
Citation: Anglano, C.; Canonico, M.;

Desimoni, F.; Guazzone, M.; Savarro,

D. The HealthTracker System: App

and Cloud-Based Wearable

Multi-Sensor Device for Patients

Health Tracking. Appl. Sci. 2024, 14,

887. https://doi.org/10.3390/

app14020887

Academic Editor: Chilukuri K. Mohan

Received: 1 December 2023

Revised: 8 January 2024

Accepted: 18 January 2024

Published: 19 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

The HealthTracker System: App and Cloud-Based Wearable
Multi-Sensor Device for Patients Health Tracking
Cosimo Anglano 1,2, Massimo Canonico 1,2,*, Francesco Desimoni 1, Marco Guazzone 1,2 and Davide Savarro 3

1 Department of Science and Technological Innovation, University of Piemonte Orientale, 13100 Vercell, Italy;
cosimo.anglano@uniupo.it (C.A.); francesco.desimoni@uniupo.it (F.D.); marco.guazzone@uniupo.it (M.G.)

2 Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), 43124 Parma, Italy
3 Department of Computer Science, University of Turin, 10124 Torino, Italy; davide.savarro@unito.it
* Correspondence: massimo.canonico@uniupo.it

Abstract: Telemedicine has emerged as a vital component of contemporary healthcare, revolutioniz-
ing the way medical services are delivered and accessed (e.g., it enables patients living in underserved
or rural areas to receive medical consultation and treatment remotely). Moreover, telemedicine plays
a pivotal role in improving healthcare efficiency by reducing wait times, minimizing unnecessary
hospital visits, and optimizing resource allocation. In this paper, we present HealthTracker, a moni-
toring infrastructure for patients comprising two Internet of Things (IoT) devices (one of which was
designed and created by us) and a mobile app that sends data collected by the IoT devices to a cloud
service. All these components work together to provide an innovative system able to monitor patient
health condition, provide alerts in emergency cases, and elaborate upon data to improve the quality
of medical care. Preliminary tests show that the system works well, and real experimentation will
start soon in collaboration with the local health authority.

Keywords: cloud computing; wearable devices; telemedicine

1. Introduction

The COVID-19 pandemic, which swept across the globe in 2019 and 2020, disrupted
nearly every aspect of human life. As healthcare systems struggled to manage the influx
of patients and minimize the spread of the virus, telemedicine emerged as a critical tool
to ensure the continued provision of medical care while maintaining social distancing
measures [1]. The pandemic served as a catalyst, hastening the widespread adoption of
telemedicine to an unprecedented extent [2]. Consequently, the importance of telemedicine
in contemporary healthcare has been amplified, permanently reshaping the terrain of
medical practice [3].

Telemedicine, defined as the use of electronic communication and information tech-
nologies to provide remote healthcare services, has been in existence for several decades
[4]. The ability to connect patients and healthcare providers virtually not only ensured the
continuity of care during lockdowns but also offered a means to reach underserved pop-
ulations and alleviate healthcare disparities [5]. To effectively advance and integrate this
technological framework, facilitating prevention, treatment, and decision-making while
also enabling a more profound understanding of the disease, it is imperative to engage
professionals across diverse medical, IT, and engineering disciplines [6]. These experts
should possess a range of skills in their respective fields, enabling them to design, produce,
and optimize technologically advanced tools for the collection, assessment, and analysis of
data.

In this scenario, we propose a system named HealthTracker: a monitoring infrastructure
for patients to store and analyze data provided by devices and store them as time series.
The monitoring infrastructure consists of (a) an app, running on a smartphone, which can
interface with wearable devices to collect the data generated by the corresponding sensors,

Appl. Sci. 2024, 14, 887. https://doi.org/10.3390/app14020887 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020887
https://doi.org/10.3390/app14020887
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14020887
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020887?type=check_update&version=1

Appl. Sci. 2024, 14, 887 2 of 19

and (b) a cloud storage system, where these data are stored for remote access and offline
analysis. At the time of writing, HealthTracker can interface with the following two wear-
able devices: (i) a chest-placed wearable device, named Health Data Collection (HDC) device,
and (ii) a wrist oximeter named Viatom Checkme O2 both intended to monitor the patient’s
vital signs. Although the latter device is a commercially available product (described in
detail in Section 5.2) it is worth highlighting that the former one (the HDC device) has
been developed specifically for the HealthTracker system and includes groundbreaking
innovations with respect to state-of-the-art wearable devices. More specifically, it is worn
in contact with the skin (basically on the chest) and, aside from data reliability and ease of
use, performs all-round monitoring of health parameters by two sensors never applied in a
single health-monitoring device, namely:

1. an accelerometric and acoustic sensor capable of recording (a) the frequency and
intensity of the cough, (b) the respiratory rate and depth, (c) the nighttime breathing
including apnea and snoring, and (d) tremors and hyperkinesia;

2. a hygrometric sensor capable of measuring sweating to determine states of acute
fatigue and lipothymia; this sensor has also never been used in devices currently on
the market.

To the best of our knowledge, our device is currently the only health-monitoring
wearable device that integrates all the sensors described in this paper. For this reason, in
the experimental comparison we will perform in future work, we will consider similar
devices that integrate only a subset of the sensors available in our device.

In the rest of the paper, we present the motivations behind our work in Section 2,
while related work is presented in Section 3. In Section 4, we explain the architecture
of our system, and then in Section 5, we describe in detail the hardware and software
characteristics of the IoT devices included in the system. In Section 6, we discuss the
implementation of our system, and, finally, Section 7 concludes the paper and highlights
the future works.

2. Motivations

As mentioned before, in the coming years, it will be necessary to eliminate the barriers
of geography, making healthcare accessible to individuals in rural or underserved areas. For
this purpose, telemedicine allows patients to connect with healthcare providers remotely,
receive a diagnosis and treatment, and access specialist care without the need to travel long
distances.

The HealthTracker system can significantly improve the usage of telemedicine in the
everyday life of both patients and clinicians to improve people’s health for better health
treatments. For example, the patient’s health data can be automatically collected through
the patient’s smartphone using the HealthTracker app, saved on its cloud storage system,
and subsequently processed to implement the following functionalities:

1. provide the medical team with an aggregate view (consisting of graphs and tables)
for a better and immediate consultation;

2. allow the medical team to customize monitored data according to patients’ specific
medical conditions. For instance, physicians can selectively focus on tracking the
movement patterns of a patient facing challenges in walking or exclusively monitor
the heartbeat rate of an individual with heart-related issues. This functionality is
provided by HealthTracker’s app, which enables physicians to select only those data
that require monitoring;

3. process these data with machine-learning algorithms (already available in Health-
Tracker) to perform statistical analysis, both to provide information on the current
situation and to predict the trend of health parameters in the short term;

4. capture real-time biomedical parameters to identify abnormal signs, such as elevated
body temperature and inadequate oxygenation, to preemptively alert the user and
mitigate the risk of developing certain conditions by advising the patient to sit or lie
down or relocate to a cooler environment. Furthermore, a notification system to alert

Appl. Sci. 2024, 14, 887 3 of 19

family members and selected medical personnel could be implemented, ensuring
swift responses and personalized care in critical situations;

5. establish and sustain the foundational core of a knowledge base, with the potential for
expansion to incorporate additional parameters characterizing the patient, such as the
presence and severity of predisposing or aggravating conditions. This serves as the
backbone for conducting statistical analyses leveraging advanced machine-learning
techniques.

3. Related Work

The integration of IoT devices in the field of telemedicine has garnered significant at-
tention in recent years. This section provides an overview of key research and development
in this domain.

One of the fundamental applications of IoT in telemedicine is remote patient mon-
itoring. In [7], IoT devices such as wearable sensors and continuous glucose monitors
have enabled real-time data collection and transmission, allowing healthcare providers to
monitor patients’ vital signs and chronic conditions remotely. In particular, IoT-generated
data in telemedicine is voluminous, and machine-learning techniques have been employed
to extract valuable insights. In [8], machine-learning models have been used for early
disease detection, treatment optimization, and predicting patient outcomes. In [9], the
authors proposed a remote healthcare system enabling multiple medical sensors to connect
to a server using multiple communication technologies such as Wi-Fi, Bluetooth, or GSM
technologies.

Concerning telemedicine platforms and ecosystems, [10,11] describe various telemedicine
platforms and ecosystems that have been developed to facilitate the seamless integration
of IoT devices. These platforms enable secure data transmission, video consultations,
and remote diagnostics. Notable examples include the use of Microsoft Azure IoT for
healthcare applications. In [12], the authors proposed WhatsApp (the famous mobile
messaging application) as a telemedicine platform, but it is used only to share photos
and lesion recordings to submit questionnaires to patients to monitor their health. Finally,
researchers at the University of Basel (Switzerland) developed an Internet-based platform
for telemedicine in 2001 named the Internet Pathology Suite (iPath) [13]. This platform has
been implemented to allow the presentation and discussion of images provided by remote
electron microscopes; no other device can be used on this platform. Finally, in [14], authors
develop a prototype able to provide features for telemedicine like live video streaming,
chat boxes, automatic prescription generation, and push notifications. The prototype is
used for trial under the supervision of medical experts, and the data are compared with
standard tests done in a pathological laboratory.

Conversely to the above approaches, our system adopts a more open framework
as it is IoT device agnostic: the modular design of the interacting components allows
HealthTracker to be easily extended to include different IoT devices. To prove it, we
demonstrate how our system can exploit an innovative device that provides, for the first
time, two sensors able to record the frequency and intensity of the cough, the respiratory
rate and depth, the nighttime breathing, including apnea and snoring, the acute fatigue, and
lipothymia. All these parameters are essential for monitoring a patient’s health condition
and for reporting symptoms that must be detected as soon as possible, allowing for prompt
action, if necessary, to halt the progression of the disease.

4. Architecture

The HealthTracker system was designed with the objective to develop a monitoring
infrastructure for patients to store and analyze data provided by devices and store them as
a time series so that it can become a medical support tool helping healthcare personnel to
evaluate the health conditions of their patients without the need for a face-to-face visit. In
its design, we adhered to the following two key principles:

Appl. Sci. 2024, 14, 887 4 of 19

1. ease of use: since elderly people are the main portion of our target user base, it is
important that the interaction with the system—especially the recording process—is
as simple as possible;

2. service-orientation: the use of a microservices architecture, supported by the main
cloud technologies, is fundamental to achieve optimal performance while keeping
the system running smoothly [15]. Specifically, rather than using the “one-size-fits-all”
approach as in a monolithic application architecture, a microservices architecture
allows the use of a different technology stack for each microservice independently of
the others to achieve the desired performance levels. Also, since microservices are
loosely coupled, if one microservice needs to improve its performance, it is possible to
replace its technology stack with a better one without affecting the other microservices.
Finally, microservices are easier to scale than a monolithic application as it is possible
to scale only selected services (i.e., the only ones that actually need to be scaled) rather
than the whole “giant” application.

To achieve these goals, we designed and built a software and hardware infrastructure
whose architecture is shown in Figure 1, where solid red boxes denote the hardware devices
and dashed shapes represent third-party components (e.g., a cloud computing platform)
that are used by HealthTracker to run some of its components (e.g., the time-series database).
Inside both red boxes and dashed shapes, we indicate with blue boxes the microservice
or the communication interface exploited by the hardware component (both explained in
detail in Section 6). Finally, arrows denote interactions between components (e.g., an arrow
from component Ci to component Cj means that Ci uses the functionality of Cj).

Figure 1. The architecture of HealthTracker.

As shown in Figure 1, HealthTracker encompasses three distinct subsystems:

1. a set of Monitoring Devices, which collect patients’ health data. As discussed later in
the paper (Section 5), as part of this work, we designed and built a novel monitoring
device (the HDC device), and we developed the code to interface with a commercially
available one (the Viatom CheckMe O2 device);

2. an Android smartphone, running the HealthTracker app that interfaces with the
monitoring devices to both control their behavior and retrieve the health data they
collected. This app is responsible for user authentication and communication with
the monitoring device, as well as for data collection and storage in the cloud. As
discussed later in the paper (Section 6.1), the communication protocol between devices
and mobile apps can be customized, so other devices, in addition to the currently
supported ones, can be integrated into HealthTracker;

3. a Cloud Computing Platform, which provides both secure storage and offline process-
ing for collected health data, and is composed of the following components:

Appl. Sci. 2024, 14, 887 5 of 19

• the HealthTracker Upload Server, whose implementation is discussed in Section
6.2, which exposes an API that allows the Android app to upload the health data
collected, which, after validation, are sent to the Time series database;

• the Time-series Database, whose implementation is discussed in Section 6.3, which
stores the health data making them easily and efficiently accessible to the rest of
the system;

• the HealthTracker Dashboard, whose implementation is discussed in Section 6.5,
which is a web application enabling physicians to plot the time series recorded
in each time frame;

• the HealthTracker Admin Server, whose implementation is discussed in Section
6.4, which fulfills the task of authorizing users before enabling the Dashboard to
retrieve time-series data on their behalf.

• the Authenticator, whose main purpose is to provide a fully functioning authenti-
cation and authorization mechanism (based on the OAuth2 standard [16]) with a
series of ancillary services useful to speed up the development. Its integration
with the other components of the architecture is discussed in Section 6.

An important issue in systems storing and processing health data is protecting the con-
fidentiality of these data. To adequately protect confidentiality, data needs to be protected
both while in transit and while at rest.

In HealthTracker, we deal with this issue by incorporating into its design encryption
mechanisms both for data transmission and data storage, in the form of encrypted com-
munication protocols between the Android smartphone and the Upload Server, and an
encrypted DBMS for the time-series database.

As will be discussed in Section 6, in the current implementation, we have adopted
the HTTPS protocol for communication between the Android smartphone and the Upload
Server, and the MongoDB DBMS to store time-series data, both of which provide data
encryption. Furthermore, HealthTracker requires that all user operations be authenticated
before being actually carried out by means of the authentication functionalities provided
by the Authenticator, thus providing access to unencrypted data only to legitimate users.

Jointly, encryption and strong user authentication mechanisms provide the necessary
level of protection for the health data stored in and processed by HealthTracker.

5. Devices

For the studies that motivated our initial design, devices providing sensors able
to monitor ambient temperature and humidity, skin impedance, heartbeat, and blood
oxygenation, as well as a microphone, an accelerometer, and a gyroscope, were necessary.
Among the various devices available on the market or proposed in the literature (see
Section 3), we did not find any of them able to provide all these functionalities. For this
reason, we decided to proceed as follows:

1. we designed and implemented the HDC device to collect ambient temperature, humid-
ity, and skin impedance, as well as to provide the microphone, the accelerator, and
the gyroscope;

2. we adapted the Viatom Checkme O2 device, which is commercially available and can
collect heart rate and oxygen saturation, to interface it with the Android app.

To enable external connections with them, both devices support the Generic ATTribute
(GATT) [17] protocol, which defines the way that two Bluetooth Low Energy (BLE) devices
transfer data back and forth using concepts called Services and Characteristics. GATT makes
use of a generic data protocol called the Attribute Protocol (ATT), which is used to store
services, characteristics, and related data in a simple lookup table using 16-bit IDs for each
entry in the table.

In the rest of this section, we will discuss these devices more thoroughly.

Appl. Sci. 2024, 14, 887 6 of 19

5.1. The HDC Device

This device was specifically designed for the HealthTracker project with the goal of
building a working prototype of a wearable multi-sensor device able to interact with an app
to collect and send information such as movement, breathing patterns, and temperature.
In Figure 2, we show how the device is worn (left photo), how it looks from the front (top
right photo), and how it looks from the back (bottom right photo).

Figure 2. The HDC device. On the left how it is worn, while on the right, we show the front of the
device (figure on the top right) and the back of the device (figure on the bottom right).

The device was designed to comply with two sets of requirements: it had to be able
to detect and measure movement, coughing, respiratory rate and depth, tremors and
hyperkinesia, sweating, and temperature while also being light, easy to wear on the chest,
and water-resistant.

Concerning the hardware (see Figure 3), the HDC device is based on an IoT node multi-
channel communication named B-L475E-IOT01A [18] produced by STMicroelectronics.
In particular, the device is composed of two boards connected via the Arduino Header,
both housed in a custom-made PA12 case. The main one (master) is the B-L475E-IOT01A
IoT node by STMicroelectronics featuring an ARM Cortex-M4-based STM32L4 low-power
MCU with a 1 MB Flash memory and a 128 KB SRAM, a 64-Mbit Flash memory, a Bluetooth
4.1 module, 2 microphones, a barometer, a magnetometer (LIS3MDL), an accelerometer
and a gyroscope (LSM6DSL). The power supply to the integrated ST-link module has
been disabled to save power. The other one (slave), also called HealthTracker Shield, is
a custom-made board containing two rechargeable Li-ion batteries, which make up the
3.7 v 4000 mAh power supply. The batteries have been sized to guarantee at least 8 h of
operation with all sensors turned on. Our tests confirmed this duration of device operability.
Other hardware components included in the HDC device are an LED, a magnetic buzzer,
a signal conditioning unit, and a humidity and temperature sensor. The LED is used to
notify the user about the device’s functioning: blinking green LED means the device is up
and running, blinking yellow LED means the battery is under 15% of its power capacity,
and, finally, blinking red LED means the battery under 5% of its capacity. There is a specific
pin in the device where it is possible to obtain the residual battery capacity. The device can
be charged wirelessly according to the Qi standard (an interface for wireless power transfer
using inductive charging). In particular, HDC is powered by a rechargeable battery with
swap architecture in order to be replaced and allow the continuous device to work with
two accumulators by putting one in recharging.

Appl. Sci. 2024, 14, 887 7 of 19

Figure 3. The HDC device block design.

Concerning the software, we developed the firmware of the HDC device. In particular,
we implemented the GATT interface used by the device to send data through a BLE
connection. The interface can supply the following information: accelerometer, gyroscope,
and magnetometer values for each axis, temperature, humidity, pressure, and battery
status. It uses three services, but each of them only has one characteristic and employs
bytes instead, using 16 bits for each value and representing the same information on the
same range in a more compact though less readable way. For example, the acceleration on
the x-axis can be found in the first two bytes of the array received by subscribing to the
characteristic 02055000-0000-0000-0001-000000000001 on the service 02055000-0000-0000-
0001-000000000000.

An example of the real-time data retrieval procedure is shown in Figure 4, where a
BLE client, after establishing a connection with the HDC device, subscribes itself to the
periodic reception of real-time data.

Figure 4. Sequence diagram illustrating the interactions between the HDC device and a BLE client
during the retrieval of real-time data.

5.2. The Viatom Checkme O2 Device

The HealthTracker system is complemented by sensors for continuous monitoring
and alerting of oxygen saturation level and heart rate, so both our devices together can
monitor all the parameters reported as relevant in innovative telemedicine [19]. The Viatom
Checkme O2 device is a wrist oximeter that can measure blood oxygen levels, heart rate,
and movements (see Figure 5). It can send the values to a nearby smartphone in real time
or store them locally in files that can later be downloaded on a smartphone. It can also

Appl. Sci. 2024, 14, 887 8 of 19

warn the user if the current readings are at a dangerous level by triggering the vibration
of the device itself. This device can be used along with the ViHealth app provided by the
manufacturer to take advantage of additional features.

Figure 5. The Viatom Checkme O2 device to monitor blood oxygen level, heart rate, and movements.

Concerning the hardware, the device uses a ring sensor to collect oxygen saturation
and heart rate data, while the main unit is a bracelet containing a BLE 4.0 chip, a 3.7 v 130
mAh rechargeable battery, an accelerometer, and a small OLED display. The display can
show the current oxygen saturation level, the heartbeat rate, and step count values. The
device has an Ingress Protection (IP) rating of 22, which protects the device from water spray
IP22 is enough since the device is removed from patients during personal hygiene, and it
has an internal memory able to store up to 40 h of recording data.

Concerning the software, the device comes with a mobile app that, through a BLE
connection, can download the files containing the data recorded offline, store them on the
smartphone, and examine them, providing user-friendly charts. Since the source code of
the ViHealth app was not available, the Viatom Checkme O2 device could not be easily
integrated into the HealthTracker project. Therefore, we reverse-engineered the communi-
cation protocol between this device and the ViHealth app to exploit it in HealthTracker. To
do so, we analyzed the Bluetooth data exchanged between the device and the app during
operations such as downloading recordings and requesting the current values. This process
allowed us to obtain enough information on how to receive real-time data about oxygen
saturation and heart rate, how to receive files, and how this information is arranged while
disregarding the acquisition of data pertaining to steps or movement because it is not
important in our scenario. All the aforementioned functionalities are accessible through
a single service, with UUID 14839AC4-7D7E-415C-9A42-167340Cf2339, within the GATT
interface, which, in turn, has two characteristics: one for sending commands and one for
receiving data after subscribing for notifications. To elaborate further, the former charac-
teristic is identified by the UUID 8B00ACE7-EB0B-49B0-BBE9-9AEE0A26E1A3, while the
latter is denoted by the UUID 0734594A-A8E7-4B1A-A6B1-CD5243059A57.

The specifics of the protocol are beyond the scope of this paper, so the following is a
summary of the behavior. The app acts as a client, and after subscribing for notifications, it
can send commands containing different fields. An example of a command showcasing the
full structure is shown in Figure 6. The first field is a one-byte preamble used to identify
the start of a command, followed by a one-byte command identifier. Subsequently, an XOR
operation between the previous byte and 0xFF is performed. The fourth field is a two-byte
acknowledgment used in specific operations to confirm received data on the client’s end.
Moreover, the structure involves a two-byte value represented in the little-endian format,
denoting the length of the subsequent field, which is a variable-size payload containing the
necessary parameters when the command requires them. Lastly, the command concludes
with a one-byte checksum computed using the CRC-8-CCITT algorithm. Each command
serves a different purpose and, by sending one, the client can request information about

Appl. Sci. 2024, 14, 887 9 of 19

the device (including the file list), request real-time data (see Figure 6), request a file, set the
date and set thresholds to warn the user of dangerous values.

Figure 6. Structure of the command used to request real-time data.

Files are sent in bursts of no more than 26 packets. The first burst contains a header
section with metadata about the file, after which the actual values begin. The values are
recorded every 4 s and arranged in this order: one byte each for saturation and heart rate,
one zero byte, one byte for movement, and one zero byte. Each burst is identified by a
progressive number, and the final packet of each burst contains a CRC, after which the
client responds with an ack command containing the same progressive number. Real-time
data are sent once in response to the designated command, which must be sent every
time the client needs new values. The data are sent in a sequence of packets, the first of
which contains the saturation on the seventh byte and the heart rate on the eighth one. The
illustration in Figure 7 details the interaction between the two devices, a Viatom Checkme
O2, and any BLE client, specifically when the aim is to receive real-time data.

Figure 7. Sequence diagram illustrating the interactions between the Viatom Checkme O2 device and
a connected BLE client during the retrieval of real-time data.

Appl. Sci. 2024, 14, 887 10 of 19

5.3. Sensors and Metrics

As mentioned before, our system provides a set of sensors able to measure a variety of
metrics with a given degree of accuracy. These sensors are listed in Table 1, where—for each
one of them—we provide the metric which it measures (column Unit), its scale (column
Scale) and its accuracy (column Accuracy).

Table 1. Unit, scale and accuracy of each sensor of our system.

Sensor Unit Scale Accuracy

Accelerometer Earth’s gravity (g) ±2/±4/±8/±16 ±0.04

Gyroscope Degrees per Second (dps) ±125/±245/±500/±1000/±2000 ±3

Temperature Celsius (°C) 15 to 40 ±0.5

Humidity Relative Humidity (rh) 20 to +80% ±3.5%

Heart rate beats per minute (bpm) 30 to 250 ±2

Oxygen saturation (SpO2) Percentage (%) 70–100
±3% (for values 70–79)

±2% (for values 80–100)

Microphones

sound pressure level (dBSPL) 120 Not provided
decibels (dB) 61 by the

decibels relative to full scale
(dBFS) −26 component’s datasheet

In Table 2, we compare the health and wellness monitoring features provided by
HealthTracker with respect to other popular commercial devices, namely Apple Watch
Series 9 [20], Garmin Venu 3 [21], Google Pixel Watch 2 [22] and Samsung Galaxy Watch6
[23], denoted as columns “Apple”, “Garmin”, “Google” and “Samsung” in the table,
respectively. As we can note, some features are provided only by HealthTracker, such
as “Cough frequency and intensity” and “Tremors and hyperkinetic movements”. For
these features, we are implementing specific algorithms in our firmware to monitor the
relative parameters and send alerts in case a danger threshold is reached. In particular,
there are acoustic techniques for cough detection [24] that can be used to diagnose over
one hundred medical conditions like respiratory diseases (e.g., asthma, bronchiectasis, or
chronic obstructive pulmonary disease), generic pathologies such as cold or allergies, or
even lifestyle (smokers). Concerning sweating, in [25], a machine-learning model has been
implemented to estimate sweat loss. Knowing how much individuals sweat during exercise
allows the planning of fluid intake effectively before (prehydration), during, and after
(rehydration) exercise. In [26], researchers propose a prediction model for sleep-disordered
breathing (SDB) in relation to different malocclusions and oral habits with the purpose
of aiding clinicians in early screening of patients at risk of developing SDB. Utilizing
Python deep learning algorithms, a Multi-Layered Perceptron (MLP) was developed for
SDB prediction. Finally, concerning tremors and hyperkinetic movements, in [27], the
authors propose a novel algorithm to characterize tremors using inertial sensors. It uses a
two-stage approach that (1) estimates the tremor frequency of a subject and only quantifies
tremor near that range; (2) estimates the tremor amplitude as the portion of signal power
above baseline activity during recording, allowing tremor estimation even in the presence
of other activity; and (3) estimates tremor amplitude in physical units of translation (cm)
and rotation (°), consistent with current tremor rating scales. The authors declare that their
algorithm can quantify tremor accurately even in the presence of other activities.

Appl. Sci. 2024, 14, 887 11 of 19

Table 2. Comparison of health and wellness monitoring features provided HealthTracker and other
commercial devices. The symbol “✓” in a cell means that the device in the corresponding column
provides the feature in the corresponding row.

HealthTracker Apple Garmin Google Samsung

Blood oxygen level ✓ ✓ ✓ ✓ ✓

Breathing rate and depth ✓ ✓ ✓ ✓

Cough frequency and intensity ✓

Fall Detection ✓ ✓ ✓ ✓

Heart rate monitoring ✓ ✓ ✓ ✓ ✓

Nighttime breathing (e.g.,
snoring) ✓ ✓

Temperature ✓ ✓ ✓ ✓ ✓

Sweating ✓ ✓

Tremors and hyperkinetic
movements ✓

6. Implementation

In this section, we discuss the implementation of the prototype of HealthTracker by
describing the main components of the HealthTracker architecture presented in Section
4. In particular, we describe the Android mobile application implemented (Section 6.1),
and then we describe how the data are sent to the cloud service (Section 6.2). In Section
6.3, we show how the time-series database has been implemented, and in Section 6.4, we
describe how the HealthTracker admin server works. Finally, Section 6.5 concludes the
implementation section by describing in detail the HealthTracker dashboard.

6.1. The HealthTracker Android Application

The Android app is responsible for interfacing with both the monitoring devices to
collect the data they generate and with the Cloud Computing Platform to store them. It has
been implemented by exploiting Android Studio [28], which is the Integrated Development
Environment (IDE) for native Android app development. The mobile app code was written
using the Kotlin programming language.

To better illustrate how it works, we refer to its user interface, which is shown in Figure
8, where we highlight its various parts by enclosing each one of them into a dashed-line
rectangle and denoting them with a progressive number. The main functionalities provided
by the app are authentication of the user within the HealthTracker system, activation and
de-activation of health data acquisition from the monitoring devices, and the storage of
these data on the Cloud Computing Platform. All functionalities are accessible through the
various parts of the user interface. In particular, by looking at the Area (1) of the interface,
we see the following icons (each corresponding to a specific function):

• Account: shows user information following authentication. User authentication
is performed by submitting the corresponding credentials (user email address and
password), which are validated by means of the Firebase Authenticator [29] running on
the Cloud Computing Platform. Before the initial authentication phase, the user can
perform account registration, email confirmation, or password reset. After the login
step has been completed. Session persistence is managed by means of the Firebase
Auth Android SDK.
In the current implementation, we have adopted Single Factor Authentication, whereby
a user authenticates by just providing a username and a password. However, switch-
ing to Multi-Factor Authentication (MFA), whereby additional identity verification
information (e.g., a code sent via SMS) needs to be provided to the system to authenti-

Appl. Sci. 2024, 14, 887 12 of 19

cate, is straightforward thanks to the already available MFA mechanisms provided by
Firebase Authenticator.

• Devices: displays buttons that enable users to initiate independent data recording
for each device and upload the sensor readings afterward (see Figure 8). Notably, in
Area (3) of the figure, two prominent “Start” and “Stop” buttons are present to control
data recording on both devices simultaneously. Meanwhile, smaller “Start” and “Stop”
buttons are utilized when the user intends to record data from a single device.

Figure 8. The HealthTracker Android application user interface.

As anticipated in Section 5, the Android app exploits the GATT protocol to com-
municate with both monitoring devices. This device-to-smartphone communication is
implemented as follows: when the user presses the “Start” button in the Devices Fragment,
the application checks if Bluetooth and GPS are enabled (it is necessary to perform a BLE
Scan) or prompts the user to enable them and after all necessary permissions are granted, a
Service called BLEService is responsible for starting each thread to enable the communication
with the requested devices. Starting these threads from a Service lets us record the data
even when the application is in the background. The BLESTConnectionThread and the
BLEViatomConnectionThread classes have been implemented to manage the communication,
respectively, with the HDC device and with the Viatom Checkme O2 device.

Despite being two separate threads, they work in similar ways. In fact, after their
creation, they immediately perform a BLE Scan until the target device is found. After
the connection has been established, each thread subscribes to the notify event on the
characteristics presented in Section 5 in order to regularly obtain data updates and store
the time-series data in a temporary vector. When the user is satisfied with the amount
of information that has been gathered, (s)he can press the “Stop” button in Area (3) of
the interface, storing these data—as a .csv file—in the internal memory of the Android
smartphone. After having stopped data gathering, the user can upload the above .csv
to the Cloud Computing Platform by pushing the “Upload” button in Area (2) of the

Appl. Sci. 2024, 14, 887 13 of 19

interface. This activates a thread of the Android app (the UploadThread), which uploads
the file to the Upload Server (see Figure 1) using a multipart HTTPS request; if the upload
process is successful, all the files are deleted. Each of the previously mentioned operations is
authorized by requesting a Firebase Auth token so the user’s identity can be safely established.

Another thread of the app (the DeleterThread) is responsible for deleting the local
data upon user logoff. This ensures that when a different user logs in, there is no risk of
recordings becoming mixed up or compromised.

The presence of multiple threads in the Android app posed the primary challenges we
encountered during its implementation. These challenges revolved around synchronizing
the BLE events (happening on different threads) with the user interface. To address this,
we adopted the Handler class to implement a sophisticated bidirectional message-passing
mechanism. This implementation facilitated seamless communication between worker
threads, such as BLESTConnectionThread and BLEViatomConnectionThread, and the UI thread.

When a BLE event (e.g., a device connection) happens, a message is sent to the
DevicesFragment to update the user interface accordingly, and when the user presses the
“stop” button, the same thing happens in the opposite direction. Each event is associated
with a different event code so the receiver knows the actions to take in response to the
message reception.

6.2. The HealthTracker Upload Server

For the upload HTTPS server, we decided to use Node.js [30] so we were able to
develop the infrastructure faster and independently from the other components. This
technology enabled us to deploy our server on a Cloud Virtual Machine without the need
for an extensive configuration.

Its primary function was to expose various API endpoints, allowing users’ applications
to securely upload sensor time-series data for storage. This server exposed a different end-
point (using the Express [31] framework) for each type of time series that can be uploaded
according to the types of data presented in Section 5. As each file is uploaded, it is stored in
a temporary folder (using the multer [32] middleware) on the server, and it is parsed and
validated according to the expected data format.

Each line in every .csv file (by means of which the data is stored locally by the Android
application) represents a data point to which an absolute POSIX date is associated. After
the upload, each sequence is ready to be stored as a time series in the collection pointed by
the user ID specified in the authentication token. Token decoding can be performed after
its successful verification thanks to the Firebase Auth JavaScript SDK. The time-series storage
system will be further explored in Section 6.3.

Another endpoint is responsible for retrieving the time series based on the user ID
specified in the request, but this is only used for debugging purposes as the full retrieving
system will be analyzed in Section 6.4.

6.3. The Time-Series Database

Another important choice was the time-series database to use to efficiently store and
retrieve our temporal data.

In a world where the problem of storing time-related information is not completely
solved (especially from a commercial/production standpoint), we had to evaluate the
different features and implementations available for different products, with a particular
look at their ability to support the storage and retrieval of time-series data, and to provide
encryption.

The outcome of our analysis was the decision to use the MongoDB DBMS [30] to store
the time-series data.

MongoDB is mainly known as a document-oriented NoSQL database, ideal for storing
data where the formal model is not strictly defined, and the introduction of modifications
must be done in the simplest and fastest possible way. Since its 5.0 version, MongoDB also
offers the possibility to create Time-Series Collections, which allow the direct storage of

Appl. Sci. 2024, 14, 887 14 of 19

documents representing time-series data, eliminating the need for completely unstructured
data as required in previous versions. Furthermore, it natively provides strong encryption
of databases, thus making it very suitable for our needs to protect the confidentiality of
data at rest. For these reasons, MongoDB represented a very suitable solution for the
implementation of the Time-series database.

Each document stored in a collection of this type must present the following fields:

• Time: field indicating when the data were recorded.
• Source/Metadata: label or tag that uniquely identifies a time series.
• Measurements: data points tracked into the time series.

This structure allowed us to store different types of time-based data (accelerometer,
gyroscope, blood oxygenation, heartbeat, etc.) separately for each user. The only downsides
we experienced using this DBMS were related to the queries executed on large data volumes,
where we found out that the indexes created by MongoDB were not as efficient as expected.
This problem is also linked to the performance limits of a single disk, and the next step
would be to migrate the data to a distributed storage system.

As a final consideration, we point out that in our current implementation, which is
not intended to be used “in production” but only as a proof-of-concept for experimental
purposes, we adopted the “Community Edition” of MongoDB, whose use is free but that
does not provide encryption. Encryption is instead available for paid MongoDB licenses,
which are, however, fully compatible with the Community Edition one; thus, if database
encryption is desired (e.g., for the use of HealthTracker in a production scenario), it is
sufficient to purchase a license for the Enterprise Edition, without having to change anything
in our implementation.

We are currently working on finding alternative no-cost solutions to paid versions of
MongoDB providing both effective support for time-series data and database encryption.

Our work on this aspect moves along two different directions:

1. couple MongoDB Community Edition with a third-party encryption solution, and in
particular with eCryptFS [33], an open-source file encryption utility, built in the Linux
operating system and is part of the Linux kernel;

2. replace MongoDB with free time-series database systems providing encryption na-
tively, such as TimeCrypt [34] and Waldo [35] that have been proposed recently in the
literature.

6.4. The HealthTracker Admin Server

This server, as the HealthTracker Upload server (see Section 6.2), is also implemented
using Node.js, but it has been developed as a separate component, deployable on the same
machine or a different one. Its core functionality was to manage the authentication of
some “admin” accounts, allowing them to access the patient’s recordings from a specific
dashboard (which will be presented in Section 6.5).

As anticipated before, user authentication is managed by the Firebase Authenticator,
but an extension of its features was nevertheless needed to allow the definition and the
management of subsets of the user accounts that can access sensitive information. This
is the main reason that drove us to include enhanced security functionalities within the
HealthTracker Admin server API, whereby any operation requested by a user is checked
to verify whether that user has the rights to perform the above operation, after having
verified first the legitimacy of the user’s token (by means of a remote call to the Firebase
Authenticator).

In addition to verifying the user identity and checking that (s)he is allowed to access
the data, we implemented a specific endpoint for retrieving the ranges of time series for a
specific user. By “ranges”, we mean the contiguous portions of data delimited by a start
and an end time. This endpoint allows the user to choose what time duration to consider as
a splitter between a range and the next (which we will refer to now on as Cutting Threshold
or CT) and what time granularity to use for its interpretation.

Appl. Sci. 2024, 14, 887 15 of 19

Referring to Figure 9 to better understand the ranges generation algorithm, we can
observe the time series during different phases of the procedure (from 1 to 4).

Figure 9. Ranges generation algorithm applied to an example.

An index (represented by a green arrow) scans through the different time points
(modeled as orange circles), and for each step, except for the first one where only the range
starting point is defined, it calculates the temporal distance between the current point and
the previous one (the considered gap is highlighted by a dotted red double arrow for each
step).

If the CT is greater than or equal to the current time gap, the algorithm advances to
the next step, while if the CT is smaller than the current time gap, the algorithm closes the
current unfinished range (defined as R1 in step 4) and starts a new one. After we obtain this
“ranges” representation, it is possible to request the time logs directly using the start and
end times of the single range. This operation returns all the data points of the requested
time series in the specified interval.

In our prototype, the HealthTracker Upload server, the HealthTracker Admin server,
and the time-series database have all been deployed on different virtual machines managed
by Chameleon Cloud [36].

6.5. The HealthTracker Dashboard

This dashboard is a web application whose goal is to support researchers and physi-
cians in the visualization of the data stored—in the format discussed before—on the Time
series database (see Figure 1). The dashboard was implemented using the Angular frame-
work, enabling the creation of modular components, which could be reused across various
parts of the application by generating HTML and JavaScript code dynamically.

After the user has been authenticated by the system (through direct authentication with
the Firebase Authenticator and consequential authorization managed by the HealthTracker
Admin server), the dashboard shows its Ranges page (see Figure 10) which allows the
selection of the time series of interest, the type of data to display among those stored in
that time series (accelerometer, gyroscope, magnetometer/temperature, blood oxygenation,
and heartbeat, etc.) and the time sub-interval of that series to consider.

After these parameters have been set, the dashboard visualizes the data in a scatter
plot, which shows, in the x-axis, the time of the collection of each data point. For instance,
the data plot related to blood oxygenation for a specific user is reported in Figure 11, while
the one related to the heartbeat rate is shown in Figure 12. As a future extension, this
application could be enriched with further data visualization tools and other metrics useful

Appl. Sci. 2024, 14, 887 16 of 19

to keep track of the user’s upload compliance. In our prototype, this dashboard has been
deployed on a dyno container managed by the Heroku Cloud Platform.

Figure 10. The HealthTracker dashboard page where the logs produced by a specific user can be
summarized in configurable time intervals.

Figure 11. The HealthTracker dashboard page where the blood oxygenation logs produced by a
specific user in the selected time interval can be visualized.

Figure 12. The HealthTracker dashboard page where the heart rate logs produced by a specific user
in the selected time interval can be visualized.

Appl. Sci. 2024, 14, 887 17 of 19

7. Conclusions

Telemedicine plays a pivotal role in improving healthcare accessibility by enabling
remote consultations, ensuring that individuals, regardless of their geographical location,
can receive timely medical advice and treatment.

It also increases patient convenience by reducing the need for physical visits to health-
care facilities, therefore saving time and minimizing the risk of exposure to contagious
diseases. As a matter of fact, telemedicine has proven crucial during public health crises,
such as the COVID-19 pandemic, by facilitating safe and efficient healthcare delivery while
reducing the burden on overstretched healthcare systems.

In this paper, we presented a system called HealthTracker which has been specifically
designed and implemented to support telemedicine by enabling facilities to collect data
generated by health-monitoring devices, store them securely in the cloud, and analyze
them with advanced algorithms for both statistical analysis and future trend predictions.

HealthTracker is composed of both software and hardware components that seamlessly
interact to provide the above functionalities. A significant part of our research effort has
focused on designing and constructing a new health-monitoring wearable device equipped
with a set of innovative sensors that have never been implemented together in a single
device before.

Preliminary tests have shown that the system works well and that it is ready for real
experimentation that will start soon. This experimentation is already planned as part of a
joint project that will involve the Department of Translational Medicine of the University
of Eastern Piedmont (DIMET-UPO) and the Hospital of Alessandria—Respiratory Diseases
ward. In this real experimentation, we will also be able to explore the potential limitations
of our study. In particular, some issues related to technical problems or human behavior
can occur, as discussed below.

Concerning the technical issue, the devices need a smartphone with a working Internet
connection: if an Internet connection is not available, both devices have an internal memory
able to store data for no more than about 2.5 h for the HDC device and about 40 h for the
Viatom Checkme O2 device. If an Internet connection is not recovered within these limits,
then data will be lost after this period.

Concerning human behavior issues, devices work if the patients wear them correctly
and as long as possible. This means that the experimentation needs an active collaboration
of the patients during the study. Moreover, devices need to be charged when the residual
batter capacity is lower than 15%. This means that nurses must take care of the devices
by checking both that they are worn correctly by the patients and that they always have a
residual battery level above 15%.

This study will pursue several goals, namely:

1. it will perform safety and functionality validation tests in accordance with IEC 62304
(that is, a functional safety standard that covers safe design and maintenance of
software specific for medical devices [37]) and IEC 60601-2-49 standard (which applies
to the basic safety and essential performance requirements of multifunction patient
monitoring equipment [38]);

2. it will evaluate the calibration of the response and cross-check the validity of the data
on patients at Alessandria’s hospital;

3. it will assess the ease of use of the wearable device and the software interfaces
according to the IEC 62304 standard;

4. it will assess the safety of the user interface according to the IEC 62366 standard
(specifies a process for a manufacturer to analyze, specify, develop, and evaluate the
usability of a medical device as it relates to safety [39]);

5. it will consider further application aspects for the National Health Service, such as
the reimbursement of the device.

In future work, we plan to perform a quantitative comparison analysis of the HDC
device with other potentially similar devices. However, since, to the best of our knowledge,
our device is currently the only health-monitoring wearable device that integrates all the

Appl. Sci. 2024, 14, 887 18 of 19

sensors described in this paper, in the experimental comparison, we will consider similar
devices that integrate only a subset of the sensors available in our device.

Also, we plan to equip the HDC device with a plug-in battery to make its battery
easier to replace when it is approaching the end of life and an optional GSM module to be
used in place of the built-in BLE module when the primary wireless network connection is
not available (neither between the device and the smartphone nor between the smartphone
and the Internet) so as to make the device more robust to data loss due to network issues
(The main reasons for keeping the GSM module optional is that GSM modules tend to be
more expensive and to consume more power than BLE modules [40,41]).

Finally, we plan to complete the evaluation of alternative solutions to MongoDB, as
discussed in Section 6.3, in order to provide database encryption without having to pay a
commercial license.

As a final consideration, we believe that our system can enhance the level of telemedicine
by allowing remote follow-up of patients and critical emergency structures to be able to
respond proactively to critical issues.

Author Contributions: Conceptualization and methodology, C.A., M.C. and M.G.; software F.D., D.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This paper is part of the project NODES, which has received funding from the MUR-M4C2
1.5 of PNRR funded by the European Union-NextGenerationEU (Grant agreement no. ECS00000036).
This research was also partly supported by the INdAM-GNCS Project 2023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bashshur, R.L.; Doarn, C.R.; Frenk, J.M.; Kvedar, J.C.; Woolliscroft, J.O.; Yellowlees, P.M. Telemedicine and the COVID-19

Pandemic, Lessons for the Future. Telemed. E-Health 2020, 26, 571–573.
2. Mahajan, V.; Singh, T.; Azad, C. Using telemedicine during the COVID-19 pandemic. Indian Pediatr. 2020, 57, 658–661.
3. Hau, Y.S.; Kim, J.K.; Hur, J.; Chang, M.C. How about actively using telemedicine during the COVID-19 pandemic? J. Med Syst.

2020, 44, 1–2.
4. Whitten, P.; Holtz, B. Provider utilization of telemedicine: The elephant in the room. Telemed. E-Health 2008, 14, 995–997.
5. Wosik, J.; Fudim, M.; Cameron, B.; Gellad, Z.F.; Cho, A.; Phinney, D.; Curtis, S.; Roman, M.; Poon, E.G.; Ferranti, J.; et al. Telehealth

transformation: COVID-19 and the rise of virtual care. J. Am. Med Inform. Assoc. 2020, 27, 957–962.
6. Aghdam, M.R.F.; Vodovnik, A.; Hameed, R.A. Role of Telemedicine in Multidisciplinary Team Meetings. J. Pathol. Inform. 2019,

10, 35. https://doi.org/10.4103/jpi.jpi_20_19.
7. Lane, J.E.; Shivers, J.P.; Zisser, H. Continuous glucose monitors: Current status and future developments. Curr. Opin. Endocrinol.

Diabetes Obes. 2013, 20, 106–111.
8. Rajkomar, A.; Oren, E.; Dai, K. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 2019, 1, 18.
9. Mohamed, W.; Abdellatif, M.M. Telemedicine: An IoT application for healthcare systems. In Proceedings of the 8th International

Conference on Software and Information Engineering, Cairo, Egypt, 9–12 April 2019; pp. 173–177.
10. Sonune, S.; Kalbande, D.; Yeole, A.; Oak, S. Issues in IoT healthcare platforms: A critical study and review. In Proceedings

of the 2017 International Conference on Intelligent Computing and Control (I2C2), Coimbatore, India, 23–24 June 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 1–5.

11. Li, C.; Wang, J.; Wang, S.; Zhang, Y. A review of IoT applications in healthcare. Neurocomputing 2024, 565, 127017. https:
//doi.org/10.1016/j.neucom.2023.127017.

12. Petruzzi, M.; De Benedittis, M. WhatsApp: A telemedicine platform for facilitating remote oral medicine consultation and
improving clinical examinations. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 121, 248–254.

13. Brauchli, K.; Oberholzer, M. The iPath telemedicine platform. J. Telemed. Telecare 2005, 11, 3–7.
14. Raj, C.; Jain, C.; Arif, W. HEMAN: Health monitoring and nous: An IoT based e-health care system for remote telemedicine. In

Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET),
Chennai, India, 22–24 March 2017; pp. 2115–2119. https://doi.org/10.1109/WiSPNET.2017.8300134.

15. Newman, S. Building Microservices: Designing Fine-Grained Systems, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2021.

https://doi.org/10.4103/jpi.jpi_20_19
https://doi.org/10.1016/j.neucom.2023.127017
https://doi.org/10.1016/j.neucom.2023.127017
https://doi.org/10.1109/WiSPNET.2017.8300134

Appl. Sci. 2024, 14, 887 19 of 19

16. Hardt, D. RFC 6749: The OAuth 2.0 Authorization Framework. RFC 6749, 2012. Available online: https://auth0.com/docs/
authenticate/protocols/oauth, accessed on 17 January 2024

17. Bluetooth® Technology Website. GATT. 2023. Available online: https://www.bluetooth.com/specifications/specs/gatt-
specification-supplement/ (accessed on 17 January 2024).

18. STMicroelectronics. Discovery Kit IoT Node. 2023. Available online: https://www.st.com/en/evaluation-tools/b-l475e-iot01a.
html (accessed on 17 January 2024).

19. Perez, A.J.; Zeadally, S. Recent Advances in Wearable Sensing Technologies. Sensors 2021, 21, 6828. https://doi.org/10.3390/s2
1206828.

20. Apple Inc. Apple Watch Series 9. 2023. Available online: https://www.apple.com/apple-watch-series-9/ (accessed on 17
January 2024).

21. Garmin Ltd. Garmin Venu 3. 2023. Available online: https://www.garmin.com/en-US/p/873008 (accessed on 17 January 2024).
22. Google LLC. Google Pixel Watch 2. 2023. Available online: https://store.google.com/us/product/pixel_watch_2_specs?hl=en-

US (accessed on 17 January 2024).
23. Samsung Electronics Co., Ltd. Samsung Galaxy Watch6. 2023. Available online: https://www.samsung.com/us/watches/

galaxy-watch6/buy/?modelCode=SM-R960NZKAXAA (accessed on 17 January 2024).
24. Monge-Álvarez, J.; Hoyos-Barceló, C.; Dahal, K.; de-la Higuera, P.C. Audio-cough event detection based on moment theory. Appl.

Acoust. 2018, 135, 124–135. https://doi.org/10.1016/j.apacoust.2018.02.001.
25. Pavlov, K.; Perchik, A.; Tsepulin, V.; Megre, G.; Nikolaev, E.; Volkova, E.; Nigmatulin, G.; Park, J.; Chang, N.; Lee, W.; et al. Sweat

Loss Estimation Algorithm for Smartwatches. IEEE Access 2023, 11, 23926–23934. https://doi.org/10.1109/ACCESS.2023.3253384.
26. Jasen, S.; Nastasi, E.; Ghanim, S. Predicting Sleep-Disordered Breathing Using Deep Learning Algorithms. In Cutting-Edge

Business Technologies in the Big Data Era; Yaseen, S.G., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 1–9.
27. Mcgurrin, P.; Mcnames, J.; Wu, T.; Hallett, M.; Haubenberger, D. Quantifying Tremor in Essential Tremor Using Inertial

Sensors—Validation of an Algorithm. IEEE J. Transl. Eng. Health Med. 2021, 9, 1–10. https://doi.org/10.1109/JTEHM.2020.30329
24.

28. Google. Android Studio. 2023. Available online: https://developer.android.com/studio/releases (accessed on 17 January 2024).
29. Moroney, L.; Moroney, L. Using authentication in firebase. In The Definitive Guide to Firebase: Build Android Apps on Google’s Mobile

Platform; Apress: New York, NY, USA,2017; pp. 25–50.
30. Satheesh, M.; D’mello, B.J.; Krol, J. Web Development with MongoDB and NodeJs; Packt Publishing Ltd.: Birmingham, UK, 2015.
31. OpenJS Foundation Website. Express. 2023. Available online: https://expressjs.com/ (accessed on 17 January 2024).
32. OpenJS Foundation Website. Multer. 2023. Available online: http://expressjs.com/en/resources/middleware/multer.html

(accessed on 17 January 2024).
33. Dustin Kirkland. eCryptfs: The Enterprise Cryptographic Filesystem for LINUX. 2020. Available online: https://www.ecryptfs.

org/ (accessed on 17 January 2024).
34. Burkhalter, L.; Hithnawi, A.; Viand, A.; Shafagh, H.; Ratnasamy, S. TimeCrypt: Encrypted Data Stream Processing at Scale

with Cryptographic Access Control. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), Santa Clara, CA, USA, 25–27 February 2020; USENIX Association: Berkeley, CA, USA, 2020;
pp. 835–850.

35. Dauterman, E.; Rathee, M.; Popa, R.A.; Stoica, I. Waldo: A Private Time-Series Database from Function Secret Sharing. In
Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 23–26 May 2022; pp. 2450–2468.

36. Keahey, K.; Anderson, J.; Zhen, Z.; Riteau, P.; Ruth, P.; Stanzione, D.; Cevik, M.; Colleran, J.; Gunawi, H.S.; Hammock, C.; et al.
Lessons Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC
’20), virtual, 15–17 July 2020 ; USENIX Association: Berkeley, CA, USA, 2020.

37. Jordan, P. Standard IEC 62304-Medical device software-Software lifecycle processes. IET: Malmo, Sweden, 2006.
38. Woehrle, D. Experts debate international alarm standards: Changes to the alarm standard are crucial to ensure patient safety.

Biomed. Instrum. Technol. 2011, 45, 61–65.
39. Bras Da Costa, S.; Beuscart-Zéphir, M.C.; Bastien, J.; Pelayo, S. Usability and safety of software medical devices: Need for

multidisciplinary expertise to apply the IEC 62366: 2007. In MEDINFO 2015: eHealth-Enabled Health; IOS Press: Clifton, VA, USA,
2015; pp. 353–357.

40. Carroll, A.; Heiser, G. An Analysis of Power Consumption in a Smartphone. In Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’10, Boston, MA, USA, 23–25 June 2010; p. 21.

41. Pramanik, P.K.D.; Sinhababu, N.; Mukherjee, B.; Padmanaban, S.; Maity, A.; Upadhyaya, B.K.; Holm-Nielsen, J.B.; Choudhury, P.
Power Consumption Analysis, Measurement, Management, and Issues: A State-of-the-Art Review of Smartphone Battery and
Energy Usage. IEEE Access 2019, 7, 182113–182172. https://doi.org/10.1109/ACCESS.2019.2958684.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://auth0.com/docs/authenticate/protocols/oauth
https://auth0.com/docs/authenticate/protocols/oauth
https://www.bluetooth.com/specifications/specs/gatt-specification-supplement/
https://www.bluetooth.com/specifications/specs/gatt-specification-supplement/
https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://doi.org/10.3390/s21206828
https://doi.org/10.3390/s21206828
https://www.apple.com/apple-watch-series-9/
https://www.garmin.com/en-US/p/873008
https://store.google.com/us/product/pixel_watch_2_specs?hl=en-US
https://store.google.com/us/product/pixel_watch_2_specs?hl=en-US
https://www.samsung.com/us/watches/galaxy-watch6/buy/?modelCode=SM-R960NZKAXAA
https://www.samsung.com/us/watches/galaxy-watch6/buy/?modelCode=SM-R960NZKAXAA
https://doi.org/10.1016/j.apacoust.2018.02.001
https://doi.org/10.1109/ACCESS.2023.3253384
https://doi.org/10.1109/JTEHM.2020.3032924
https://doi.org/10.1109/JTEHM.2020.3032924
https://developer.android.com/studio/releases
https://expressjs.com/
http://expressjs.com/en/resources/middleware/multer.html
https://www.ecryptfs.org/
https://www.ecryptfs.org/
https://doi.org/10.1109/ACCESS.2019.2958684

	Introduction
	Motivations
	Related Work
	Architecture
	Devices
	The HDC Device
	The Viatom Checkme O2 Device
	Sensors and Metrics

	Implementation
	The HealthTracker Android Application
	The HealthTracker Upload Server
	The Time-Series Database
	The HealthTracker Admin Server
	The HealthTracker Dashboard

	Conclusions
	References

