and the parameter α. As expected, the number of oscillations increases 
with α. 

In Figures 1-5, we show the errors [ ] ( )2E h  plotted against h on a log-log 
scale for several values of the α parameter and the three numerical differentia-
tion methods mentioned above. This is a good way to plot errors when we expect  
 

 

Figure 1. Plots of ( )sin xα  for several values of the parameter α . 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 2. Plots of [ ] ( )2E h  in a log-log scale. (a) 0.5α = ; (b) 1α = ; (c) 1.5α = ; (d) 2α = . 3n =  for the central difference 

formula. 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3. Plots of [ ] ( )2E h  in a log-log scale. (a) 2.5α = ; (b) 3α = ; (c) 1.25α = ; (d) 2.75α = . 3n =  for the central differ-

ence formula. 
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(a) 

 
(b) 

https://doi.org/10.4236/oalib.1110875


H. Nyengeri et al. 
 

 

DOI: 10.4236/oalib.1110875 14 Open Access Library Journal 
 

 
(c) 

 
(d) 

Figure 4. Plots of [ ] ( )2E h  in a log-log scale. (a) 0.5α = ; (b) 1α = ; (c) 3α = ; (d) 10α = . 2n =  for the central difference 

formula. 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5. Plots of [ ] ( )2E h  in a log-log scale. (a) 20α = ; (b) 40α = ; (c) 3.78α = ; (d) 6.25α = . 2n =  for the central dif-

ference approximations. 
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them to behave like some power of h, since if the error [ ] ( )qE h  behaves like 
[ ] ( )q pE h Ch≈  then [ ] ( )( ) ( ) ( )log log logqE h C p h≈ + . So on a log-log scale, the 

error behaves linearly with a slope that is equal to p, the order of accuracy. 
It must be remembered that each of the three considered difference methods 

using np points to approximate ( )2
if  requires us to use at least one of the two 

other methods in the approximation of this derivative for at least one point. 
More precisely: 
 A np-point forward formula requires use of a np-point backward formula to 

approximate ( )2
if  at the ( )1pn −  last points. 

 A np-point backward formula requires use of a np-point forward formula to 
approximate 2

if  at the ( )1pn −  first points. 
 A np-point central difference formula requires use of the ( )1pn + -point 

forward formula (resp. backward formula) for the ( )1 2pn −  first points 
(resp. last points). 

It appears from Figures 2-5 that the shape of each plot depends on the range 
the sampling period h belongs to, the method used to approximate ( )2

if  at the 
majority of points (those for which the method is useful) and the value of the α 
parameter. Indeed, the potential values of h can obviously be placed in three dif-
ferent regions when a ( )2 1n + -point central difference formula is applied to the 
function ( ) ( )sinf x xα=  with α positive integer or half-integer and [ ]0,2x∈ π  
(See Figure 2, Figure 3(a) and Figure 3(b), Figure 4 and Figure 5(a) and Fig-
ure 5(b)): the small-h region where the curve is a straight line with slope 2n, the 
medium-h region where we have a straight line of slope 2 1n +  and the high-h 
region where the slope of the curve is not where defined. The length and end-
points of each region depend on the values of the integer n and the parameter α, 
which implies that sizes and endpoints of the three regions are dependent on 
both the oscillation frequency of the function and the number of points used in 
the approximation of the derivative. With the same function, but values of α 
which are neither integers nor half-integers, only two regions are observed: there 
is no medium-h region (See Figure 3(c) and Figure 3(d) and Figure 5(c) and 
Figure 5(d)). We have to add that all results obtained from forward differencing 
formulas fit with those of the corresponding backward formulas. Furthermore, 
no cases of medium-h region were reported for these two methods. 

In an effort to better understand the origin of the medium-h region, we show 
the errors [ ] ( )2 ,CCE h  (Figure 2, Figure 4, Figure 3(a) and Figure 3(b) and 
Figure 5(a) and Figure 5(b)) defined as  

[ ] ( )
[ ]

( ) ( ) ( )2 22 ,

,
max

x

CC
i ii n N n

E h f x f
∈ −

= −                 (24) 

for a ( )2 1n + -point central difference approximation of the second derivative. 
We have to emphasize that [ ] ( )2 ,CCE h  is obtained from Equation (18) by omit-
ting all points at which the central difference approximation for the second de-
rivative is not valid. It is remarkable that any case of medium-h region is ob-
served for [ ] ( )2 ,CCE h , which means that this region is simply the consequence 
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of asymmetric finite difference approximations of the derivative in question at 
some points (those at which the central difference formula is not valid).  

Now consider the problem of estimating the slope of the line segment con-
necting two any consecutive points on each of the curves of Figures 2-5 for only 
central differencing formulas and integer or half-integer values of the parameter 
α. We used the expression [ ] ( )2

jp h  to denote the value of the slope for the line 
segment whose endpoints are ( ) [ ] ( )( )( )2 ,

1 1log ,log C
j jh E h− −  and  

( ) [ ] ( )( )( )2 ,log , log C
j jh E h : 

[ ] ( )
[ ] ( )( ) [ ] ( )( )

( ) ( ) [ ]
2 , 2 ,

12

1

log log
, 2 , 1, .

log log

C C
j j

j j j x
j j

E h E h
p h h N j N

h h
−

−

= ∈π
−

=
−

   (25) 

The plots of the functions highlighting [ ] ( )2p h  for several values of the pa-
rameter α are shown in Figure 6 and Figure 7. We see the same three regions 
appearing in Figures 2-5. The numerically calculated starting values of the sam-
pling period for the small-h region ( [ ] ( )25.99 6.01p h≤ ≤  for 3n =  and 

[ ] ( )23.99 4.01p h≤ ≤  for 2n = ) are given in Table 3 and Table 4, the values of 
h being listed in descending order. 

A careful analysis of our numerical data presented in Table 3 leads to the 
conclusion that the relationship between starth  and α (integer or half-integer) 
can be described by the following simple formula: 

( ) ( )2start starth rα απ                      (26) 

for the 5-point central difference approximation of ( )f x′′ , where 

1325.77startr α= .                       (27) 

From the numerical data of Table 4, we found that the small-h region asso-
ciated with the 7-point central difference approximation of ( )f x′′  is such that 

( ) ( )2start starth rα απ                       (28) 

with 

( ) 5780startr α α=                        (29) 

 
Table 3. Starting values of the sampling period for the small-h region in the case where n = 2 (5-point central difference formula). 
Fifteen values of the parameter α  are considered.  

α  0.5 1 1.5 2 2.5 3 4 5 6 7 8 9 10 20 40 

starth  2
663
π  2

1326
π  2

1989
π  2

2652
π  2

3315
π  2

3979
π  2

5305
π  2

6630
π  2

7957
π  2

9280
π  2

10606
π  2

11935
π  2

13260
π  2

26520
π  2

53030
π  

 
Table 4. Starting values of the sampling period for the small-h region in the case where n = 3 (7-point central difference formula). 
Six values of the parameter α  are considered. 

α  0.5 1 1.5 2 2.5 3 

starth  2
5780
π  2

11560
π  2

17340
π  2

23120
π  2

28900
π  2

34679
π  
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 
(f) 

Figure 6. Plots of [ ] ( )2 ,Cp h  for the 7-point central difference approximation of ( )f x′′ . (a) 0.5α = ; (b) 2α = ; (c) 1α = ; (d) 

2.5α = ; (e) 1.5α = ; (f) 3α = . 
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(c) 

 
(d) 
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(e) 

 
(f) 

Figure 7. Plots of [ ] ( )2 ,Cp h  for the 5-point central difference approximation of ( )f x′′ . (a) 0.5α = ; (b) 10α = ; (c) 1α = ; (d) 

20α = ; (e) 3α = ; (f) 40α = . 
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5. Conclusions 

The focus of our work was to investigate the influence of forward and backward 
finite difference approximations on the orders of central difference approxima-
tions for the second derivative of a periodic function. First, we have briefly pre-
sented very practical closed-form expressions for the finite difference approxi-
mations of first and second derivatives based on Taylor series and found in the 
literature. Next, these expressions were used to obtain forward, backward and 
central difference formulas of several orders for the first two derivatives of any 
function of one variable. Thereafter, we have described one major method to 
determine numerically and graphically the order of a finite difference formula 
for the second derivative of a certain degree q. Finally, we have applied the me-
thod in question to the second derivative of the periodic function ( ) ( )sinf x xα=  
with 0α >  and [ ]0,2x∈ π . The results obtained from this application led to 
the conclusion that any ( )2 1n + -point central difference formula for the second 
derivative of the considered periodic function is of order 2 1n +  for medium 
values of the sampling period h and of order 2n for small values of this parame-
ter in the case where it is necessary to use forward and backward approximations 
of the derivative of interest at some points belonging to a given grid of equally 
spaced points. Sizes and starting points of the small-h and the medium-h regions 
depend on h and α. There is no medium-h region when the parameter α is nei-
ther integer nor half-integer. Careful analysis of our numerical results led us to 
very simple formulas to describe relationships between the starting values of h 
for the small-h region and the α parameter in the cases of 2n =  and 3n = , the 
values of h being listed in descending order. 

One has to add that errors [ ] ( )2E h  defined by Equation (18) become too 
small to be well calculated when h is of very small magnitude and the parameter 
α not large ( 4α < ), unless the computation is performed with sufficiently 
high-precision. To deal with this problem, we appealed to a new software pack-
age for arbitrary precision computation, named MPFUN2020 and developed by 
David H. Bailey [14].  
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