

South Asian Research Journal of Natural Products

Volume 7, Issue 1, Page 51-61, 2024; Article no.SARJNP.111316

GC-MS Analysis of *Spondias cytherea* Fruits and leaves

Ime R. Ekanem ^a, Nsikak B. Essien ^a, Emaime J. Uwanta ^b, Itoro N. Willie ^b and Aniekan E. Akpakpan ^{b*}

^a Department of Chemical Sciences, Akwa Ibom State Polytechnic, Ikot Osurua, Nigeria. ^b Department of Chemistry, Akwa Ibom State University, Ikot Akpaden, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: <u>https://www.sdiarticle5.com/review-history/111316</u>

Original Research Article

Received: 04/11/2023 Accepted: 09/01/2024 Published: 10/02/2024

ABSTRACT

The chemical composition of the fruit *Spondias cytherea* using GC-MS analysis showed the presence of the following compounds in their various portions; 2,2-dichloro acetate nonyl (3.13%), n-hexadecan-1-ol (4.43%), 6-octadecanoic acid (15.93%), n-octaddecanoic (10.44%), L-(+)-ascorbic acid, 2,6-dihexadecanoate (17.49%), 1-ethyl-1-cyclohexanol (5.22%), nonadec-1-ene (4.17%), 1-heptadecene (5.22%), hexanoic acid (2.61%), 6-methyl-1-heptanol (3.13%), 5 hydroxymethylfuran-2-carbaldehyde (4.17%), 1,1,3-trimethylcyclopentane (1.31%), 2(5H)-furanone (9.14%), 3-furaldehyde (3.65%), methyl 2-oxopropanoate (2.61%), 2-methyl but-enal (2.06%) and 2H-pyran-2yl-3-benzoyloxy-3,6-dihydro-6-methoxy, methyl benzoate (5.22%). The chemical composition of leaves comprises of 2-oxo-2-phenlethane-1,1, diyldiacetate (5.08%), 1,1,3-trimethylcyclopentane (1.52%), 6-methyl/heptan-1-ol (2.53%), 9-octadecene (3.55%), (E)-lcos-9-ene (3.05%), 2-methyl becanoic acid (10.15%), L-(+)-ascorbic aci, 2,6-dihexadecanoate (15.22%), (E)-2-methyl octadec-7-enoic acid (34.01%), (E)-octadec-6-enoic acaid (15.22%), 2-(dodecan-2-yl) cyclohexanone (0.36%), 2,3,4-trimethyl dodecan-5-yl-cydopentane (.036%) and 15-methylhexanoic acid (2.53%). These compounds may be responsible for the antioxidant properties exhibited by this plant.

^{*}Corresponding author: Email: anikan017@gmail.com;

S. Asian Res. J. Nat. Prod., vol. 7, no. 1, pp. 51-61, 2024

Keywords: Chemical composition; antioxidant; n-hexadecan-1-ol.

1. INTRODUCTION

Spondias cytherea is a medicinal plant which is widely used as food for the intestine. It is used in phytomedicine to cure various diseases such as diarrhea, constipation, female tract infection, wounds, burns, rashes, cuts, colds, sore throats, eye and ear infections. It is laxative that protects the intestine. The numerous therapeutic properties have been attributed to the presence of phytochemicals available in the plant [1]. Phytochemicals constitute one of the most numerous and widely distributed groups of compounds available in plants [2,3]. Plants produce chemicals, known as secondary metabolites, which are not directly involved in the process of growth but act as deterrents to bacteria, virus, fungal and microbial attack [4,5].

Spondias cytherea is a pleasant tasting acidic fruit and has a pineapple – mango flavor and crunchy texture. The part nearer to the peel is quite sour getting sweeter near the seed. The ripe fruit is also much sweeter than the less mature green fruit. The fruit is eaten fresh. It is used in making delicious jelly, pickles, relishes, soups and stews. The fruits yield a delicious jelly, pickles, relishes, soups and stews. The fruits yield a delicious juice, which can be made into drinks and sherbets or mixed with other topical fruit juices to enhance flavor, aroma and taste.

2. MATERIALS AND METHODS

The experiment was carried out in the department of chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria.

2.1 Source of Materials

The fruit and leaves of exotic plum (*Spondias cytherea*) were harvested from the main campus of Michael Okpara University of Agriculture, Umudike, Nigeria. The plum species was identified and authenticated by Dr. A. Nneregini of Taxonomy section, Forestry Department, Michael Okpara Unversity of Agriculture Umudike, Nigeria.

2.2 Preparation of Plant Extracts

The epicarps of the exotic plum was peeled off. The leaves and peels were air dried for 15 days and then ground into powder using moulinex nut grinder machine. The powdered materials were stored in airtight bottles for chemical analysis.

2.3 GC-MS Analysis

GC-MS analysis of the acetylated total extract was conducted using GCMS-QP2010 PLUS, SHIMADZU, Japan series. The extract was obtained by dissolving 2 g of sample in acetone. injection temperature The and detector temperature were fixed at 250°C. Helium was used as the carrier gas at a flow rate 6.2 ml/min. The oven temperature was programmed at 60°C (held for 1min), from 60 to 100°C at 10°C/min and from 100 to 300°C at 5°C/min (held for 35mins). Injection was made in split less mode. Component identification was accomplished by comparison mass of spectra and gas chromatographic retention times of the extracted materials to that of known standards which were available in the reference library.

3. RESULTS AND DISCUSSION

3.1 GC-MS Analysis of *Spondias cytherea* Fruit

Gas chromatography (GC) mass spectrophotometry (MS) allows for identification and quantification of relevant secondary metabolites. GC-MS permits the combination of powerful separation techniques with sophisticated structural elucidation devices [6,7].

The Spondias cytherea fruits was analysed by GC-MS. Fig. 1 shows a chromatogram of Spondias cytherea fruit. Seventeen peaks were observed representing 17 compounds in the fruits. the percentage content of the components in Spondias cytherea fruit is also listed in Table 1.

The major compound in Spondias cytherea fruit 2.6-dihexadecanoate L-(+)-ascorbic acid is (17.49%). Ascorbic acid acts as an antioxidant in the skin by scavenging and guenching free radical generated by ultra violet radiation stabilization [8]. It is required for connective metabolism especially the scar tissue, bones, and teeth. It is necessary as an anti-stress and protector against cold, chills and damp [9]. Ascorbic acid in the body aids in iron absorption from the intestine. It prevents muscle fatigue and scurvy that is characterized by skin

hemorrhages, bleeding gums, fragile bones, anemia and pains in joints and defect in skeletal

calcification. It also accounts for normal wound healing.

Peaks	Height (cm)	Percentage content
1	1.15	3.13
2	1.65	4.43
3	5.85	15.93
4	3.83	10.44
5	6.42	17.49
6	1.92	5.22
7	1.53	4.17
8	1.92	5.22
9	0.96	2.61
10	1.15	3.13
11	1.53	4.17
12	0.48	1.31
13	3.35	9.14
14	1.34	3.65
15	0.96	2.61
16	0.76	2.06
17	1.92	5.22

Table 1. Percentage content of compounds in Spondias cytherea fruits

Table 2. GC-MS analysis of the various fractions from the fruit of Spondias cytherea

Peak	Compound name	Molecular formula	Molecular weight (g/mol)	Retention time (Mins)	Percentage content	Fragment peaks (m/z) and % Abundance
1	2,2-Dichloro acetate nonyl	C ₁₁ H ₂₀ Cl ₂ O ₂	254	31.917	3.13	26(20%), 41(50%), 55(70%), 69(90%), 70(60%), 98(100%), 207(10%), 281(10%)
2	n-Hexadecan-1-ol	C ₁₆ H ₃₄ O	242	30.642	4.43	39(10%), 41(60%), 55(100%), 69(60%), 83(90%), 97(70%), 111(40%)
3	6-Octodecanioc acid	C ₁₈ H ₃₄ O ₂	282	29.467	15.93	27(20%), 41(90%), 55(100%), 69(70%), 83(70%), 97(50%), 98(40%), 114(20%), 264(4%), 282(10%)
4	n-Octadecanioc acid	$C_{18}H_{36}O_2$	284	29.575	10.44	27(10%),

Peak	Compound name	Molecular formula	Molecular weight (g/mol)	Retention time (Mins)	Percentage content	Fragment peaks (m/z) and % Abundance
						41(60%), 43(90%), 69(70%), 73(100%), 85(50%), 98(40%), 115(30%), 129(60%), 185(30%), 284(40%)
5	L-(+)-ascorbic acid, 2,6-dihexadecanoate	C38H66O8	652	28.283	17.49	27(10%), 41(4%), 43(90%), 57(90%), 73(100%), 85(60%), 98(40%), 115(30%), 129(60%), 185(30%), 284(40%)
6	1-ethyl-1- cyclohexanol	C ₈ H ₁₂ O	124	27.933	5.22	27(10%), 41(20%), 55(20%), 68(60%), 81(100%), 95(60%) 109(40%), 123(20%)
7	1-nonadecene	C ₁₉ H ₃₃	266	29.942	4.17	27(10%), 41(70%), 42(80%), 57(80%), 83(90%), 97(100%), 111(60%), 125(40%) 126(30%), 140(10%)
8	1-heptadecene	C ₁₇ H ₃₄	238	25.067	5.22	(10%), 41(80%), 55(90%), 80(100%), 111(50%), 168(5%), 238(5%)
9	Hexanoic acid	C ₆ H ₁₂ O ₂	116	24.192	2.61	27(40%), 41(50%), 43(30%), 60(100%), 73(60%), 87(10%0
10	6-methyl-1-heptanol	C ₈ H ₁₈ O	130	22.133	3.13	27(40%),

Ekanem et al.; S. Asian Res. J. Nat. Prod., vol. 7, no. 1, pp. 51-61, 2024; Article no.SARJNP.111316

Peak	Compound name	Molecular formula	Molecular weight (g/mol)	Retention time (Mins)	Percentage content	Fragment peaks (m/z) and % Abundance
						41(80%), 55(100%), 69(70%), 70(50%), 84(60%), 98(5%), 112(5%)
11	5- hydroxymethylfuran - 2-carbaldehyde	C ₆ H ₆ O ₃	126	18.325	4.17	29992050, 41(60%), 53(20%), 69(40%), 97(100%), 100(20%), 126(10%)
12	1,1,3 Trimetylcyclopentane	C ₈ H ₁₆	112	16.633	1.31	27(30%), 41(80%), 55(100%), 83(50%), 97(50%), 112(10%)
13	2(5H)-Furanone	C4H4O2	84	7.917	9.14	27(60%), 29(30%), 55(100%), 84(60%)
14	3-Furaldehyde	$C_5H_4O_2$	96	5.442	3.65	29(50%), 67(100%), 96(60%)
15	Methyl 2- oxopropanoate	C ₄ H ₆ O ₃	102	4.392	2.61	15(5%), 43(100%), 112(10%)
16	2-methyl but-2-enal	C ₅ H ₈ O	84	4.192	2.06	27(60%), 29(70%), 55(100%), 83(10%), 84(80%)
17	2H-pyran-2-yl 3- (benzoyloxy)-3, 6- dihydro-6-methoxy, methyl benzoate	C ₂₁ H ₂₀ O ₆	38	3.533	5.22	40(5%), 44(10%), 77(60%), 15(100%), 105(100%), 122(5%), 204(5%)

Ekanem et al.; S. Asian Res. J. Nat. Prod., vol. 7, no. 1, pp. 51-61, 2024; Article no.SARJNP.111316

Other major compounds in the fruits include terpenes. These include 1,1,3trimethylcyclopentane (1.31%), 1-nonadecene (4.17%) and 1-heptadecene (5.22%). Terpenes are large and varied class of organic compounds produced primarily by a wide variety of plants particularly conifers though also by some insects such as termites or swallow tail butterflies which emit terpenes from their osmetenum (Oliver, 1986). They are the major components of resin and of turpentine produced from resin.

In addition to their roles as and products in many organisms, terpenes are biosynthetic blocks within nearly every living creature. Terpenes and terpeniods are the primary constituents of the essential oils of many plants and flowers. Essential oils are used widely as natural flavor additives for food, as fragrances in perfumery

and in traditional and alternative medicines such as aroma therapy [10].

Peak	Height (cm)	Percentage content
1	0.98	5.08
2	0.29	1.52
3	0.49	2.53
4	0.68	3.55
5	0.59	3.05
6	1.95	10.15
7	2.92	15.22
8	6.53	34.01
9	2.92	15.22
10	0.07	0.36
11	0.07	0.36
12	0.49	2.53
	CH ₃	~ ~ ^ ^ ^ ^ ^ ^
ĊI namul. 2.2 diablareau		$HO' \sim \sim \sim \sim \sim \sim \sim \sim CH_3$
nonyi -2,2-dichioroad	cetate	n-nexadecane-1-ol
1		2
	O II	O II
		н н.с.
6-octadecan	oic acid	n-octadecanoic acid
3		4
H ₃ C	~~~~~	о () о ()) () о ()
	Ascorbic acid, 2,6-dil	hexadecanoic acid
	⁵ OH	
1-ethynyl-1-cycloh	exanol	nonadec-1-ene
		7
H ₊ C	\sim	
1-heptadece	ene	hexanoic acid
و		9
0		

Table 3. Percentage content of Spondias cytherea leaves

16

2H-pyran-2-yl(3-benzoyloxy)-6-dihydro-6-methoxymethyl benoate

17

Fig. 1. Chemical compositions of spondias cytherea fruit

The present of terpenes is responsible for the sedative and antispasmodic property of this plant. Their use is recommended for those people who are suffering from nervousness in somia, palpitations, migraine or asthma. It is also commonly used in the treatment of acute or chronic bronchitis and related conditions [8].

Esters identified in the fruit include nonyl, 2,2dichloracetate., 2H-pyran-2-yl, 3-(benzoyloxy)-3, 6-dihydro-6-methoxy, methyl benzoate (5.22%), and methyl, 2-oxopropanoate (2.61%). The fatty acid composition of the fruit includes 6octadecanoic acid (15.93%), n-octadecanoic acid (10.44%) and hexanoic acid (2.6%) are the fatty acid component of the fruit. Fatty acids provided either by in gestion by drawing on triglycerides stored in fatty tissues are distributed to cells to

serve as fuel for muscular contraction and metabolism. They are consumed by mitochondria to produce ATP through beta oxidation [11]. Alcohols identified include n-hexadecan-1-ol (4.43%), 1-ethyl-1-cyclohexanol (5.22%) and 6 methyl-1-heptanol (3.13%). The aldehydes identified include 5-hydroxymethyl furan-2carbaldehyde (4.17%), 3-furaldehyde (3.65%) and 2-methylbut-2-enal (2.06%). 2(5H) furanone (9.14%) is the ketone compound in the fruit [12].

Table 4 present the results of the interpretation of the GC-MS chromatogram of the samples. It is noted that some compounds identified in the fruits are also present in the leaves. These compounds include L-(+)-ascorbic acid 2,6dihexadecanoate, and 6-octadecanoic acid. This result indicates that both the fruits and leaves of

this plant may exhibit antioxidant property. The major compound in *S. cytherea* leaves are fatty acids which include (E)-2-methyl octadec-7-enoic (34.01%), 6-octadecanoic acid (15.22%), 15-methylhexanoic acid (2.53%) and 2-

methylhexadecanoic acid (10.15%). These esters identified in the leaves include 2-oxo-2-phenylethane 1,1, diyldiacetate (5.08%) and L-(+)-ascorbic acid 2,6-dihexadecanoate (15.22%) [13].

Peak	Compound name	Molecular formula	Molecular weight (g/mol)	Retention time (Mins)	Percentage content	Fragment peaks (m/z) and % Abundance
1	2-oxo-2-phenyl enthane-1,-1,- diyldiacetate	$C_{27}H_{22}O_8$	474	3.525	5.08	51(20%), 77(80%), 105(100%)
2	1,1,3-trimethyl- cyclopentane	C ₈ H ₁₆	112	16.633	1.52	27(20%), 41(80%), 55(100%), 83(60%), 97(50%)
3	6-methylheptan-1-ol	C ₈ H ₁₈ O	130	22.133	2.53	27(20%), 41(80%), 55(100%), 83(80%), 97(69%), 111(20%)
4	9-Octadecene	C ₁₈ H ₃₆	252	25.067	3.55	27(10%), 41(80%), 55(100%), 83(80%), 97(69%), 111(20%)
5	(E)-lcos-9-ene	C ₂₀ H ₄₀	280	26.942	3.05	27(10%), 41(80%), 55(100%), 83(80%), 97(69%), 111(20%), 125(10%), 207(10%)
6	2-methylhexadecanoic acid	C17H34O2	270	27.975	10.15	27(10%), 41(20%), 57(20%), 74(100%), 87(60%), 143(10%)
7	L-(+)-ascorbic acid, 2,6-dihexadecanoate	C38H68O8	652	28.275	15.22	27(10%), 41(60%), 43(80%), 57(100%), 73(100%), 85(40%), 98(20%), 115(10%),

Peak	Compound name	Molecular formula	Molecular weight (g/mol)	Retention time (Mins)	Percentage content	Fragment peaks (m/z) and % Abundance
						120(40%), 13(20%), 239(20%), 36(20%), 143(10%), 57(20%), 171(20%), 256(10%)
8	(E)-2-methyl octadec- 7-enoic acid	C ₁₉ H ₃₆ O ₂	296	29.175	34.01	27(10%), 41(100%), 55(100%), 69(60%), 74(80%), 849(60%), 98(40%), 123(10%), 222(10%), 64(20%), 296(20%)
9	6-octadecanoic acid	C18H34O2	282	29.467	15.22	27(109%), 1(100%), 55(100%), 69(60%), 83(60%), 97(50%), 114(10%), 37(10%), 264(20%)
10	2-(dodecan-2-yl)- cyclohexanone	C ₁₈ H ₃₄ O	266	30.375	0.36	41(20%), 55(60%), 69(10%), 83(10%), 98(100%), 207(10%)
11	2,3,4- trimethyldodecan-5-yl- cyclopentane	C ₈ H ₃₆	252	30.642	0.36	43(90%), 69(80%), 83(110%), 97(60%), 207(10%)
12	15-methylhexanoic acid	C ₈ H ₃₆ O ₂	284	33.383	2.53	43(40%), 57(10%), 74(100%), 87(60%), 281(10%)

Ekanem et al.; S. Asian Res. J. Nat. Prod., vol. 7, no. 1, pp. 51-61, 2024; Article no.SARJNP.111316

Terpene identified include 1,1,3-trimethylcyclo pentane (1.52%), (E)-9-octadecene (3.55%), (E)-icos-9-ene (3.05%) and 2,3,4-trimethyldodecan-5-yl-cyclopentane (0.36%). Alcohol and ketone component of the leaves include 6-methylheptan-1-ol (2.53%) and 2-(dodecan-2-yl)-cyclohexanone (0.36%) respectively [14].

Fig. 2. Chemical compositions of spondias cytherea leaves

4. CONCLUSION

The results obtained from this study have strongly indicated the chemical composition of the fruits and leaves of *Spondias cytherea*. From this work, the concentration of ascorbic acid is higher than the other chemical observed. More ascorbic acid is found in the fruits than the leaves. This supports the reason the fruit perform more antixodant activity than the leaves. *S. cytherea* fruit may be used in wine and fruits juice production to combat some health problems. However, the biological activities of the identified compounds should be investigated in order to explore more medicinal benefit of the plant

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Akpabio Ukana D, Udo Uwemedimo E, Akpakpan AE. Evaluation of Phytochemical, proximate and mineral element composition of stem of costus after (Bush cane). Asian Journal of Plan Science and Research. 2012a2(5):607-612

- Akpabio UD, Wilson LA, Akpakpan AE, Obot IB. Phytochemical Screening and proximate composition of Cassia hirsute seeds. Elixir Journal of Applied Chemistry. 2012b:8704-8707
- 3. Akpakpan AE, Ukpong EJ, Odiongenyi AO, Willie IE. Phytochemical screening of the ethanol and aqueous extracts of *Dicliptera verticillata* Leaves. Archives of Current Research International. 2017;11(2):1-5.
- 4. Okwu DE. Evaluation of the chemical composition of indigenous spices and flavouring agents. Global Journal of Pure and Applied Sciences. 2001;8:455-459.
- Akpakpan Aniekan E. Uwanta, Emaime J. Akpan Patrick E, Owen, Aniekan E. Phytochemical screening and analytical assessment of acid-base indicator properties of red and white kola nuts extracts. Asian Journal of Advances in Research. 2020;3(1):1-7
- Udo GJ, Etesin UM, Awaka-Ama JJ, Nyong AE. GCMS and FTIR spectroscopy characterization of Luffa Cylindrica seed oil and biodiesel produced from the oil. Communication in Physical Sciences. 2020;5(3):378-390.
- Christopher Desire T, Willie, Itoro E, Akpan, Itohowo O, Domingo Ekemini T. Antioxidant activity and identification of bioactive compounds in Telfairia

occidentalis leaves using GC-MS analysis. World Journal of Advanced Research and Reviews. 2022;16(03):775–788

- 8. Okwu DE, Nnamdi EU. Evaluation of the chemical composition of *Dacryodes edulis* and *Raphia woll erinam* and *Vende* exudates used in Herbal medicine in South Eastern Nigeria. Agric. J. Trd. Com. 2008;1:6-9.
- 9. Okwu DE, Morah FN. The potentials of Garcitus kola seed as a source for nutraceutrials. Journal of Med. and Arom Plant Sciences. 2006;28:605-611.
- 10. Oliver-Bever B Medicinal plants in tropical West Africa, Cambridge University Press, Cambridge. 1986:123-125.
- David JA, Both S, Ralf C, George F, Udo S, Alfred W. Fatty acids in Viiman's Encyclopedia of Industrial Chemistry. Wiley – Vch, Wein heim. 20062:245-250.
- Okwu DE. Phytochemical and vitamin content of indigenous spices of South Eastern Nigeria. J. Sustain Agric. Environ. 2004;6(1):30.
- Okwu DE, Emenike N. Nutritive value and mineral scontent of different varieties of citrus fruits. Journal of Food Technology. 2007;5:105-108.
- 14. Okwu DE, Omodaniro OD. Effects of Hexane extracts and phytochemical content of *Xylopia aethiopica* and *Ocimum gratissum* on the uterus of Guinea Pig. Bio-Research. 2005;2:40-77.

© 2024 Ekanem et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/111316