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Abstract: Temporal downscaling of gridded geophysical data is essential for improving climate
models, weather forecasting, and environmental assessments. However, existing methods often
cannot accurately capture multi-scale temporal features, affecting their accuracy and reliability. To
address this issue, we introduce an Enhanced Residual U-Net architecture for temporal downscaling.
The architecture, which incorporates residual blocks, allows for deeper network structures without
the risk of overfitting or vanishing gradients, thus capturing more complex temporal dependencies.
The U-Net design inherently can capture multi-scale features, making it ideal for simulating various
temporal dynamics. Moreover, we implement a flow regularization technique with advection loss
to ensure that the model adheres to physical laws governing geophysical fields. Our experimental
results across various variables within the ERA5 dataset demonstrate an improvement in downscaling
accuracy, outperforming other methods.
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1. Introduction

Geophysical data, including variables such as air temperature, humidity, air pressure,
and sea surface temperature, form the backbone of several critical research areas spanning
climatology, meteorology, and environmental sciences [1]. These variables are often repre-
sented in gridded formats that provide a spatially organized, multidimensional framework
for analysis. However, the temporal resolution of gridded geophysical data sets can be
inconsistent, presenting substantial challenges in subsequent analyses [2]. This limitation
restricts the applicability of these data sets for tasks requiring fine-grained temporal details,
such as short-term weather forecasting, localized climate modeling, and real-time envi-
ronmental monitoring. High-quality, high-resolution data are usually acquired through
advanced remote sensing techniques and complex simulation models, but these methods
are computationally expensive and time-consuming [3]. In addition, the sheer volume
of high-resolution data imposes limitations on storage, transport, and processing. These
constraints necessitate the development of methodologies that can transform existing,
coarser temporal data into more finely detailed sets without sacrificing quality [4].

The discrepancies in temporal granularity within gridded geophysical data have far-
reaching implications [5,6]. For instance, the quality of climate change projections can be
compromised, thereby affecting policy decisions related to climate mitigation strategies [7].
Similarly, coarse-grained data could lead to inaccurate weather forecasts, which, in turn,
could have economic implications for sectors such as agriculture, energy production, and
disaster management [8,9]. These challenges make it clear that methods for accurate and
efficient temporal downscaling of geophysical data sets are required [10].

Temporal downscaling refers to the process of increasing the frequency of data points
within a given time series, transforming a dataset with lower temporal resolution to one
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that exhibits higher temporal resolution. This technique is especially pertinent in the
fields of climate science and meteorology, where it is used to refine the granularity of
datasets, such as temperature records, precipitation amounts, or wind speeds, allowing
for a more detailed and nuanced understanding of weather and climate phenomena over
time. The primary goal of temporal downscaling is to interpolate or estimate the values of
a variable at times between the recorded data points. The core function of this technology
is to provide researchers and decision-makers with more detailed temporal data series,
thereby enhancing the understanding of climate variability and extreme events [11]. For
instance, temporal downscaling techniques can offer us a more precise comprehension
of the frequency and intensity of extreme heat waves, diurnal patterns of precipitation,
and other critical climatic features. In applications, temporal downscaling techniques play
a significant role in various fields such as climate research, agriculture, water resources
management, renewable energy, and urban planning [12]. In agriculture, for example,
understanding the rainfall and temperature patterns during critical stages of crop growth is
essential, and temporal downscaling techniques can provide important information for this
purpose [13]. In the domain of renewable energy, particularly for wind and solar power,
high-resolution temporal data can offer robust support for energy dispatch and storage
strategies [14]. Moreover, with the rapid progress of urbanization, temporal downscaling
techniques are becoming increasingly important for urban planning and design. For
example, comprehending how urban heat island effects vary over time can assist urban
planners in better designing and implementing mitigation measures [15]. The challenge
lies in accurately capturing the dynamics that occur between these points. This is not a
simple task, as it requires an understanding of the physical processes involved and their
representation in the time series data.

Temporal downscaling methods fall into two primary categories: dynamical down-
scaling and statistical downscaling, each offering unique approaches to improve temporal
resolution [16]. Dynamical downscaling is based on the use of mathematical and physical
equations to simulate atmospheric processes at finer temporal scales than those offered
by Global Circulation Models (GCMs) [17] or Regional Climate Models (RCMs) [18]. This
approach integrates complex numerical weather prediction models with surface models,
capturing nuanced atmospheric behaviors, especially in regions with complex geograph-
ical features such as mountainous terrains or coastal areas. The strength of dynamical
downscaling lies in its ability to incorporate a physical understanding of atmospheric pro-
cesses, though it demands substantial computational resources and expertise in numerical
modeling. The results’ accuracy largely depends on the boundary conditions provided
by larger-scale models, highlighting a dependency on the quality of these inputs. On the
other hand, statistical downscaling employs statistical techniques to establish relationships
between large-scale atmospheric variables and local-scale climate variables. Instead of
directly simulating physical processes, it uses historical data to train models that can project
fine-scale climate details based on outputs from GCMs or RCMs. The methods in statistical
downscaling range from simple regression models to sophisticated machine learning algo-
rithms, with the choice depending on the specific study requirements. Its major advantage
is computational efficiency, offering a practical approach to generating high-resolution
temporal data. Both methods have their respective limitations [19]. Although dynam-
ical downscaling offers a physically consistent representation of climate processes, it is
computationally intensive [20]. Statistical downscaling, though more practical and less
resource-intensive, operates under certain assumptions that may not hold in a changing
climatic context. The decision to use either method depends on the study’s goals, available
resources, and the balance between the need for physical accuracy and computational feasi-
bility. This article mainly discusses the latter, and all references to temporal downscaling in
the following text refer to statistical downscaling.

Temporal downscaling has been the subject of extensive research over the past few
years [21]. Traditional methods primarily rely on statistical models like polynomial regres-
sion or autoregressive integrated moving average models to interpolate between temporal
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data points [22]. Although useful for linear trends, these methods often fall short when
applied to geophysical data characterized by complex, non-linear temporal dynamics [23].

Recent advancements in machine learning have facilitated the development of more
sophisticated downscaling techniques. Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks have been applied to downscaling tasks, show-
ing improved performance over traditional statistical methods [24–27]. However, these
machine learning-based techniques still face challenges in capturing intrinsic temporal
dynamics and spatial relationships simultaneously [28].

The primary objective of this paper is to introduce a method for temporal downscaling
of gridded geophysical data, combining flow regularization techniques with a Residual
U-Net architecture, as depicted in Figure 1. The contributions of this paper are threefold:

1. We introduce an enhanced residual U-Net architecture for the downscaling of geophys-
ical data. Unlike traditional U-Net architectures, this enhanced model incorporates
advection loss in addition to regression loss for training the entire network, so that the
model is not overly reliant on fitting to the data (as in pure regression loss) but also
considers the underlying physical processes that drive changes in the atmosphere,
which allow for a deeper network that can capture complex patterns without suc-
cumbing to issues like overfitting or vanishing gradient problems. The depth and
architecture of the enhanced residual U-Net are also effective at capturing multi-scale
temporal features, a quality lacking in many existing temporal downscaling methods.

2. We introduce the concept of flow regularization, which has been traditionally lever-
aged in computer vision tasks, to the domain of geophysical data downscaling. This
addition serves as an auxiliary constraint that guides the model to adhere to the
physical laws governing the movement and interaction of geophysical fields with
higher accuracy than existing techniques.

3. We validate our model using multiple real-world geophysical data sets, comparing its
performance against existing methods in terms of accuracy, computational efficiency,
and fidelity of temporal features.
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Figure 1. Overview of the residual U-Net model for temporal downscaling. The model consists of an
encoder and a decoder, each with four residual blocks. It takes in grid data and outputs data with
higher temporal resolution by performing temporal downscaling. After the encoder, the intermediate
features are resampled to generate auxiliary flow information, which is then used to calculate the
advection loss.
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The paper is structured as follows: Section 2 provides a comprehensive review of
related work, focusing on the principles of U-Net architectures and residual connections.
Section 3 introduces the data sets used for the experiments. Section 4 provides a description
of our proposed model, which employs enhanced residual U-Net for temporal downscaling.
Section 5 presents the results, offering a comparative analysis with existing methodologies.
Section 6 discusses the influence of the input grid data pixel size. Finally, Section 7 concludes
the paper by summarizing key findings and outlining avenues for future research.

2. Related Work
2.1. Temporal Downscaling

Temporal downscaling serves as a crucial technique in various scientific applica-
tions [29–32], particularly in environmental modeling where high-frequency fluctuations
often matter. The traditional ways to tackle this issue have primarily been statistical. Linear
interpolation methods were among the earliest approaches, providing a quick yet overly
simplistic way to fill in data between given time points. Soon after, Fourier-based methods
were explored to address some of the linear assumptions but found limited applicability
due to the inherent cyclical assumptions in the Fourier series [33]. Autoregressive Inte-
grated Moving Average (ARIMA) models gained traction for their capabilities in capturing
some level of non-linearity and seasonality [22]. Machine learning techniques like Sup-
port Vector Machines (SVMs) and Random Forests have been applied to the temporal
downscaling problem as well [19]. Although these methods capture non-linearity better
than linear interpolation, they often require extensive feature engineering and parameter
tuning. Additionally, they fall short in integrating multi-scale features and incorporating
flow information.

2.2. Regularization

In geoscience, regularization techniques are often employed as a critical enforcement
mechanism to ensure that model predictions align with physical realities [34]. Some
studies have utilized methods such as Total Variation Regularization to maintain crisp
boundaries and smooth transitions in geological formations [35]. Others have opted for
more intricate, physics-based regularization frameworks like the Hamilton–Jacobi–Bellman
equations to enforce dynamic consistency in fluid flow models [36]. Hydrological models
frequently make use of an energy balance constraint as a regularization term to confirm
the thermodynamic plausibility of predicted water cycles [37]. More recently, advanced
methods have emerged that integrate machine learning with physical laws to create hybrid
models [38]. These ‘physics-informed’ models use regularization terms sourced from
governing equations, like the Navier–Stokes equations for fluid dynamics or the Laplace
equation for potential fields, as constraints during the learning process [38,39]. Nonetheless,
many of these approaches often come with a trade-off between adherence to physical laws
and computational efficiency [40,41]. Our flow regularization technique with advection loss
strikes a balance by ensuring compliance with the physical laws that govern geophysical
fields, while also being computationally practical.

2.3. Residual Connections

In recent years, residual connections have emerged as a critical innovation in the realm
of deep learning architectures, particularly in convolutional neural networks (CNNs). The
seminal work by He, et al. [42] introduced residual connections in their ResNet model,
demonstrating that these connections alleviate the vanishing gradient problem, thus en-
abling the training of much deeper networks. Residual architectures have been adopted in
various disciplines beyond image classification, including object detection and segmenta-
tion. In geoscience applications, residual connections have shown promising results in tasks
such as seismic interpretation and subsurface reservoir modeling [43]. These architectures
facilitate the learning of hierarchical features from geological data by promoting the flow of
gradients throughout the network. By creating shortcuts between layers, residual connec-
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tions allow for a more efficient and effective propagation of errors during backpropagation,
improving the network’s capacity to learn complex mappings.

2.4. U-Net

The U-Net architecture, originally designed for biomedical image segmentation, has
shown unparalleled success in various domains requiring complex spatial hierarchies. The
architecture follows an encoder-decoder structure, capturing context in the encoding layers
and using the decoding layers to reconstruct spatial details. One of the most distinguishing
features of the U-Net is its use of skip connections, allowing it to preserve high-frequency
details that would otherwise be lost during the encoding process.

In recent years, the U-Net architecture has seen several adaptations and modifications
to suit different tasks [44–47]. For example, 3D U-Nets have been developed to process
volumetric data, and Temporal U-Nets have been explored to capture time-related changes
in videos [48]. However, integrating temporal downscaling with U-Net’s predominantly
spatial-focused architecture remains an open challenge. Few works have attempted to
adapt U-Net architectures for time series data, but these generally involve straightforward
adaptations that do not fully utilize temporal dependencies. Similarly, while ResNet have
been used in conjunction with LSTMs for sequence modeling, their application in temporal
downscaling is yet to be fully realized.

In this light, our work aims to fill this gap by proposing a hybrid architecture that
leverages the spatial prowess of U-Net, the learning capabilities of ResNet, and the flow
regularization techniques, specifically tailored for the task of temporal downscaling in
gridded geophysical data.

3. Study Area and Dataset

Our investigation targets the geographic region defined by longitudes 112◦E to 118◦E
and latitudes 22◦N to 28◦N, with a grid resolution of 0.25◦ × 0.25◦, as depicted in Figure 2.
The selected region for our downscaling experiments was primarily influenced by its
diverse climatic conditions and geographical significance. This area includes a variety
of climatic zones, with distinct features ranging from coastal regions to varying inland
topographies. This diversity presents an ideal scenario to test the effectiveness of our
downscaling model in different climatic settings. Data for this area were sourced from the
ERA5 reanalysis dataset. The training dataset is comprised of 21,912 sets, each containing
samples from three consecutive hours, spanning the years 2010 to 2019, for a total of
87,648 h. For validation, we use a test set consisting of 2196 sets from the year 2020, also
collected at three-hour intervals, totaling 8784 h. Our model aims to downscale these data
to a finer one-hour temporal resolution. We evaluate the model’s performance across three
meteorological variables: 2 m surface air temperature, 850 hPa geopotential height, and
850 hPa relative humidity. These variables are experimented with separately.
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4. Model

In this section, we describe the architecture and components of our enhanced resid-
ual U-Net model. We detail how the model integrates residual blocks, auxiliary flow
information, and advection loss to perform temporal downscaling of geophysical data.

4.1. Problem Definition

In the field of geophysical data analysis, the problem of temporal downscaling aims
to refine the time resolution of observed data, thereby providing more frequent measure-
ments. Specifically, given a dataset X = {xt1 , xt2 , . . . , xtN}

(
X ∈ RN×H×W)

at a coarser
temporal resolution of three hours, the objective is to estimate a fine-grained dataset
Y =

{
yt′1

, yt′2
, . . . , yt′3N

}(
Y ∈ R3N×H×W)

at a one-hour resolution, where t′i = ti/3 for
i = 1, 2, . . . , 3N. Here, N represents the number of samples, H denotes the horizontal
dimensions, and W denotes the vertical dimensions. The primary goal is to minimize the
discrepancy between the ground truth and the predicted over the fine-grained temporal
intervals. Mathematically, this can be formulated as

min
Θ

L
(

Ytrue, Ypred

)
= min

Θ

[
3N−1

∑
i=1

∥Yi − Ŷi∥2 + min
Θ

3N−2

∑
i=1

∥Yi − Ŷi∥2

]
. (1)

Here, Θ represents the parameters of the Enhanced Residual U-Net model, and L is
the loss function.

4.2. Residual U-Net

In this work, we introduce an architecture, enhanced residual U-Net, designed for the
temporal downscaling of gridded geophysical data. This architecture merges the high-level
feature extraction capabilities of U-Net with the robustness of Residual Networks (ResNet)
to produce an efficient and scalable model (see Figure 3).
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Figure 3. The architecture of the residual U-Net. It consists of an encoder section on the left, a decoder
section on the right, and an auxiliary flow information layer in between. The encoder features
four residual blocks, each containing two convolutional layers with batch normalization and ReLU
activation functions, responsible for reducing feature dimensions while capturing initial patterns
from the input. The decoder also contains four residual blocks and uses transposed convolutions
for upsampling. Skip connections merge the output from each encoder Residual Block with its
corresponding decoder block, ensuring the preservation of spatial information across scales.

The architecture is constructed from two main components: an encoder and a decoder.
The encoder is responsible for downscaling the input tensor, thereby extracting high-level
features. The decoder, on the other hand, upscales these high-level features to reconstruct
the output tensor. These operations are standard in any U-Net architecture; however, our
model introduces several enhancements.

One of the enhancements in our architecture is the introduction of residual blocks
following key convolutional layers in the encoder section. The architecture’s depth is
primarily achieved through its deeper residual blocks, and each residual block comprises
three 3 × 3 convolutional layers with ReLU activations [49]. The outputs of these layers are
summed with the original input using a skip connection and these residual blocks help the
model to learn complex features with reduced risk of vanishing or exploding gradients.

The encoder section is composed of a succession of four deeper residual blocks, each
with distinct channel configurations—64, 128, 256, and 512 channels. Every deeper residual
block comprises three convolutional layers, each followed by batch normalization and
ReLU activation functions. This series of operations enriches the representation of the input
data by sequentially increasing the number of channels. The architecture also incorporates
max-pooling layers after each block to reduce the spatial dimensions of the feature maps.
Subsequent to each max-pooling operation, the spatial dimensions are halved, thereby
focusing on the extraction of high-level features.

The decoder section reverses the operations conducted by the encoder. It employs a se-
ries of up-convolutional layers paired with concatenation operations that merge high-level
features from the encoder. Each up-convolutional layer also employs a ReLU activation
function and effectively doubles the spatial dimensions. Similar to the encoder, residual
blocks are also introduced in the decoder. These are positioned after each up-convolutional
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layer and function in the same manner as their encoder counterparts. These blocks refine
the combined high-level and low-level features. The network concludes with a 1 × 1 con-
volutional layer, which condenses the 64-channel feature map into a two-channel output.

4.3. Flow Regularization Using Advection Loss

Conventional methods often miss capturing the evolving patterns. To address this
limitation, we incorporate flow information with advection loss into our enhanced residual
U-Net model, and this section details the mathematical and computational elements of this
approach (see Figure 4).
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Figure 4. Overview of flow information extraction from the intermediate features post-encoder
phase. Following encoding, these intermediate features undergo specific convolutional operations
and resampling procedures to yield the flow information. The bar chart illustrates the Mean Absolute
Percentage Error (MAPE) for various flow pixel resolutions across different epochs. The x-axis
represents the training epochs, ranging from 100 to 1000, while the y-axis represents the MAPE in
percentages.

Advection refers to the transport of a scalar field driven by flow regularization. Math-
ematically, it can be represented as a transformation function, Advect(Yt, F), which takes
in a geophysical field at time t, denoted as Yt, and flow information F, and returns an
approximated field at time t + 1, represented as Ŷt+1. The principle behind advection is
rooted in fluid dynamics and is used widely in computational fluid dynamics simulations
and meteorological models. By adopting an advection transformation, we impose an auxil-
iary constraint on our neural network model, compelling it to learn physically meaningful
dynamics.

The advection loss is introduced as an additional term in the loss function and is
defined as Ladvection = ∥Yt+1 −

(
Advect(Yt, F) + Ŷt

)
∥2

2. In essence, this loss measures the
difference between the true field at t + 1 and the advected field Ŷt+1. It guides the network
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to learn a more accurate representation of the data and acts as a regularization term,
reducing overfitting while still ensuring that the model learns the dynamics of the field.

For the computation of Advect(Yt, F), spatial interpolation is employed. Given a 2D
geophysical field Yt and corresponding flow information, which is also a 2D tensor but with
two channels representing the velocity vectors

(
Fx, Fy

)
, each point (x, y) in Yt is shifted

according to the velocity vector at that point. Specifically, Fx and Fy are the latitudinal and
longitudinal components of the velocity at each point in a given field. This means that
for each point, Fx indicates the rate and direction of movement along the horizontal axis,
while Fy represents the same along the vertical axis. The new coordinates (xnew, ynew) are
calculated as

(
x + Fx, y + Fy

)
. Bilinear interpolation is used to estimate the value of the

advected field Ŷt+1 at these new coordinates.
The final loss function incorporating both the L2 loss and the advection loss is formu-

lated as follows:

L = ∥Ŷt − Yt∥2
2 + λ∥Yt+1 −

(
Advect(Yt, F) + Ŷt

)
∥2

2. (2)

In this equation, ∥Ŷt − Yt∥2
2 is the L2 loss, representing the squared Euclidean dis-

tance between the predicted output Ŷt and the ground-truth Yt. The term λ∥Yt+1 −(
Advect(Yt, F) + Ŷt

)
∥2

2 is the weighted advection loss, and the weight of λ = 0.3 is applied
to balance the contribution of advection loss against the L2 loss. Yt+1 refers to the next
immediate true data sample, which is either an hour or two hours apart.

5. Experiments

The model was implemented using PyTorch and the training was performed on a
machine equipped with eight NVIDIA Tesla A5000 GPUs. During training, we employed
the Adam optimizer with a learning rate of 0.0001 and a batch size of 32. The model
was trained for 1000 epochs. A decay rate of 0.9 for the learning rate was applied every
200 epochs to ensure convergence. The loss function used in training was a combination of
the Mean Squared Error (MSE) loss and the advection loss, as described in Section 4.3.

5.1. Quantitative Comparison with Conventional Methods

In this section, we conduct a quantitative evaluation of our enhanced residual U-Net
model against several benchmark methods, focusing on three critical atmospheric variables:
2 m air temperature, geopotential height, and relative humidity. For a robust comparison,
we employ three well-established metrics: Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE). Linear interpolation was
directly applied by averaging adjacent temporal data points, assuming uniform change over
time. Cubic spline interpolation employed a piecewise third-order polynomial, enhancing
smoothness and fitting the data’s curvature better than the linear method. We also trained
three computer vision models specifically for weather data, training from scratch rather than
using pre-trained weights. These models, typically used for video frame interpolation, were
employed to handle meteorological inputs by converting meteorological fields from single-
channel data to three-channel format, without modifying the main backbone. The models’
input and output layers were the only components modified to process our weather dataset.

As depicted in Table 1, it is clear that our enhanced residual U-Net model surpasses
other techniques across all three metrics and for each atmospheric variable examined.
Specifically, for 2 m air temperature, our model yields RMSE and MAE values of 0.20 and
0.17, respectively; for geopotential height, the corresponding values are 0.72 and 0.62; and
for relative humidity, these metrics stand at 0.64, 0.46, and 0.59%.
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Table 1. Comparison of different methods for temporal downscaling.

Method 2 m Temperature
(RMSE/MAE/MAPE)

Geopotential Height
(RMSE/MAE/MAPE)

Relative Humidity
(RMSE/MAE/MAPE)

Parameters
(Million)

Linear Interpolation 0.51/0.42/0.14% 1.79/1.55/0.09% 1.61/1.15/1.47% /
Cubic Spline 0.42/0.35/0.12% 1.50/1.30/0.08% 1.35/0.96/1.23% /

ConvLSTM [26] 0.31/0.25/0.10% 1.20/1.03/0.07% 0.90/0.64/0.82% 11.1
Super-slomo [27] 0.25/0.22/0.08% 1.24/1.10/0.07% 0.93/0.65/0.83% 19.8

RIFE [50] 0.23/0.20/0.07% 0.87/0.74/0.05% 0.75/0.51/0.65% 9.8
Enhanced Residual U-Net 0.20/0.17/0.06% 0.72/0.61/0.05% 0.64/0.45/0.59% 11.0

When contrasted with conventional methods like linear interpolation and cubic spline—
whose performance metrics are considerably higher in terms of RMSE and MAE—the
superiority of our model becomes evident. The results are presented in Table 1. Although
these deep learning-based models outperform linear interpolation and cubic spline, they
still fail to match the superior performance of our enhanced residual U-Net model.

5.2. Visual and Qualitative Analysis

To assess the effectiveness of our model, we selected a case of the 2 m temperature
fields for 21 January 2020, between the hours of 10:00 and 17:00. As depicted by Figure 5,
our model accurately reproduces the nonlinear variability in the temperature field.
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Figure 5. Ground truth and model-generated downscaled results. Points at 10 a.m., 1 p.m., 2 p.m., and
5 p.m. are the model’s input, while the data at 11 a.m., 12 p.m., 3 p.m., and 4 p.m. are model-generated
outputs. The black square indicates the study area.

Focusing on specific intervals, for the 11:00 downscaling between 10:00 and 13:00,
the temperature patterns exhibit distinct characteristics. For example, the coastal areas,
which originally showed a relatively warmer temperature at 10:00, start showing moderate
cooling due to oceanic influences. In contrast, the central regions, which were cooler at
10:00, warm up slightly, likely due to increased solar radiation. This is captured with an
RMSE of 0.22, MAE of 0.19, and MAPE of 0.06%. As we move to 12:00, the temperature
in the valley regions starts showing minor fluctuations, likely due to local wind patterns.
The RMSE improves to 0.20, MAE drops to 0.17, and the MAPE remains stable at 0.06%,
emphasizing the model’s competence in capturing these subtle dynamics.

Between 14:00 and 17:00, the 15:00 downscaling indicates that urban areas start to
experience heat island effects, with temperature spikes in densely populated zones. These
spikes contrast with adjacent rural or forested areas that show a more stable temperature
profile. At this point, the RMSE is 0.20, MAE is 0.18, and the MAPE is stable at 0.06%. At
16:00, there is a notable decrease in temperature in the mountainous regions, likely due to
the shadows cast by the changing sun angle. This dynamic is reflected with an RMSE of
0.19, MAE of 0.16, and a consistent MAPE of 0.06%.
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5.3. Ablation Studies

In our ablation studies, we examine the individual components of the enhanced resid-
ual U-Net model to understand their significance in achieving overall performance metrics
(see Figure 6). We set the performance of the full model as the baseline, which exhibits
RMSE and MAE values of 0.20 and 0.17 for 2 m temperature, 0.72 and 0.62 for geopotential
height, and 0.64 and 0.46 for relative humidity. To remove multi-scale features in the
U-Net for our ablation study, we simply omit the skip connections. This is accomplished
by not using the ‘torch.cat’ operation to merge features from the encoder and decoder,
thus preventing the combination of high-resolution details with low-resolution context.
Upon removing the multi-scale features, we observed a discernible decrease in predictive
accuracy across all variables, with RMSE and MAE values for 2 m temperature rising to 0.34
and 0.28, respectively (see Table 2). This confirms the importance of multi-scale features in
capturing the complexity of geophysical data. When we omitted the flow regularization,
there was a significant performance decline: RMSE and MAE values for 2 m temperature
rose to 0.23 and 0.19, indicating the benefits of incorporating flow regularization to capture
temporal dynamics effectively. Lastly, reducing the architectural depth of the model led to
a less pronounced, yet still noticeable, decline in performance. For instance, RMSE for the
2 m temperature increased to 0.26, and MAE rose to 0.22, underlining the model’s depth’s
role in capturing the intricacies of geophysical data. Overall, the degradation in model
performance upon the removal of each component underscores their collective importance,
reinforcing the need for their inclusion in the final architecture.
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Figure 6. Visual comparison of ablation study results. We downscale the 2 m temperature fields from
10 a.m. to 1 p.m. on 21 January 2020, to obtain results for 11 a.m. Subfigure d depicts the wind field
at 11 a.m., which offers indicative insights into temperature evolution.

Table 2. Ablation study on the effect of various components on the model’s performance.

Method 2 m Temperature
(RMSE/MAE/MAPE)

Geopotential Height
(RMSE/MAE/MAPE)

Relative Humidity
(RMSE/MAE/MAPE)

Without Multi-scale Features 0.34/0.28/0.10% 1.12/1.01/0.06% 0.92/0.33/0.42%
Without Residual Identities 0.28/0.23/0.08% 1.08/0.96/0.06% 0.71/0.29/0.36%

Without Flow Regularization 0.23/0.19/0.06% 0.96/0.82/0.05% 0.87/0.34/0.44%
Reduced Architectural Depth 0.26/0.22/0.07% 1.05/0.95/0.06% 0.74/0.28/0.36%

Full Model (Baseline) 0.20/0.17/0.06% 0.72/0.61/0.05% 0.64/0.45/0.59%
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In our ablation study concerning the advection loss weight λ, we explore the statistical
significance of its calibration for the accuracy of temporal downscaling in geophysical data.
The detailed line chart in our manuscript illustrates how the mean absolute error (MAE)
varies with different λ settings. With λ set to 0.3, the model achieves the lowest MAE
values, suggesting that this level maximizes the benefit of incorporating flow information
while also allowing for local atmospheric dynamics, such as radiative heating or cooling,
to be adequately represented. On the other hand, a high λ value, such as 0.9, results in
increased MAE, indicating a diminished ability to capture these local changes, as the model
overly emphasizes adherence to the advected state. Conversely, the absence of advection
loss (λ = 0) leads to increased errors, highlighting the necessity of this term for improving
downscaling accuracy.

6. Discussion

In our analysis, we found that the input grid data pixel size significantly influences
the model’s Mean Absolute Error (MAE), forming a U-shaped pattern, as depicted in
Figure 7. For smaller pixel sizes, specifically at 64 pixels, the MAE was around 0.26. The
convolutional layers in this case are restricted to localized features, missing the larger
spatial context that is crucial for accurate downscaling. Conversely, the MAE reaches its
minimum value of 0.17 at an optimal pixel size of 224 (see Figure 8). Beyond this optimal
point, the MAE starts to increase again, climbing to approximately 0.33 at a pixel size of
320. This suggests that while the model is effective in capturing global features at larger
pixel sizes, it fails to grasp finer details, leading to increased error.
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Figure 7. Model performance with different λ values.

This performance is further illuminated when comparing the MAE curves between
the full model and the reduced-depth model. The full model achieved a lower minimum
MAE value of 0.17 as opposed to the reduced model’s 0.22. This can largely be attributed to
the residual modules in the full model, which allow for a more efficient and resilient feature
extraction process. These modules facilitate better generalization across varying pixel sizes,
thus accounting for the full model’s more effective U-shaped performance curve in MAE
across a broader range of pixel sizes.
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In addition to the performance metrics discussed earlier, another significant advan-
tage of our model is its capability to support real-time inference (see Figure 9). A set of
experiments was conducted to evaluate the model’s speed performance across multiple
hardware configurations—A40, V100, and A5000. The inference time was observed at
different intermediate snapshot levels: 9, 18, 27, 36, and 45. Remarkably, even at 45 interme-
diate snapshots, the inference time did not exceed 44 ms on A5000, and it was even lower
on A40 and V100 setups, clocking at approximately 39 ms and 38 ms, respectively. This
rapid inference time positions our model as not only accurate but also highly practical for
real-time applications in weather forecasting and climate studies.

To assess the impact of spatial domain size on temporal downscaling accuracy, our
study conducted tests across three increasingly localized areas within the ERA5 dataset’s
0.25◦ resolution grid (see Figure 10). Area I spans longitudes 112◦E to 118◦E, Area II
narrows down to 113◦E to 117◦E, and Area III further reduces to 114◦E to 116◦E. The intent
was to understand how the extent of spatial information affects the prediction quality for
a specific grid cell’s temporal downscaling. The results, as shown in Table 3, indicate a
nuanced relationship between spatial domain size and downscaling accuracy. In Areas I, II,
and III, we observed RMSE, MAE, and MAPE values of 0.20/0.17/0.06%, 0.17/0.18/0.06%,
and 0.17/0.14/0.05%, respectively. This pattern suggests that as the spatial domain becomes
more localized, the model’s performance slightly improves in terms of RMSE and MAPE,
while the MAE shows a minor increase from Area II to Area III. Our findings suggest
that reducing the spatial domain helps the model to focus on more relevant atmospheric
features specific to the area, enhancing the precision of temporal downscaling. This is
particularly evident in Area III, where the smallest spatial extent was associated with the
lowest RMSE and MAPE, indicating a refined prediction capability. However, the slight
increase in MAE from Area II to III highlights the complexity of balancing spatial resolution
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with predictive accuracy. The increasing error rates in temporal downscaling from Areas
I (22◦N–28◦N) to Area V (62◦N–68◦N) can be attributed to the complex atmospheric
dynamics and pronounced seasonal variations typical of higher latitudes. Area I shows
the lowest error rates (RMSE: 0.20, MAE: 0.17), indicating better model performance in
lower latitudes. In contrast, Areas IV and V exhibit progressively higher errors, with Area
V reaching an RMSE of 0.26 and an MAE of 0.20. These higher latitudes face challenges
like greater temperature shifts between seasons, more complex weather systems like jet
streams, and data sparsity due to fewer weather stations. These factors combined make
accurate temporal downscaling more challenging in higher latitude regions.
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Table 3. Generalization test at different spatial resolutions on 2 m temperature fields.

Method Area I
(RMSE/MAE/MAPE)

Area II
(RMSE/MAE/MAPE)

Area III
(RMSE/MAE/MAPE)

Area IV
(RMSE/MAE/MAPE)

Area V
(RMSE/MAE/MAPE)

Full model 0.20/0.17/0.06% 0.17/0.18/0.06% 0.17/0.14/0.05% 0.23/0.19/0.07% 0.26/0.20/0.07%
Reduced Depth 0.26/0.22/0.07% 0.23/0.21/0.07% 0.24/0.17/0.06% 0.28/0.24/0.08% 0.30/0.27/0.09%

This study primarily uses a 5 × 5 convolutional kernel size for temporal downscaling.
The comparison between different kernel sizes—3 × 3, 5 × 5, and 7 × 7—reveals differences
in their performance, as shown in Table 4. The 5 × 5 kernel size showed the most consistent
and favorable results across the Full Model and the Reduced Depth model in terms of
RMSE, MAE, and MAPE metrics. The 3 × 3 kernel displayed slightly higher errors than the
5 × 5 kernel, indicating slightly diminished performance in capturing temporal dependen-
cies. Meanwhile, the 7 × 7 kernel size resulted in higher error metrics for both models,
indicating reduced accuracy in temporal downscaling. The overall trend suggests that the
5 × 5 kernel size excels in extracting relevant features and capturing temporal patterns
more effectively within the context of the temporal downscaling task carried out in this
research.
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Table 4. Performance of models with different convolutional kernel sizes.

Method Kernel 3 × 3
(RMSE/MAE/MAPE)

Kernel 5 × 5
(RMSE/MAE/MAPE)

Kernel 7 × 7
(RMSE/MAE/MAPE)

Full model 0.23/0.18/0.06% 0.20/0.17/0.06% 0.25/0.24/0.08%
Reduced Depth 0.26/0.24/0.08% 0.26/0.22/0.07% 0.31/0.26/0.09%
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Figure 10. Illustration of five selected areas, labeled Area I to Area V, showcasing the variations in
both spatial extent and latitude. Area I, Area II, and Area III represent regions where the spatial
domain progressively decreases in size, providing a comparative perspective on how varying spatial
scales influence the model’s performance. Additionally, Area I, Area IV, and Area V are arranged in
ascending order of latitude, allowing for an examination of the impact of latitudinal differences on
the effectiveness of temporal downscaling.

7. Conclusions

In this study, we introduced the enhanced residual U-Net, which incorporates advec-
tion loss in addition to regression loss for training and combines the strengths of U-Net and
ResNet to address the challenge of temporal downscaling in gridded geophysical data. The
architecture is specifically designed to harness both local and global features within the
data, thereby producing a robust and versatile model capable of delivering high-quality
downscaling results. The residual U-Net has been applied in many other fields [51–54]
(including spatial downscaling), and we are the first to apply it in the domain of temporal
downscaling. This design choice not only enhances the learning capability of the network
but also alleviates issues related to the vanishing gradient problem, allowing for deeper
and more effective networks. We also introduced a custom loss function that combines
Mean Squared Error (MSE) with a spatial regularization term, which collectively ensures
both the fidelity and spatial coherence of the downscaled output.

Our experimental results, based on a comprehensive evaluation using multiple grid-
ded geophysical datasets, validated the effectiveness of the enhanced residual U-Net model.
We demonstrated that the architecture outperformed traditional downscaling methods and
other state-of-the-art machine learning approaches in key metrics, including RMSE and
MAE, while maintaining computational efficiency.

In conclusion, the enhanced residual U-Net architecture stands as a robust and efficient
solution for the temporal downscaling of gridded geophysical data. Its design features,
including the use of residual blocks and a custom loss function, make it a highly promising
tool for both academic research and practical applications in the field of geoscience.

Future work could further enhance this architecture by incorporating additional
techniques for feature selection or by tailoring the network to different kinds of geophysical
data. Moreover, real-world applicability of this model could be tested in other domains
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requiring high-fidelity downscaling, providing a broader utility beyond the specific use-
case studied here.

Author Contributions: Conceptualization, L.W. and Q.L. (Qian Li); methodology, L.W.; software,
L.W.; validation, Q.L. (Qian Li) and Q.L. (Qi Lv); formal analysis, L.W.; investigation, Q.L. (Qian Li);
resources, X.P.; data curation, L.W.; writing—original draft preparation, L.W.; writing—review and
editing, Q.L. (Qi Lv); visualization, Q.L. (Qi Lv); supervision, Q.L. (Qian Li); project administration,
Q.L. (Qian Li); funding acquisition, Q.L. (Qian Li). All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. U2242201, 42075139, 42105146, 41305138), the China Postdoctoral Science Foundation (Grant No.
2017M621700), Hunan Province Natural Science Foundation (Grant No. 2021JC0009, 2021JJ30773,
2023JJ30627), and Fengyun Application Pioneering Project (FY-APP-2022.0605).

Data Availability Statement: All data necessary to reproduce the results of this work can be
downloaded at the ERA5 Climate Data Store via https://doi.org/10.24381/cds.bd0915c6 and https:
//doi.org/10.24381/cds.adbb2d47, accessed on 12 April 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process

understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef] [PubMed]
2. Scipal, K.; Holmes, T.R.H.; de Jeu, R.A.M.; Naeimi, V.; Wagner, W. A possible solution for the problem of estimating the error

structure of global soil moisture data sets. Geophys. Res. Lett. 2008, 35, 24. [CrossRef]
3. Chen, S.; Zhang, M.; Lei, F. Mapping Vegetation Types by Different Fully Convolutional Neural Network Structures with

Inadequate Training Labels in Complex Landscape Urban Areas. Forests 2023, 14, 1788. [CrossRef]
4. Marthews, T.R.; Dadson, S.J.; Lehner, B.; Abele, S.; Gedney, N. High-resolution global topographic index values for use in

large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 2015, 19, 91–104. [CrossRef]
5. Loew, A.; Bell, W.; Brocca, L.L.; Bulgin, C.E.; Burdanowitz, J.; Calbet, X.; Donner, R.V.; Ghent, D.; Gruber, A.; Kaminski, T.; et al.

Validation practices for satellite-based Earth observation data across communities. Rev. Geophys. 2017, 55, 779–817. [CrossRef]
6. Mann, M.E.; Rahmstorf, S.; Kornhuber, K.; Steinman, B.A.; Miller, S.K.; Coumou, D. Influence of Anthropogenic Climate Change

on Planetary Wave Resonance and Extreme Weather Events. Sci. Rep. 2017, 7, 1–12. [CrossRef]
7. Rogelj, J.; Forster, P.M.; Kriegler, E.; Smith, C.J.; Séférian, R. Estimating and tracking the remaining carbon budget for stringent

climate targets. Nature 2019, 571, 335–342. [CrossRef]
8. Mason, S.J.; Stephenson, D.B. How Do We Know Whether Seasonal Climate Forecasts are Any Good. In Seasonal Climate:

Forecasting and Managing Risk; Springer: Dordrecht, The Netherlands, 2008; pp. 259–289.
9. Schloss, A.; Kicklighter, D.W.; Kaduk, J.; Wittenberg, U.; ThE Participants OF ThE Potsdam NpP Model Intercomparison.

Comparing global models of terrestrial net primary productivity (NPP): Comparison of NPP to climate and the Normalized
Difference Vegetation Index (NDVI). Glob. Chang. Biol. 1999, 5, 25–34. [CrossRef]

10. Schleussner, C.; Lissner, T.; Fischer, E.M.; Wohland, J.; Perrette, M.; Golly, A.; Rogelj, J.; Childers, K.H.; Schewe, J.; Frieler, K.; et al.
Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 ◦C and 2 ◦C. Earth Syst. Dyn. Discuss.
2015, 7, 327–351. [CrossRef]

11. Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling
techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [CrossRef]

12. Mearns, L.; Giorgi, F.; Whetton, P.H.; Pabón, D.; Hulme, M.; Lal, M. Guidelines for Use of Climate Scenarios Developed from
Regional Climate Model Experiments. Data Distrib. Cent. Intergov. Panel Clim. Chang. 2003, 38.

13. Challinor, A.J.; Watson, J.E.M.; Lobell, D.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate
change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [CrossRef]

14. Gupta, R.; Yadav, A.K.; Jha, S.; Pathak, P.K. Time Series Forecasting of Solar Power Generation Using Facebook Prophet and XG
Boost. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; pp. 1–5.

15. Monteith, J.L.; Oke, T.R. Boundary Layer Climates. J. Appl. Ecol. 1979, 17, 517. [CrossRef]
16. Salehnia, N.; Hosseini, F.S.; Farid, A.; Kolsoumi, S.; Zarrin, A.; Hasheminia, M. Comparing the Performance of Dynamical and

Statistical Downscaling on Historical Run Precipitation Data over a Semi-Arid Region. Asia-Pac. J. Atmos. Sci. 2019, 55, 737–749.
[CrossRef]

17. Global Circulation Models. In Proceedings of the ACM SIGSPATIAL International Workshop on Advances in Geographic
Information Systems (SIGSPATIAL 2017), Redondo Beach, CA, USA, 7 November 2017.

18. Kisembe, J.; Favre, A.; Dosio, A.; Lennard, C.J.; Sabiiti, G.; Nimusiima, A. Evaluation of rainfall simulations over Uganda in
CORDEX regional climate models. Theor. Appl. Climatol. 2018, 137, 1117–1134. [CrossRef]

https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1038/s41586-019-0912-1
https://www.ncbi.nlm.nih.gov/pubmed/30760912
https://doi.org/10.1029/2008GL035599
https://doi.org/10.3390/f14091788
https://doi.org/10.5194/hess-19-91-2015
https://doi.org/10.1002/2017RG000562
https://doi.org/10.1038/srep45242
https://doi.org/10.1038/s41586-019-1368-z
https://doi.org/10.1046/j.1365-2486.1999.00004.x
https://doi.org/10.5194/esd-7-327-2016
https://doi.org/10.1002/joc.1556
https://doi.org/10.1038/nclimate2153
https://doi.org/10.2307/2402350
https://doi.org/10.1007/s13143-019-00112-1
https://doi.org/10.1007/s00704-018-2643-x


Remote Sens. 2024, 16, 442 17 of 18

19. Vandal, T.J.; Kodra, E.; Ganguly, A.R. Intercomparison of machine learning methods for statistical downscaling: The case of daily
and extreme precipitation. Theor. Appl. Climatol. 2017, 137, 557–570. [CrossRef]

20. Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical downscaling and dynamical downscaling of regional climate in
China: Present climate evaluations and future climate projections. J. Geophys. Res. Atmos. 2016, 121, 2110–2129. [CrossRef]

21. Isotta, F.A.; Begert, M.; Frei, C. Long-Term Consistent Monthly Temperature and Precipitation Grid Data Sets for Switzerland
Over the Past 150 Years. J. Geophys. Res. Atmos. 2019, 124, 3783–3799. [CrossRef]

22. ArunKumar, K.E.; Kalaga, D.V.; Mohan Sai Kumar, C.; Kawaji, M.; Brenza, T.M. Comparative analysis of Gated Recurrent Units
(GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive
Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alex. Eng. J. 2022, 61, 7585–7603. [CrossRef]

23. Majda, A.J.; Harlim, J. Physics constrained nonlinear regression models for time series. Nonlinearity 2012, 26, 201–217. [CrossRef]
24. Yang, H.; Wang, T.; Zhou, X.; Dong, J.; Gao, X.; Niu, S. Quantitative Estimation of Rainfall Rate Intensity Based on Deep

Convolutional Neural Network and Radar Reflectivity Factor. In Proceedings of the 2nd International Conference on Big Data
Technologies, Jinan, China, 28 August 2019; pp. 244–247.

25. Misra, S.; Sarkar, S.; Mitra, P. Statistical downscaling of precipitation using long short-term memory recurrent neural networks.
Theor. Appl. Climatol. 2018, 134, 1179–1196. [CrossRef]

26. Xiang, X.; Tian, Y.; Zhang, Y.; Fu, Y.R.; Allebach, J.P.; Xu, C. Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 13–19 June 2020; pp. 3367–3376.

27. Jiang, H.; Sun, D.; Jampani, V.; Yang, M.-H.; Learned-Miller, E.G.; Kautz, J. Super SloMo: High Quality Estimation of Multiple
Intermediate Frames for Video Interpolation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9000–9008.

28. Lees, T.; Buechel, M.; Anderson, B.; Slater, L.J.; Reece, S.; Coxon, G.; Dadson, S.J. Rainfall-Runoff Simulation and Interpretation in
Great Britain using LSTMs. In Proceedings of the 23rd EGU General Assembly, Online, 19–30 April 2021. EGU21-2778.

29. Kajbaf, A.A.; Bensi, M.T.; Brubaker, K.L. Temporal downscaling of precipitation from climate model projections using machine
learning. Stoch. Environ. Res. Risk Assess. 2022, 36, 2173–2194. [CrossRef]

30. Barboza, L.A.; Chen, S.; Alfaro-Córdoba, M. Spatio-temporal downscaling emulator for regional climate models. Environmetrics
2022, 34, e2815. [CrossRef]

31. Huang, J.; Perez, M.J.R.; Perez, R.; Yang, D.; Keelin, P.; Hoff, T.E. Nonparametric Temporal Downscaling of GHI Clearsky Indices
using Gaussian Copula. In Proceedings of the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA,
USA, 5–10 June 2022; pp. 0654–0657.

32. Michel, A.; Sharma, V.; Lehning, M.; Huwald, H. Climate change scenarios at hourly time-step over Switzerland from an enhanced
temporal downscaling approach. Int. J. Climatol. 2021, 41, 3503–3522. [CrossRef]

33. Boehme, R.B.T.K. The Fourier Transform and its Applications. Am. Math. Monthly 1966, 73, 685. [CrossRef]
34. Ahmmed, B.; Vesselinov, V.V.; Mudunuru, M.K. SmartTensors: Unsupervised and physics-informed machine learning framework

for the geoscience applications. In Proceedings of the Second International Meeting for Applied Geoscience & Energy, Houston,
TX, USA, 28 August–1 September 2022.

35. Greiner, T.A.L.; Lie, J.E.; Kolbjørnsen, O.; Evensen, A.K.; Nilsen, E.H.; Zhao, H.; Demyanov, V.V.; Gelius, L.J. Unsupervised deep
learning with higher-order total-variation regularization for multidimensional seismic data reconstruction. Geophysics 2021, 87,
V59–V73. [CrossRef]

36. Kim, J.; Yang, I. Hamilton-Jacobi-Bellman Equations for Maximum Entropy Optimal Control. arXiv 2020, arXiv:2009.13097.
37. Gan, T.; Tarboton, D.G.; Gichamo, T.Z. Evaluation of Temperature-Index and Energy-Balance Snow Models for Hydrological

Applications in Operational Water Supply Forecasts. Water 2023, 15, 1886. [CrossRef]
38. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
39. Zhu, Y.; Zabaras, N.; Koutsourelakis, P.-S.; Perdikaris, P. Physics-Constrained Deep Learning for High-dimensional Surrogate

Modeling and Uncertainty Quantification without Labeled Data. J. Comput. Phys. 2019, 394, 56–81. [CrossRef]
40. Mizukami, N.; Clark, M.P.; Newman, A.J.; Wood, A.W.; Gutmann, E.D.; Nijssen, B.; Rakovec, O.; Samaniego, L. Towards seamless

large-domain parameter estimation for hydrologic models. Water Resour. Res. 2017, 53, 8020–8040. [CrossRef]
41. Hrachowitz, M.; Soulsby, C.; Tetzlaff, D.; Dawson, J.J.C.; Dunn, S.M.; Malcolm, I.A. Using long-term data sets to understand

transit times in contrasting headwater catchments. J. Hydrol. 2009, 367, 237–248. [CrossRef]
42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 25 June–1 July 2016; pp. 770–778.
43. Laloy, E.; Hérault, R.; Jacques, D.; Linde, N. Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial

Neural Network. Water Resour. Res. 2017, 54, 381–406. [CrossRef]
44. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,

arXiv:1505.04597.
45. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.J.; Heinrich, M.P.; Misawa, K.; Mori, K.; McDonagh, S.G.; Hammerla, N.Y.; Kainz, B.;

et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999.

https://doi.org/10.1007/s00704-018-2613-3
https://doi.org/10.1002/2015JD023977
https://doi.org/10.1029/2018JD029910
https://doi.org/10.1016/j.aej.2022.01.011
https://doi.org/10.1088/0951-7715/26/1/201
https://doi.org/10.1007/s00704-017-2307-2
https://doi.org/10.1007/s00477-022-02259-2
https://doi.org/10.1002/env.2815
https://doi.org/10.1002/joc.7032
https://doi.org/10.2307/2314845
https://doi.org/10.1190/geo2021-0099.1
https://doi.org/10.3390/w15101886
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1002/2017WR020401
https://doi.org/10.1016/j.jhydrol.2009.01.001
https://doi.org/10.1002/2017WR022148


Remote Sens. 2024, 16, 442 18 of 18

46. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA
2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018;
Springer: Berlin/Heidelberg, Germany, 2018; Volume 11045, pp. 3–11.

47. Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation.
Neural Netw. Off. J. Int. Neural Netw. Soc. 2019, 121, 74–87. [CrossRef] [PubMed]

48. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Athens, Greece, 16–21 October 2016.

49. Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. J. Mach. Learn. Res. 2011, 15, 315–323.
50. Huang, Z.; Zhang, T.; Heng, W.; Shi, B.; Zhou, S. RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation.

arXiv 2022, arXiv:2011.06294.
51. Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2017, 15, 749–753. [CrossRef]
52. Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med.

Imaging 2019, 6, 014006. [CrossRef]
53. Wang, H.; Miao, F. Building extraction from remote sensing images using deep residual U-Net. Eur. J. Remote Sens. 2022, 55, 71–85.

[CrossRef]
54. Afshari, A.; Vogel, J.; Chockalingam, G. Statistical Downscaling of SEVIRI Land Surface Temperature to WRF Near-Surface Air

Temperature Using a Deep Learning Model. Remote Sens. 2023, 15, 4447. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.neunet.2019.08.025
https://www.ncbi.nlm.nih.gov/pubmed/31536901
https://doi.org/10.1109/LGRS.2018.2802944
https://doi.org/10.1117/1.JMI.6.1.014006
https://doi.org/10.1080/22797254.2021.2018944
https://doi.org/10.3390/rs15184447

	Introduction 
	Related Work 
	Temporal Downscaling 
	Regularization 
	Residual Connections 
	U-Net 

	Study Area and Dataset 
	Model 
	Problem Definition 
	Residual U-Net 
	Flow Regularization Using Advection Loss 

	Experiments 
	Quantitative Comparison with Conventional Methods 
	Visual and Qualitative Analysis 
	Ablation Studies 

	Discussion 
	Conclusions 
	References

