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Abstract: The issue of water seepage poses a significant challenge in tunnel infrastructure. Wet
areas are commonly used to evaluate the degree of water seepage in tunnel projects. To investigate
the feasibility for numerical simulation to predict a wet area, we selected concrete test blocks with
two types of defects—holes and cracks—as the research specimens. Numerical models for various
seepage conditions were constructed using TOUGH2, and the results were validated through lab-
oratory experiments. Additionally, the Shenjiamen Subsea Tunnel was simplified into a numerical
model, employing TOUGH2 to forecast its future wet area performance within the scope of national
standards. The outcomes of our research revealed that point seepage and line seepage exhibited
circular and elliptical morphologies, respectively. Moreover, external water pressure and defect size
exerted a significant influence on the expansion of the wet area. Notably, the impact of crack width
surpassed that of hole diameter. Encouragingly, the numerical models generated using TOUGH2
for unsaturated concrete demonstrated excellent agreement with laboratory test results concerning
the geometry, size, and pattern of the wet area. These findings signified the potential of TOUGH2
numerical simulation as a valuable tool in predicting the lifespan of tunnels.

Keywords: tunnel leakage; defect form; wet area; water pressure

1. Introduction

Water leakage is a prevalent issue in tunnel engineering [1]. Leaking water serves
as a primary medium for transporting corrosive ions into concrete [2]. It significantly
impacts the stability of tunnel excavation faces [3,4], leading to a shortened maintenance
cycle and lifespan of the tunnel [5–7], thereby increasing maintenance costs [8]. Tunnel
joints, bolt holes, cracks, and grout holes are particularly susceptible to leakage, with field
investigations of Shanghai Metro tunnels revealing that more than 80% of shield tunnel
leakage occurs at joints. Specifically, hole leakage accounted for 12% and 15% of leakage in
sections A and B, while circular joint leakage accounted for 68% and 54% of the respective
sections [6]. With the extensive construction of tunnel projects in China, the focus is shifting
from the peak construction period to the operational and maintenance phase. Therefore, the
diagnosis and treatment of lining diseases represent a crucial research direction in Chinese
tunnel engineering [9]. Consequently, it is essential to quantify and predict the occurrence
of leakage issues in linings.

According to the manifestation of water leakage, tunnel seepage can be categorized
into point leakage and line leakage [10,11]. Wet spots represent the early signs of water
leakage and can be used as a metric for assessing it. The “Technical Code for Waterproofing
of Underground Engineering” in China (GB50108-2008) [12] specifies the number and
area of wet spots for different grades of underground engineering. Currently, the most
common method for monitoring wet spots in projects is manual inspection, where the
locations and areas are determined and documented after visual inspection [13]. Alternative
methods include on-site detection through image processing techniques, such as camera
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measurement detection technology [14,15]. However, this approach may lead to confusion
between wet spot patterns on linings and stains during the image recognition process.
To address this, deep learning algorithms have been introduced [16,17]. In addition,
infrared thermography detection technology [18,19] is a popular research direction. Infrared
thermography detection technology offers fast scanning speeds and is independent of
visible light illumination, but its results can be affected by external factors such as other
heat sources [11]. Han et al. [20] proposed a monitoring approach based on multispectral
fusion, combining the advantages of visual optics and thermal infrared sensors. However,
these methods require substantial preparatory work to create extensive datasets.

Beyond on-site detection, theoretical methods can also be considered for predicting
wet area, facilitating an understanding of the progression of water leakage, reducing safety
risks, and minimizing economic losses. Presently, direct methods for predicting wet areas
are lacking, but wet spots can be comprehended as an aggregation of water movement
on the concrete surface, which can be estimated by predicting the unidirectional water
penetration depth into the concrete. For instance, Wei et al. [21] established a stochastic
model for lining water penetration depth based on reliability theory over time, considering
the stochasticity of design variables and the properties of time variance. Li et al. [22]
established predictive formulas for the relationship between pressure, average water flow
velocity, depth, time, and moisture content in concrete, based on Darcy’s law and the laws
governing pressure changes. However, parameters like flow velocity and moisture content
are challenging to directly measure in engineering practice. Numerical simulation methods
offer an alternative predictive approach. This study employed two types of concrete test
blocks with defects—holes and cracks—as subjects for investigating point and line leakage
issues. The influence of external water pressure and crack width on the concrete wet
area were observed through laboratory experiments. Subsequently, numerical models of
concrete saturation under various conditions were created using TOUGH2 V2.0 software.
This study compares and analyzes the effects of external water pressure and defect size on
the concrete wet area, explores the possibility of using numerical simulation to predict wet
area, and conducts wet area predictions for actual underwater tunnel projects.

2. Theoretical Basis

Concrete is a porous material, and coring tests on underwater tunnels subject to
prolonged high water pressure indicated that the interior of concrete remains in a partially
saturated state at certain depths even after decades of service [23]. Therefore, it is more
reasonable to calculate the concrete in underground engineering based on the unsaturated
state. As moisture infiltrates through the pores or defects in concrete, the saturation of
concrete gradually increases, eventually manifesting as wet spots on the concrete surface.

The water movement in unsaturated concrete can be expressed by Richard’s equation:

u = − kskr(θ)

µ
∇ψ (1)

where u is the seepage velocity, m/s; ks is the absolute permeability coefficient at saturation,
m/s; kr is the relative permeability, ranging between 0 (dry state) and 1 (saturated state);
θ is the water content; µ is the coefficient of viscous momentum of water, Pa · s; ∇ is the
Hamiltonian operator; and ψ is the total water potential driving the movement of water
per unit volume, Pa.

kr(θ) is a function of water content, usually expressed in terms of the van Genuchten–
Mualem model:

kr(s) =s0.5
[
1 −

(
1 − s

1
m

)m]2
(2)

where s is the water content, s = θ−θr
θs−θr

; θr is the residual water content; θs is the satu-
rated water content; and m is an empirical parameter related to the pore distribution
characteristics, determined by experimental fitting.
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The total driving potential of water movement consists of pressure potential and
matrix potential:

ψ = ψp + ψm (3)

The pressure potential is caused by the pressure difference in the pressure field. Con-
sidering the connectivity of the capillary pores and assuming that the air in the unsaturated
pores is directly connected to the external atmosphere, there is no additional hydrostatic
pressure on the pore solution in the unsaturated zone. In contrast, the pore solution in the
saturated zone is directly connected to external hydraulic water and is subject to additional
hydrostatic pressure.

ψp = 0(0 ≤ s ≺ 1)

ψp(x, t) = P0exfc( x
2

√
ρwg
ksEt (s = 1)

(4)

where ψp(x, t) is the pressure potential, Pa; P0 is the hydrostatic pressure on the outer
surface of the structure, Pa; erfc is the complementary error function; x is the distance from
the concrete surface, m; E is the modulus of elasticity, Pa; and t is the pressure time, s.

The matrix potential ψm can be regarded as the capillary suction of the porous material,
which is generally represented by the van Genuchten–Mualem model:

ψm = −α(s−1/m − 1)
1−m

(5)

where α is an empirical parameter fitted from experimental data.
For concrete with cracks, the situation is different. Wang et al. [24] found that cracks

with a width exceeding 50 µm significantly increase the permeability of concrete. Therefore,
unlike in the previous discussion where concrete was treated as a simple porous medium,
it is necessary to treat the pores and cracks separately in this case [25]. Following the dual-
porosity model, hydraulic parameters are defined for both the pores and the cracks [26]. In
other words, the leakage problem in cracked concrete can be regarded as a combination of
moisture movement in the concrete and within the cracks.

3. Research Methods
3.1. Indoor Test
3.1.1. Test Specimens Preparation

As shown in Table 1, concrete test blocks were fabricated according to the concrete
mix design of the Shenjiamen Subsea Tunnel in Zhoushan, Zhejiang Province, China.
To simulate two types of water seepage patterns, namely spot leakage and line leakage,
two different types of test blocks were prepared following the methodology described in
reference [27]. For the BI test block, a smooth ϕ6 reinforcement bar was embedded along
the axis of the block to create prefabricated holes. On the other hand, the BII test block had
a smooth reinforcement bar surrounded by stainless-steel plates, with varying thicknesses
of 60 mm and a height of 150 mm, to create prefabricated parallel cracks (see Figure 1). Both
the smooth reinforcement bar and stainless-steel plates were coated with oil in advance
to prevent adhesion with the concrete. After the concrete test blocks reached initial set
but before final set, the smooth reinforcement bar and stainless-steel plates were removed,
and the blocks were demolded and placed in standard curing tanks for a curing period of
28 days at a temperature of 20 ± 2 ◦C and a relative humidity of over 95%.

The specimens were prepared in accordance with the conditions presented in Table 2.
Spot leakage included 16 different conditions, while line leakage encompassed 64 condi-
tions. To mitigate the impact of random variations in the test results, three specimens were
fabricated for each condition. Furthermore, in adherence to the “Test Methods for Mechani-
cal Properties of Concrete” (GB/T 50081-2019) [28], three standard cubic specimens with
a side length of 150 mm were simultaneously created during the batch fabrication of the
specimens, following identical procedures. Due to the presence of more than ten standard
specimens, the assessment of strength was conducted using statistical methodologies as
stipulated by the “Standard for Assessment of Compressive Strength of Concrete” (GB/T
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50107-2010) [29]. Following the assessment, the compressive strength of the specimens in
this study was determined to be 51.8 MPa.
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Figure 1. Concrete test specimens. (a) Specimen BI. (b) Specimen BII.

Table 1. Concrete mix ratio.

Material Gel Material Sand Gravel Water Water
Reducing Agent

Specifications P.O 52.5 Fly ash Grade-II Middle sand
5~10 mm (35%) Tap water Acid type

10~25 mm (65%)
Dosage (kg/m3) 456 44 640 1253 163 4.6

Table 2. Test condition.

Type Specimen P (MPa) w (mm) t (h)

Point leakage BI 0.1, 0.2, 0.3, 0.4 0 12, 24, 48, 72
Line leakage BII 0.1, 0.2, 0.3, 0.4 0.1, 0.3, 0.5, 1.0 12, 24, 48, 72

3.1.2. Test Methods

Using the water permeability testing device as shown in Figure 2, the left side consisted
of a pressure chamber of the concrete impermeability tester model HP-4.0, while the right
side comprised a monitor, a water storage tank, and a pressurized pump. The monitor
was provided by Hangzhou Keyang Electronics Co., Ltd., Hangzhou, China, and the
pressurized pump was supplied by Dedong Electric Machinery Co., Ltd., Shaoxing, China,
with a power of 136 W and a flow rate of 3. The experiment was conducted using specimens
that were selected to have a smooth surface, compacted and free from any noticeable defects
or cracks. Prior to the experiment, rubber pads were placed on both the upper and lower
sides of the concrete specimen. The rubber pad located on the lower side had a reserved
hole, and a stainless-steel top plate was tightened with screws to ensure a tight seal and
allow water to enter only through the central hole.
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At the beginning of the experiment, the water storage tank was filled with water, and
we used the monitor to adjust pressure value. The pressurizing pump was activated, and
the pressure gauge reading on the monitor was carefully monitored until it reached the
predetermined test pressure value. Subsequently, the water inlet valve of the pressure
chamber was opened to initiate the permeability test.

After reaching the designated test duration, the water inlet valve of the pressure
chamber was closed, and three specimens for each condition were selected for measurement.
As shown in Figure 3, a steel bar was placed at the center of the top surface of each specimen,
which was then placed on the compression testing machine. Due to the presence of defects,
there was a stress concentration at this location, which resulted in the splitting of the
specimen along the position of the defect. As illustrated in Figure 4, five control points
at 0◦, 45◦, 90◦, 135◦, and 180◦ were selected on the split concrete specimens, denoted by
letters A-E respectively. Using a vernier caliper, the penetration depths in each direction
were measured three times and averaged. The essence of water leakage geometry is the set
of water movement on the concrete surface, that is, the set of anisotropic penetration depth.
Therefore, the graph formed by connecting each control point of penetration depth is the
leakage geometry diagram. The data were then imported into Origin for image plotting,
and the wet area was calculated.
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3.2. Numerical Simulation

TOUGH2 is a software developed by Lawrence Berkeley National Laboratory in the
United States for analyzing the transport of unsaturated groundwater and heat in porous
and fractured media. It possesses powerful modeling capabilities for fluid flow in porous
and fractured media, and can simulate fluid flow in multiphase and multicomponent
systems that are non-isothermal [30]. TOUGH2 simulates processes over large time and
spatial scales. The time scale of simulating fluid flow processes can range from fractions
of seconds to geological time scales spanning thousands of years, while the spatial scale
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can vary from microscale to watershed scale. TOUGH2 has flexible parameter definition
and simulation functionalities, providing an interactive 3D environment where users can
conveniently define model parameters, input data, and visualize results. It also supports
various boundary conditions and initial value settings, allowing for flexible adjustment
of simulation settings to accommodate the characteristics of water flow in unsaturated
concrete. In recent years, TOUGH2 has been successfully applied in various research
disciplines, including carbon storage, environmental remediation, hydrology, geothermal
energy, landfilling, nuclear waste, nutrient cycling, and oil and gas, among others [31].

This study uses the EOS9 module in TOUGH2 to simulate the leakage behavior of
defective concrete blocks under different conditions. As shown in Equation (1), water move-
ment in unsaturated concrete can be represented by the Richard equation, and the EOS9
module is based on the Richard equation, suitable for simulating saturated–unsaturated
single-phase flow. Each grid block only needs to solve one mass balance equation, re-
sulting in fast computation speed. Based on the dimensions of the indoor test specimens,
two models, BI and BII, with dimensions of 150 mm × 70 mm × 150 mm, were established
to represent cavity defects and crack defects, respectively. TOUGH2 allows for the specifica-
tion of hydraulic parameters for multiple materials. Therefore, in this model, concrete and
defect materials are set, with parameters shown in Table 3. Model BI uses a Voronoi polygon
mesh, while Model BII uses a rectangular mesh. Based on the size of the defects, numerical
stability, and result accuracy, the area surrounding cracks and cavities is discretized more
densely (Figure 5). Both models had the center inflow hole set as a Dirichlet-type boundary.
The Dirichlet-type boundary condition is a fixed boundary condition in which the fluid
pressure or temperature is specified as a constant value. This satisfies the requirement of
constant external water pressure P at this location.

Table 3. Parameters of the numerical model.

Parameter Concrete Leakage

Triaxial permeability
coefficient (m−3) 1.0 × 10−19

1.00 × 10−13 (point leakage)
1.48 × 10−14 (w = 0.1 mm)
1.33 × 10−13 (w = 0.3 mm)
3.70 × 10−13 (w = 0.5 mm)
1.48 × 10−12 (w = 1.0 mm)
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4. Results and Discussion
4.1. Geometry of Wet Area

The geometric patterns of moisture penetration in the two concrete specimens are
illustrated in Figure 6. It can be observed that the overall moisture penetration areas
exhibited a symmetrical distribution. The water infiltration pattern for the BI specimen
formed a circular shape centered around the pre-existing borehole, gradually expanding
uniformly in all directions over time, indicating a uniform movement of water along all
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directions of the borehole. In contrast, the moisture infiltration pattern for the BII specimen
took on an elliptical shape around the pre-existing borehole and cracks. As time progressed,
the moisture zone gradually enlarged, with the increase in moisture velocity at the crack
end comparable to the increase in moisture velocity perpendicular to the direction of
the crack.
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Moradllo et al. [32] utilized neutron radiography to convert the moisture content in
concrete profiles into water penetration depth. Based on the selected moisture content as
the outer contour of the moisture zone, and considering the calculation formula for the total
driving potential in water movement, it is evident that saturation is the most significant
influencing factor on the driving potential in water movement within unsaturated concrete.
Therefore, saturation maps are used to represent the moisture penetration area, as shown
in Figure 7. The saturation map for the BI specimen uniformly expanded outward over
time, while the saturation map for the BII specimen took on a spindle shape. The similar-
ity between the saturation maps and the experimentally observed geometric patterns of
moisture penetration confirmed the practical applicability of the model.
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4.2. Wet Area

The wet area of the laboratory test can be calculated from the test method described in
Section 3.1.2 and the tracing plot. Meanwhile, the wet area in numerical simulations was
determined from saturation maps. In Origin, the contour lines of the saturation maps were
outlined and calculated.

The deviation between the simulated and experimental values were calculated for
the wet area of the specimens under each condition and plotted on the following graph.
Figure 8 illustrates the distribution of data within different deviation ranges. The x-axis
represents the absolute value of the percentage error, while the y-axis represents the quantity
of data within each range. The majority of the percentage errors fall within 10%, indicating
a close approximation between the simulated and experimental values. There is a higher
likelihood of encountering errors between 5% and 10%. Hence, based on the magnitude of
the data, the simulated values are relatively close to the experimental values.
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4.2.1. Influence of External Water Pressure on Wet Area

Figure 9 shows the comparison between experimental and simulated wet areas under
hydraulic conditions. Overall, the numerical values of the experimental and simulated
values are relatively close, and their data trends and slopes are consistent with time and
water pressure. Specifically, the experimental and simulated wet areas of specimens BI and
BII both increase with the passage of time and the increase in external water pressure.
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From Figure 9a, it can be observed that the wet area of specimen BI followed a linear
growth trend with time under low water pressure conditions, and the simulated and exper-
imental values are in good agreement. However, under higher water pressure conditions
(0.3 MPa and 0.4 MPa), both the simulated and experimental values had relatively flat
slopes before 48 h, then experienced a sudden increase after 48 h. From Figure 9b, it can be
seen that the wet area of specimen BII generally increased linearly with time, except for
some instability in the simulated values under the 0.3 MPa condition.

Comparing Figure 9a,b, it can be observed that under low water pressure conditions,
the growth rate of the wetted area for specimen BII was about eight to nine times that
of specimen BI at the same time. However, under higher water pressure conditions, the
growth rate decreased significantly and was approximately two to three times that of
specimen BI.

4.2.2. Influence of Defects on Wet Area

Figure 10 depicts a comparison of the wet area between concrete specimens in exper-
imental and numerical models under different defects at an external water pressure of
0.3 MPa. Overall, the numerical values of the experimental and simulated values are close,
and they both increased with the increase in crack width, with similar slopes.
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Figure 10. Comparison of wet area of concrete test and model with time under the influence of crack
width (P = 0.3 MPa).

Specifically, at the same time point, the wet area of specimen BI was significantly
smaller than that of specimen BII. Focusing solely on the BII specimen, as the crack width
increased, the wet area also increased. Moreover, the increase in wet area grew proportion-
ally larger with the increasing crack width, with the ratio closely approximating the square
of the crack width.

However, the accuracy of the TOUGH2 model depends on the accuracy of the pa-
rameters, the precision of the grid division, and the realism of the boundary conditions.
The model calculations are performed based on the input hydraulic parameters and the
specified boundary conditions. Regarding the grid division, insufficient or inappropriate
grid resolution may result in the inability to accurately capture fine water movement details
within the concrete. Therefore, potential improvements for the TOUGH2 model include
more accurate measurement and estimation of hydraulic parameters for concrete materials,
optimization of grid resolution and distribution, and calibration of boundary conditions
based on actual circumstances.
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4.3. Discussion
4.3.1. Leakage Depth Fitting

For the water pressure conditions, according to Equation (1), the moisture flow rate
is linearly related to water pressure. Therefore, as the external water pressure increased,
both BI and BII specimens experienced an increase in flow rate, leading to an enlargement
of the wet area. Concerning the crack width conditions, since the permeability coefficient
followed a cubic law with crack width, wider cracks resulted in an exponential growth of
the permeability coefficient. Consequently, as the crack width increased, the flow rate of
both BI and BII specimens increased, leading to a larger wet area. Overall, the experimental
values of the wet area for the BI specimen exceeded the simulated values, while for the BII
specimen, the opposite was true.

Based on the experiments and referring to the relationship between water penetration
depth and time established by Tsuchiya et al. [33], the calculation formulas for point leakage
and line leakage depth were obtained through the fitting tool in Origin:

BI : D1 = 3.24 × 10−5·P·t1.13 (6)

BII : D2 = 1.45w0.49·D1 (7)

where D is the concrete seepage depth, P is the water pressure, w is the joint width, and t is
the seepage time.

4.3.2. Fitting of Wet Area

It can be seen from the test and model that the wet shapes of BI and BII are approxi-
mately circularity and ellipse, respectively; based on Figure 11, the wet area is established
as followed:

BI : A1 = π·(D1 + r)2 (8)

BII : A2 = π·(D2 + a)·D2 (9)

where A is the wet area, D1 and D2 are the seepage depth of test specimens BI and BII,
respectively, r is the radius of hole defects, and a is 1/2 crack length.
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Figure 12 shows the comparison between fitting results and test values. Overall, the
deviation between the fitted values and experimental values remained within ten percent.
In comparison to point leakage, the fitting error for line leakage was even smaller, indicating
that the fitting formula for line leakage performed better. Through analysis and calculations
of the experimental data, the growth rates of point leakage and line leakage both linearly
increased with time, with the slope of line leakage exceeding that of point leakage. In the
initial stages, the wet area of line infiltration was 15–20 times that of point leakage, and as
time progressed, the gap gradually narrowed, reaching 3–5 times at 72 h.
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Figure 12. The comparison between fitting results and test values. (a) Specimen BI. (b) Specimen BII.

In practical engineering, point leakage is prone to occur in bolt holes and grouting
holes, while line leakage is most likely to occur at the joints of pipe sections. According
to the construction technical requirements of a certain underwater tunnel, the diame-
ter of bolt holes is set at 41 mm, grouting holes at 90 mm, and the width of pipe joint
seams is 0.2 mm. The “Technical Specifications for Highway Tunnel Maintenance” (JTG
H12-2015) [34] classifies cracks into three levels based on length, using 5 m and 10 m as
dividing points. Therefore, these values were used as calculation parameters. According to
Formulas (8) and (9), point and line leakage performances are calculated for 1 day, 7 days,
30 days, and 60 days.

From Figure 11, it is evident that as time progresses, the wet area of point leakage is
consistently smaller than that of line leakage, and their growth factors follow the same
pattern. Moreover, compared to crack length, the diameters of void defects have a minimal
impact on the wetted area. Therefore, the harm caused by line leakage is much greater than
that caused by point leakage.

Using the growth rate of the wet area can more clearly show the change of the wet
area, using Q to represent the growth rate:

Q =
At

A0
(10)

where At is the wet area at time t, and A0 is the initial leakage area.
As can be seen from Figure 13, over time, the wet area of point leakage is much

smaller than that of line leakage, and the growth ratio of the two also follow the same law.
Compared with the crack length, the diameter of the hole defect has little influence on the
wet area. Therefore, from the perspective of water movement, the rate of increase in wet
area for line leakage is much greater than that for point leakage. In addition, line leakage has
a longer water flow path and higher flow velocity, which generates higher water pressure
and increases the damage to the tunnel structure. The water and harmful substances
introduced by line leakage can further corrode the materials at the joints, increasing the
risk. The introduction of a large amount of water by line leakage can cause saturation
and softening of the soil inside the tunnel structure, which may weaken the stability of
the foundation and increase the risks of settlement and deformation. Therefore, the harm
caused by line leakage is greater than that of point leakage.
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5. Engineering Cases
5.1. Engineering Condition

The Shenjiamen Harbor Undersea Tunnel project in Putuo District of Zhoushan City
is the first highway undersea shield tunnel in Zhejiang Province, China, with a design
service life of 100 years. The tunnel is made of high-performance concrete, with strength
of C50, and the impermeability grade is greater than that of P12. Two waterproofing
measures are adopted at the joint of the pipe section: the first waterproofing adopts a GINA
waterproofing belt, and the second waterproofing adopts an Ω waterproofing belt. The
cracks of the tunnel were fully patched before operation (as shown in Figure 14), and this
paper discusses the problem of wet damage in case of joint leakage. The cross-section of
the tunnel is shown in Figure 15.
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5.2. Numerical Simulation

TOUGH2 was modeled on a 5 m pipe segment as shown in Figure 16, using a ½
cross-section taking into account the symmetry of the cross-section. A joint in the form of
a crack was positioned at the central axis of the outer wall of the pipe segment. In accor-
dance with the specifications outlined in the “Technical Specifications for Waterproofing in
Underground Engineering”, the crack width for waterproof concrete structures should not
exceed 0.2 mm [12]. Therefore, models were developed for two scenarios with crack widths
of 0.1 mm and 0.2 mm. Ten layers of grids were placed in the middle of the pipe segment,
each with a width of 0.05 mm, to adjust the crack width. The external water pressure
along the height of the pipe segment started from 0.15 MPa and was linearly applied. The
simulation involved polygonal grid division, additional grid refinement, and followed the
same steps as described in the above simulation.
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5.3. Result Analysis

As shown in Figure 17, the numerical simulation results show that the saturation
of concrete was highest at the crack, and the farther away from the crack, the lower the
saturation. With the advance of the simulation time, the saturation at the outer wall of the
tunnel increased continuously with the crack as the center, and saturation occurred first at
the arch waist. Therefore, water seepage occurred there first.
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The waterproofing level of tunnel engineering is Level 2. Therefore, according to the
Technical Specification for Waterproofing of Underground Engineering, there can be no
more than two wet spots on any 100 m2 wet area, and the maximum area of a single wet
spot should be no more than 0.1 m2 [12]. As shown in Figure 18, at 0.1 mm crack width, the



Buildings 2024, 14, 408 14 of 16

time for the model to reach the limit value is 9.5 × 106 s, about 110 days, while at 0.2 mm
seam width, the time for the model to reach the limit value is 8.21 × 106 s, about 95 days.
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When the wet area at a certain location of a tunnel exceeds the specified limit of
0.1 m2, there may be risks of structural damage and foundation instability, exacerbating
the corrosion of concrete structures and softening of the foundation, leading to structural
failure. Therefore, it is necessary to take preventative measures. Firstly, controlling the
leakage source is essential to prevent further deterioration of the condition. Secondly,
strengthening and maintaining the structure is crucial to enhance the impermeability and
stability of the lining. Additionally, continuous monitoring of the affected area is needed
for a period of time to prevent further damage.

6. Conclusions

In order to reduce the losses caused by the leakage of lining, concrete test specimens
with holes and cracks were used as the research objects. The influence of external water
pressure and defect form on the wet area were studied. The feasibility of simulating the
leakage process of TOUGH2 was verified by the laboratory test data. According to the
national standard, the wet condition of Shenjiamen Tunnel was predicted by numerical
simulation. The main findings are as follows:

(1) The geometric shape of water seepage is influenced by the form of defects. Both point
leaks and line leaks have symmetric distributions, with the former approximating a
circular shape and the latter approximating an elliptical shape. Compared to point
leakage, the permeability coefficient at the crack is larger, manifested by a higher
initial water flow rate at the ends of the crack. Therefore, the wet area of line leakage
is larger than that of point leakage in the same time period.

(2) Indoor experiments have shown that both external water pressure and crack width
increase the permeability of concrete and the wet area of the lining. Under similar
conditions, an increase in external water pressure from 0.1 MPa to 0.4 MPa can result
in a 2–3 times increase in wet area, while an increase in crack width from 0.1 mm
to 1 mm can lead to a 3–5 times increase in wetted area. Within 72 h, the growth of
wet area over time shows a linear relationship with water pressure and follows the
cubic law with crack width. The numerical model of unsaturated concrete established
using TOUGH2 shows consistent trends with experimental results in terms of wetted
area variation with water infiltration time, external water pressure, and crack width.
Additionally, the numerical values of wet area are also close to the experimental
results. Therefore, TOUGH2 numerical simulation can be used for predicting the
wetted area of tunnel linings, providing assistance in assessing their durability.
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(3) The harm caused by line leakage is greater than that of point leakage. Using TOUGH2
to predict the time for the wet area of the Shenjiamen Port Subsea Tunnel project to
reach critical value after cracks within engineering specifications occur, it takes about
110 days for a 0.1 mm crack width and about 95 days for a 0.2 mm crack width. Once
the limit value is exceeded, remedial measures are necessary. For now, this approach
is limited. The scope of water leakage prediction is limited to the defect that the
evaluation system based on the wet area has a relatively regular shape under constant
water pressure.

However, in real scenarios, the situation can be more complex. The anisotropy of
concrete, the uncertainty in the distribution of internal defects, and various unexpected
environmental conditions can all affect the generalization of the above conclusions to actual
engineering projects.
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