
RESEARCH ARTICLE

Identifying essential factors for energy-

efficient walking control across a wide range

of velocities in reflex-based musculoskeletal

systems

Shunsuke KosekiID*, Mitsuhiro Hayashibe, Dai Owaki

Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan

* shunsuke.koseki.q4@dc.tohoku.ac.jp

Abstract

Humans can generate and sustain a wide range of walking velocities while optimizing their

energy efficiency. Understanding the intricate mechanisms governing human walking will

contribute to the engineering applications such as energy-efficient biped robots and walking

assistive devices. Reflex-based control mechanisms, which generate motor patterns in

response to sensory feedback, have shown promise in generating human-like walking in

musculoskeletal models. However, the precise regulation of velocity remains a major chal-

lenge. This limitation makes it difficult to identify the essential reflex circuits for energy-effi-

cient walking. To explore the reflex control mechanism and gain a better understanding of

its energy-efficient maintenance mechanism, we extend the reflex-based control system to

enable controlled walking velocities based on target speeds. We developed a novel perfor-

mance-weighted least squares (PWLS) method to design a parameter modulator that opti-

mizes walking efficiency while maintaining target velocity for the reflex-based bipedal

system. We have successfully generated walking gaits from 0.7 to 1.6 m/s in a two-dimen-

sional musculoskeletal model based on an input target velocity in the simulation environ-

ment. Our detailed analysis of the parameter modulator in a reflex-based system revealed

two key reflex circuits that have a significant impact on energy efficiency. Furthermore, this

finding was confirmed to be not influenced by setting parameters, i.e., leg length, sensory

time delay, and weight coefficients in the objective cost function. These findings provide a

powerful tool for exploring the neural bases of locomotion control while shedding light on the

intricate mechanisms underlying human walking and hold significant potential for practical

engineering applications.

Author summary

Previous reflex-based control systems face significant limitations in accurately regulating

walking velocity owing to the vast number of control parameters involved. This hinders

identifying essential reflex circuits that have a significant impact on energy-efficient
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walking across a wide range of speeds. Our research tackles this challenge by developing a

reflex-based control framework that precisely regulates the velocities of the bipedal model

through the performance-weighted least squares (PWLS) method that optimizes the con-

trol parameter values while considering energy efficiency. Through a detailed analysis, we

identify two key reflex circuits essential for generating energy-efficient walking over a

wide range of velocities. We hope that our research will inspire future investigations into

reflex mechanisms and facilitate the development of advanced walking control systems

for practical applications, such as gait-assisted exoskeletons and prosthetic legs, and robot

control.

Introduction

Walking is a fundamental mode of locomotion in our daily lives. The neurological and bio-

chemical control mechanisms that support it comprise one of the most complex autonomous

control systems in the human body [1–6]. Modeling and replicating the underlying walking

mechanisms is expected to contribute to engineering applications including energy-efficient

bipedal robots [7–11], gait-assisted exoskeletons [12–15], smart prosthetic legs [16, 17].

One of the most crucial aspects of human walking is the energy-efficient maintenance of

our controlled velocity in the range of 1.0–1.6 m/s [18]. Central pattern generators in the cen-

tral nervous system engage rhythmic neural circuits that generate basic leg movements [19–

23]. Equally indispensable are reflex control mechanisms, which provide rapid adjustments to

external stimuli from the sensory organs [19–21, 24], even for unexpected balance loss or

unpredicted ground variations during walking, thereby maintaining velocity. Notably, humans

modulate the reflex response depending on the task in locomotion [25, 26]. These findings

indicate that reflex mechanisms have a crucial impact on achieving stable and energy-efficient

walking.

A physical simulation is a powerful tool for exploring the neural basis of walking, a complex

phenomenon generated by the interaction of versatile mechanisms [27]. Previous studies have

shown that reflex-based control systems can generate human-like walking in terms of muscle

activities, joint angles, and torque patterns [28–37]. Notwithstanding the great advancements

thereof, these systems have difficulty regulating velocity, owing to the large number of control

parameters that must be properly tuned [38], e.g., Geyer [28] used 36 control parameters to

generate a steady gait in a two-dimensional musculoskeletal model. Previous studies have

attempted to regulate velocities within the reflex-based control frameworks [30, 32], but their

methods were limited to transitions between predetermined velocities and did not provide

precise velocity controls. Furthermore, the transitions between these predetermined velocities

were accomplished through the utilization of distinct control parameters designated for these

transitions. Given that walking speed assumes continuous values, achieving precise control

over walking speed through such means would theoretically require infinite parameters for

transitions. Because “transition” differs from “control” in terms of its adaptability, it is essential

to extend reflex-based systems to affect precise velocity controls while improving energy effi-

ciency to explore reflex control mechanisms in walking. Furthermore, the development of

energy-efficient control over a wide range of velocities in the reflex-based system will lead to

improving the performance of the controller for exoskeletons [39, 40] and prosthetic leg [17,

41] by adjusting their control parameters according to user walking velocity.

The purpose of this study is to extend the reflex-based control system to enable controlled

walking velocities based on target speeds and gain a better understanding of its modulation
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and energy-efficient maintenance mechanism across a wide range of walking velocities. To

achieve this, we developed a novel performance-weighted least squares (PWLS) method to

design a parameter modulator that coordinates a vast number of control parameters for an

input target velocity while maintaining energy efficiency. In short, the reflex-based control sys-

tem with the parameter modulator optimized via the PWLS successfully and energetic-effi-

ciently maintains the desired velocity from 0.7 to 1.6 m/s in a two-dimensional

musculoskeletal model. Subsequently, the detailed analysis of the parameter modulator in the

reflex-based system identified two key reflex circuits affecting energy efficiency across a wide

range of walking velocities. The contributions of this work include (i) extending a reflex-based

control system to include velocity control, (ii) providing an adaptive polynomial regression

method that uses performance indices to control performance, and (iii) identifying the key

reflex circuits related to energy efficiency across a wide range of walking velocities.

Generating walking through reflex-based control

Musculoskeletal model

A two-dimensional musculoskeletal model with a height of 180 cm and weight of 80 kg was

employed in this study, as illustrated in Fig 1A. Detailed parameters are listed in Table 1. The

model was constructed within a MuJoCo simulation environment [42]. We employed Mujoco

because of its ability to conduct simulations at a relatively low computational cost while ensur-

ing the validity of the physical calculations. Many physics engines such as OpenSim, which is

often used in biomechanics research, models contact with the ground by using a spring-

damper model. This approach requires using smaller timesteps to prevent the model foot from

penetrating the ground, which increases computational cost. MuJoCo introduces several for-

mulations of the physics of contact. This allows for more efficient calculations and versatile

contact behaviors. As recent studies [43, 44] have aimed to transfer OpenSim models to

MuJoCo to improve computational speed and use versatile contact behaviors, MuJoCo is an

acceptable physics engine with physical validity involving contact. The model consists of 12

segments: torso, hip, two thighs, two knees, two shanks, two feet, and two sets of toes, based on

previous studies [28, 29]. The motions of the model are constrained to the sagittal plane. The

hip and knee segments possess no mass. The model has nine internal degrees of freedom, as

illustrated in Fig 1B; a torso joint, hip joints, knee joints, ankle joints, and toe joints. The spring

and damper constants for all joints apart from the toe joints are set to 0 Nm/rad and 1 Nms/

rad, respectively. The toe joints are set with a spring constant of 30 Nm/rad, which is consistent

with [29], and a damping constant of 0 Nms/rad. The spring and damper within the joint gen-

erate a torque that is proportional to the distance from the equilibrium position and friction

that is proportional to the joint’s angular velocity, respectively. We set the sliding friction coef-

ficient between the feet and the ground at a relatively high value, 2.5. Then, sliding is unlikely

to happen. Fig 1A illustrates the locations of the muscle actuators that generate torque in the

joints. Each leg has eight muscle actuators reflecting the gluteal (GLU), hip flexor (HFL), vasti

(VAS), tibialis anterior (TA), soleus (SOL), hamstring (HAM), rectus femoris (RF), and gas-

trocnemius (GAS) musculature.

Muscle actuator model

The musculoskeletal model includes actuators that simulate biological muscle actions that pro-

duce torque in the joints [42, 45]. The muscle actuator model comprises an inelastic tendon

with a rest length of l0 and a muscle that contracts the tendon. The muscle actuator force, F, is

a function of muscle length l, velocity v, and current activation level a 2 [0, 1.0]. A higher acti-

vation level results in a greater force being produced by the muscle. For the computation, l and
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v are scaled by the equilibrium length, l0, as follows:

~l ¼
l
l0
; ð1Þ

~v ¼
v
l0
: ð2Þ

Fig 1. Musculoskeletal model employed in this study. A. Structure of the musculoskeletal model. Left: Oblique view of the bipedal model in the

MuJoCo simulator. Center: Side view of the model with segment parameters. Right: Muscle alignments. B. Internal degrees of freedom of the model.

θt, θh, and θk represent torso joint angle, hip joint angle, and knee joint angle, respectively. The red arrows depict the positive direction of joint rotation.

https://doi.org/10.1371/journal.pcbi.1011771.g001
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The actuator force, F, is computed as follows:

Fð~l; ~v; aÞ ¼ faFlð~lÞFvð~vÞ þ Fpð~lÞg � F0; ð3Þ

where Fl and Fv represent the force–length and force–velocity relationships, respectively. Fp
represents the passive force that is always present, regardless of activation, and F0 denotes the

maximum isometric force that takes different values for each muscle actuator, as listed in

Table 2. These values are consistent with those of previous studies [28, 29]. The computations

of Fl, Fv, and Fp are detailed in S1 Appendix. Briefly, Fl is a function that attains a maximum

value at l = l0, Fv is a function that returns a smaller value for faster contraction of the muscle

actuator, and Fp increases monotonically for~l. The muscle current activation level, a, is calcu-

lated for the input stimulation signal, u 2 [0, 1.0]:

@a
@t
¼

u � a
tðu; aÞ

; ð4Þ

where

tðu; aÞ ¼
0:01 � ð0:5þ 1:5aÞ ðu > aÞ

0:04=ð0:5þ 1:5aÞ ðu � aÞ
;

(

ð5Þ

Reflex-based control

The reflex-based controller employed in this study is identical in principle to that of Wang

et al [29]. This controller is based on the Geyer model and incorporates additional control laws

to adjust the target hip joint angle and to fix the hip and knee joints prepared for the heel

strike. Consequently, it more robustly produces gaits and can manage non-steady states during

transitions in walking velocities. Moreover, the extended model can maintain the biomechani-

cal explanatory ability essential to discussing gait adaptation mechanisms, which may be lost

through simplification. We did not make any ad-hoc adjustments to the basic reflex-based

control model to ensure optimal simulation performance. The controller computes the muscle

stimulation, denoted as ui, for each muscle, i, by incorporating sensory feedback with a time

Table 1. Musculoskeletal model parameters.

Parameter Value Parameter Value

mtorso 53.5 kg ltorso 80 cm

mhip 0 kg rhip 9 cm

mthigh 8.5 kg lthigh 50 cm

mknee 0 kg rknee 5.5 cm

mshank 3.5 kg lshank 40 cm

mfoot 1.0 kg lfoot 15 cm

mtoe 0.25 kg ltoe 5.25 cm

https://doi.org/10.1371/journal.pcbi.1011771.t001

Table 2. Individual F0.

SOL TA GAS VAS HAM RF GLU HFL

F0[N] 4000 800 1500 6000 3000 1000 1500 2000

https://doi.org/10.1371/journal.pcbi.1011771.t002
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delay of Δt as input. The control law switches depending on whether the leg is in the stance or

swing phase. Moreover, additional stimulation is introduced during the late stance and late

swing phases. The control system comprises three primary functions: force feedback, length

feedback, and muscle-driven proportional derivative (PD) control.

• Force feedback:

The force feedback law returns the stimulation signal, uFi , in response to the actuator force,

Fi. In humans, the signals of the Fi arise from Golgi tendon organs and are carried by type Ib

afferents to the spinal cord. uFi is calculated as follows:

uFi ¼ Gi
~Fiðt � DtiÞ; ð6Þ

~Fiðt � DtiÞ ¼
Fiðt � DtiÞ

F0
i

; ð7Þ

where the gain, Gi, is the positive control parameter, and ~Fiðt � DtiÞ is the scaled actuator

force, (i.e., ~Fi ¼ Fi=F0
i ), which includes the sensory time delay, Δti.

• Length feedback

Through length feedback, we calculate the stimulation signal, denoted as uli, corresponding

to the length of the muscle actuator, li. This function models the stretch reflex of the muscle

spindle. uli is calculated as follows:

uli ¼ maxf0;Giðliðt � DtiÞ � ltari Þg; ð8Þ

where the target length, ltari , and gain, Gi, are positive control parameters.

• Muscle-driven PD control

The muscle-driven PD control generates the stimulation necessary to move joint θj (Fig 1B)

to the target angle, y
tar
j . This function can be interpreted as a polysynaptic reflex that is medi-

ated by the joint position afferent input from group III fibers and descending signals of the

target joint angles from the supraspinal. The muscle-driven PD control laws are employed to

stabilize the generated gait by the hip muscles during the stance phase to balance the torso

and during stance preparation to prepare for ground contact (described in S1 Appendix).

For muscle actuator, i, which applies torque to joint θj in the positive direction, uyji is defined

as follows:

uyji ¼ maxf0;Kiðy
tar
j � yjðt � DtiÞÞ � Di

_yjðt � DtiÞg: ð9Þ

Conversely, for muscle actuator i, which applies torque in the negative direction, uyi is

defined as follows:

uyi ¼ maxf0;Kiðyjðt � DtiÞ � y
tar
j Þ þ Di

_yjðt � DtiÞg; ð10Þ

where the proportional gain, Ki, and derivative gain, Di, are positive control parameters.

Fig 2 illustrates the reflexes in the stance phase and swing phase. Please see S1 Appendix or

the original paper [29] for more details.
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Modulation of control parameters

Fig 3 displays the control diagram of the musculoskeletal model, which is structured into spi-

nal and supraspinal layers. We added a parameter modulator that allows a wide range of walk-

ing while maintaining energy efficiency to the previous model [29]. The reflex-based

controller in the spinal layer activates muscles. The parameter modulator in the supraspinal

layer coordinates the control parameter set Ytar to achieve the input target velocity, vtarvel . Each

control parameter, ytari 2 Y tar, is calculated using the function Pi(vx) in the parameter modula-

tor for the input target velocity, vtarx (Fig 4). Pi(vx) is derived via the polynomial regression of

the relationship between the velocity and parameter value, which is collected using optimiza-

tion by incrementally increasing/decreasing the target velocity. SIMBICON in the supraspinal

cord adjusts the desired foot placements.

Optimizing control parameters

The dataset for polynomial regression is collected via optimization by incrementally changing

the target velocity. In total, there are 56 control parameters, Y 2 R56
. Details are provided in

S1 Appendix. We optimize these parameters using the covariance matrix adaptation evolution

Fig 2. Key reflexes in the stance and swing phase. F represents force feedback, L represents length feedback, and PD represents muscle-driven PD

control. + and − denote positive and negative feedback, respectively. In the stance phase, F+ at GLU, VAS, and SOL generate compliant leg behavior. L+

at TA prevents overextension of the ankle joint, which is suppressed by the F− from the SOL. F+ at GAS contributes to push-off and prevents

overextension of the knee joint. Muscle-driven PD controls at HFL, GLU, and HAM balance the torso. In the swing phase, L+ facilitates leg swing,

which is suppressed by L− from HAM. F+ at GLU and HAM apply braking force to the swing leg. L+ at TA raises the toes to create clearance between

the feet and the ground.

https://doi.org/10.1371/journal.pcbi.1011771.g002

PLOS COMPUTATIONAL BIOLOGY Energy-efficient walking across speeds in reflex-based musculoskeletal systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011771 January 19, 2024 7 / 29

https://doi.org/10.1371/journal.pcbi.1011771.g002
https://doi.org/10.1371/journal.pcbi.1011771


Fig 3. Control diagram for the musculoskeletal model. The musculoskeletal model is driven by activated muscles receiving stimulation

signals, u, from the reflex-based controller in the spinal layer. Each leg (right and left) is controlled by separate stance and swing reflexes. The

control law switches depending on whether the leg is in contact with the ground. Sensory information from the model is fed back to the

controller for motion generation. The supraspinal layer controls the walking velocity and adjusts the desired foot placements. The parameter

modulator coordinates the control parameter set Ytar to achieve input target velocity, vtarvel . SIMBICON adjusts the target hip angle, y
tar
h , in the

stance preparation phase using the sensory information (d and vx, see S1 Appendix).

https://doi.org/10.1371/journal.pcbi.1011771.g003
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strategy (CMA-ES) algorithm [46], which is well-suited for nonlinear and non-convex optimi-

zation problems. In this algorithm, independent λ search points are sampled from a multivari-

ate normal distribution, N , at each generation, g:

Y ðgþ1Þ � N ðmðgÞ; sðgÞ2CðgÞÞ; ð11Þ

where Y represents the reflex control parameter set in this study, m(g) represents the mean

value of the search distribution at generation g, σ(g) represents the step size at generation g, and

C(g) represents the covariance matrix at generation g. The sampled control parameter set, Y, is

evaluated using the objective function, f. Then, using the top μ data points from λ offspring

along with the evolution paths, pðgÞ
s

and pðgÞC , which accumulate historical search directions, m,

σ, C, pσ, and pC are updated.

The evaluation of Y is conducted from a fixed initial state until time step T0, in which the

musculoskeletal model falls, with an upper limit T. More specifically, if the model falls before

reaching an upper time step T, the evaluation is terminated at that time step T0, and else T0 =
T. We judge that the model has fallen when any segment above the knee comes into contact

with the ground. By terminating the unnecessary evaluations prior to reaching the maximum

time step, the computation time can be reduced. Optimization is conducted to determine the

optimal solution that minimizes the objective cost function. To generate an energy-efficient

Fig 4. Parameter modulator. This is located in the supraspinal layer of the controller (Fig 3). By using the polynomial function, Pi, each control

parameter, yi, is adjusted to achieve the input target velocity, vtarx .

https://doi.org/10.1371/journal.pcbi.1011771.g004
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gait that follows the target velocity, the objective cost function, f, is designed as follows based

on previous studies [29, 30]:

f ðYÞ ¼
XT0

t¼1

rðstÞ þ aEðCoT � 0:3Þ; ð12Þ

where st represents the state of the model at time step t as determined by the control parameter

set, Y, r represents the reward function for state st, αE represents the weight coefficient, and

CoT represents the cost of transport [47]. Reward function r is defined as follows:

rðstÞ ¼ ralive þ rforward þ rtorso þ rfall; ð13Þ

ralive ¼ � 1; ð14Þ

rforward ¼ minð1; avjvx � vtarx j
2
Þ; ð15Þ

rtorso ¼ aty
2

t ; ð16Þ

rfall ¼
0

5; 000 ðfall down ^ T 0 � 700Þ
;

(

ð17Þ

where ralive prevents the model from falling. If the model does not fall over long timesteps, this

term can reduce the total cost. rforward represents the penalty for the difference between the cur-

rent horizontal walking speed, vx, and the target velocity, vtarx , with a lower limit of -1. rtorso is

established to maintain an upright torso. rfall incurs a large cost if the model falls within 700

timesteps of the initial state. This prevents convergences at local minima, where the model falls

forward immediately from the initial position at the target velocity. αE(CoT − 0.3) in f represents

the energy cost added at the end of a trial. 0.3 is the deviation, which in turn permits a larger

weight coefficient on CoT. The CoT quantifies the energy efficiency of locomotion, and a lower

value indicates better energy efficiency [47]. The CoT is expressed by the following equation:

CoT ¼
J

MgDd
; ð18Þ

where J represents the total metabolic energy, M represents the model mass, g represents the

acceleration of gravity, and Δd represents the distance traveled. J is calculated by summing the

total metabolic energy expended by all muscles, as described in previous studies [29, 48]. The

detailed equations for J are provided in S1 Appendix.

Dataset collection for polynomial regression

We run two programs in parallel to collect the data efficiently. Within one thread, initially, the

target velocity, vtarx , in cost function f (Eq (12)) is set to 1.3 m/s, which is the human self-

selected speed [29]. Control parameter set, Y, that generate a gait around vtarx are obtained.

Then, vtarx is slightly increased to vtarx þ Dvx, and the corresponding control parameter set

around the updated target velocity are collected. This process is repeated until vtarx reaches the

upper limit of the target velocity, vtarx max (See S1 Appendix in detail). Within the other thread,

the target velocity, vtarx is initially set to 1.2 m/s. Then, vtarx is slightly decreased to vtarx � Dvx and

this process is also repeated until vtarx reaches the lower limit of the target velocity, vtarx min. The

initial control parameters are set identically in both programs.
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The control parameters, Y, are optimized using the G generation for each target velocity,

vtarx . When vtarx is changed, σ in Eq (11) is reset to σ0 and pσ, and the pC are emptied, whereas m
and C are maintained. If model-walking is maintained at the upper timestep limit of the evalu-

ation trial with control parameters Y, a tuple consisting of walking speed, control parameters,

and CoT {(vx, Y, CoT)} is added to the dataset. Notably, the dataset with n data points, {(vx1,

Y1, CoT1), . . ., (vxn, Yn, CoTn)}, is sorted according to velocity vx (i.e., vx1� vx2� . . .� vxn).

PWLS (Performance Weighted Least Square method)

Each control parameter, ytari 2 Y tar, is modulated through an mth degree polynomial function,

Pi(vx) (Fig 4), for the input velocity, vx, as follows:

yi ¼ PiðvxÞ; ð19Þ

¼ oi0v0
x þ oi1v1

x þ . . .þ oimvmx ; ð20Þ

where ωij are coefficients calculated using our proposed PWLS, a polynomial regression algo-

rithm that minimizes the total squared performance-weighted error of data points. Unlike the

normal least-squares method in which data points are treated without bias when calculating the

total squared error, PWLS derives the polynomial function from dataset with bias. Thus, it assigns

a greater weight to higher-performing data points to reinforce energy-efficient walking via regres-

sion. PWLS is similar to the weighted least-squares method [49]. The weighted least square

method is the polynomial regression algorithm that is used when handling heteroscedastic data,

meaning that the variance among the measured points is not constant. The variables that cause

the variance of observations are incorporated to weigh each data point. In our PWLS, each data

point is weighted according to its performance instead of the factor that causes heteroscedastic.

Suppose there are n data points, {(vx1, yi1), . . ., (vxn, yin)}, for each control parameter from

the collected dataset, {(vx1, Y1, CoT1), . . ., (vxn, Yn, CoTn)}. The total error between yi and the

expected value derived from Pi can be expressed in matrix form as

k yi � Vωi k2 ¼

yi 1

yi 2

..

.

yi n
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6
6
6
6
6
6
6
6
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7
7
7
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�
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. . . vxm1

vx0
2

vx1
2
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..

. ..
.
⋱ ..

.

vx1
n vx1

n . . . vxmn
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4

3
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oi0
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..

.

oim
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�
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2

; ð21Þ

where k�k2 represents Euclidean norm and

yi ¼

yi 1

yi 2

..

.

yi n

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2 Rn
; ð22Þ
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V ¼

vx0
1

vx1
1

. . . vxm1

vx0
2

vx1
2

. . . vxm2

..

. ..
.
⋱ ..

.

vx1
n vx1

n . . . vxmn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2 Rn�ðmþ1Þ
; ð23Þ

ωi ¼

oi 0

oi 1

..

.

oi m

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2 Rmþ1: ð24Þ

Subsequently, each error is weighted by β ¼ ½b1; . . . :bn�
T
2 Rn

, where βi represents the

evaluated performance value of the corresponding data point, i, with higher values indicating

more favorable data. We define the following total performance-weighted error:

k β� ðyi � VωiÞ k2; ð25Þ

where� denotes the Hadamard product, which takes two matrices of the same size and

returns a matrix in which each element is the product of the original elements (see S1

Appendix).

In PWLS, the ωij coefficients are determined so that they minimize the total performance-

weighted squared error, EPWLS. Given that the error for each data point is weighted by its eval-

uated performance, βi, the errors are more suppressed for high-performing data points and

permissible for low-performing data points. EPWLS is the square of Eq (25),

EPWLS ¼k β� ðyi � VωiÞ k
2
2
; ð26Þ

¼ ðβ� ðyi � VωiÞÞ
T
ðβ� ðyi � VωiÞÞ: ð27Þ

The partial derivative of EPWLS with respect to ωi is given by

@EPWLS

@ωi
¼ 2ðβ� ðyi � VωiÞÞ

T ðβ� ðyi � VωiÞÞ

@ωi
; ð28Þ

¼ 2ðβ� ðyi � VωiÞÞ
T
ð� B� VÞ; ð29Þ

where B is an n × (m + 1) matrix that expands β along the horizontal axis and is defined as fol-

lows:

B ¼

b1 b1 . . . b1

b2 b2 . . . b2

..

. ..
.
⋱ ..

.

bn bn . . . bn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2 Rn�ðmþ1Þ
: ð30Þ
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EPWLS attains its minimum value when

@EPWLS

@ωi
¼ 0: ð31Þ

Thus, the objective of PWLS is to solve Eq (31) with respect to ωi. Combining Eqs (29) and

(31) yields

2ðβ� ðyi � VωiÞÞ
T
ð� B� VÞ ¼ 0; ð32Þ

ðβ� ðyi � VωiÞÞ
T
ðB� VÞ ¼ 0: ð33Þ

Using the property, (U V)T = VTUT, Eq (33) can be rewritten as

ðB� VÞTðβ� ðyi � VωiÞÞ ¼ 0; ð34Þ

ðB� VÞTðβ� yiÞ � ðB� VÞTðβ� VωiÞ ¼ 0; ð35Þ

ðB� VÞTðβ� VωiÞ ¼ ðB� VÞTðβ� yiÞ: ð36Þ

Here, β� V ωi in Eq (36) can be reformulated (see S1 Appendix) as follows:

β� Vωi ¼ ðB� VÞωi: ð37Þ

By substituting Eq (37) into Eq (36), we obtain

ðB� VÞTðB� VÞωi ¼ ðB� VÞTðβ� yiÞ: ð38Þ

Consequently, the polynomial coefficient, ωi, in Pi can be computed as follows:

ωi ¼ ððB� VÞTðB� VÞÞ� 1
ðB� VÞTðβ� yiÞ: ð39Þ

Design of weight parameters β
βi 2 β is the performance evaluated in the PWLS to weigh corresponding data i. In this study,

we evaluate the performance of each data point in terms of energy efficiency using the CoT.

We design β such that it has a higher value when the CoT is low. Because the energy consumed

in human walking depends on speed [50], it is unreasonable to compare CoT values between

data with widely different speeds. Thus, we calculate β relative to the average CoT measured

around the generated walking speed. Because the dataset, {(vx1, Y1, CoT1), . . ., (vxi, Yi, CoTi),

. . ., (vxn, Yn, CoTn)}, is sorted by speed, the average CoT around the jth data point, CoT j, is cal-

culated as follows:

CoTj ¼
CoTj� M þ CoTj� Mþ1 þ . . .þ CoTjþM

2M þ 1
: ð40Þ

In this study, M was set to 125, giving 2M + 1 = 251, which is approximately 0.5% of the

control parameter sets collected in the dataset. Using the average CoT value around the ith
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data point, CoTi, we defined the weight for data i, βi, as follows:

bj ¼ A

CoTj � CoTj

CoTj

 !

;
ð41Þ

where A� 1 denotes a constant. βi> 1 indicates that the data are evaluated as favorable data

and βi< 1 as unfavorable data. For example, when CoTi < CoTi (i.e., generated gait was more

energy-efficient), 1 �
CoTj
CoT j

� �
is calculated above 0, and this yielded βi> 1. A smaller CoTi

value in comparison to the average CoT value, CoTi, results in the exponential increase of βi
based on the A value. Therefore, the parameter A determines the strength of the bias toward

higher-performing data points, i.e., a larger A value indicates a greater bias toward favorable

data.

Simple application example of PWLS

In this section, we explain how PWLS computes polynomials, based on a simple illustrative

example. We assume that there is a dataset of a control parameter yi, comprising a total of

18 × 9 data points, each evaluated through the CoT as depicted in Fig 5. The horizontal axis

indicates the generated walking velocity and the vertical axis indicates the control parameter

value. The black-colored data points correspond to a lower CoT value of 0.5 (more efficient),

while the grey-colored data points correspond to a higher CoT value of 1.0 (less efficient). Fig

5 illustrates polynomials calculated through PWLS. It can be found that the polynomials pass

close to the data points with highly evaluated data points with larger A, which determines the

strength of the bias toward highly- evaluated data points (Eq (41)). Thus, by assigning a greater

weight to higher-performing data points, walking energy efficiency can be reinforced via

regression.

Results

In the optimization, the upper timestep for each evaluation trial was set to T = 5, 000 steps (25

s). The weight coefficients in the objective cost function, f, were set as αE = 5000, αv = 5 and αt
= 1.0. We collected the dataset by running two programs in parallel with vtarx incrementally

increase/decrease in 0.1 m/s intervals. Within one thread, vtarx was initially set to 1.3 m/s and

increased to vtarx max ¼ 2:0 m/s. Within the other thread, vtarx was initially set to 1.2 m/s and

decreased to vtarx min ¼ 0:4 m/s. For each vtarx , λ = 20 points were sampled per generation, with a

generation number of G = 300, which we confirmed that optimization was converged (See S1

Appendix). This resulted in 102,000 evaluation trials. The other hyperparameters for CMA-ES

were set to σ0 = 0.1 and μ = 7. λ and μ are recommended value [46]. σ0 was set to be large, but

not out of the solution space in the optimization process. Data collection required approxi-

mately three days on a Lenovo ThinkPad E470 20H2S04L00. Out of all trials, we added

approximately 50% to the dataset. Fig 6 illustrates the generated walking speeds and the CoTs

in a dataset, indicating a concave quadratic relationship similar to human walking [50]. Using

PWLS, we obtained Pi (Fig 4). We found that at least a polynomial degree of m = 6 is required

to generate gaits. Therefore, to compute polynomials with minimal computational cost and to

avoid overfitting, we chose a polynomial degree of m = 6.

Generated gaits

To stabilize walking before setting vtar, we controlled the musculoskeletal model with parame-

ters that produced a stable gait at 1.25 m/s for a distance of 2.0 m from the initial position. We

PLOS COMPUTATIONAL BIOLOGY Energy-efficient walking across speeds in reflex-based musculoskeletal systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011771 January 19, 2024 14 / 29

https://doi.org/10.1371/journal.pcbi.1011771


found that steady walking was generated for vtarx ¼ 0:75 � 1:6m=s by using the optimized

functions derived with A = 1 − 106 in Eq (41) (see S1 Video). Here, We defined steady walking

as being able to walk more than 30 m without falling. The actual speeds were approximately to

vtarx (see S1 Appendix). Fig 7 displays snapshots of the generated gaits for vtarx at 0.9 (slow), 1.25

(normal), and 1.6 (fast) m/s.

Fig 8 illustrates the ground reaction forces (GRF) and kinematics of the generated gait

using the optimized functions derived with A = 106 and those of humans at corresponding

speeds [51]. Although undershoots and overshoots were observed, the cross-correlation values

(R) between the GRF of the generated and human gaits were consistently positive. In kinemat-

ics, the cross-correlation values for hip and knee joints were close to 1, whereas the value for

the ankle joint was nearly 0.

Fig 5. The regression curve derived through PWLS with different A values. Upper: The prepared dataset comprises 18 × 9 data points, each is

evaluated through the CoT. The black-colored data points represent a lower CoT value of 0.5 (efficient), while the gray-colored data points represent a

higher CoT value of 1.0 (inefficient). Lower: Calculated regression curves, with a polynomial degree set to 6.

https://doi.org/10.1371/journal.pcbi.1011771.g005
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Velocity control

In this section, we demonstrate the velocity control ability of the designed reflex-based con-

troller. The upper graph in Fig 9 illustrates the velocity of the model with a change in vtarx (dot-

ted line) between the minimum and maximum values. The bottom graph in Fig 9 indicates an

additional experimental result in which vtarx was changed from 1.2 to 0.8 to 1.0 to 1.5, and

finally to 1.3 m/s. In all cases, the rate of change of vtarx was set to 0.05/s. As illustrated in the fig-

ures, the model regulates the velocities based on the target velocity.

Fig 6. Generated walking speeds and their CoTs in the dataset. The CoT velocity value can be approximated by

quadratic curves (red lines).

https://doi.org/10.1371/journal.pcbi.1011771.g006

Fig 7. Snapshots of the generated gait. We captured data every 0.25 s for vtarx at 0.9, 1.25, and 1.6 m/s. See S1 Video.

https://doi.org/10.1371/journal.pcbi.1011771.g007
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Performance evaluation of PWLS

In this section, we evaluate the optimization performance of the proposed polynomial regres-

sion (PWLS) method. PWLS calculates regression curves by weighting higher-performing (i.e.,

energy-efficient) data points, in which A determines the strength of the bias toward them. Fig

10 left shows the estimated CoT curves for the generated walking with different A values

(A = 1, 10, 102, 104, and 106) in Eq (41). To quantify the performance of the PWLS, we defined

Fig 8. GRFs and kinematics of the generated gait. vtarx was set to 0.9 (slow), 1.25 (normal), and 1.6 m/s (fast). Blue lines depict the generated gait, while

gray lines represent those of humans (mean±1 s.d.) [51]. GRFs values are normalized by the body weight. R denotes the cross-correlation value.

https://doi.org/10.1371/journal.pcbi.1011771.g008
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the integrated CoT value over the corresponding velocity range,
R

CoT, as follows:

Z

CoT ¼
Z vx max

vx min

CoT dvx; ð42Þ

where vxmin and vxmax represent the lower and upper limits of the velocity that the model can

walk. For example, when the model can walk from vxmin = 0.7 m/s to vxmax = 1.6 m/s and the

estimated CoT curve is represented CoT ¼ 0:6v2
x � 1:2vx � 0:1,

R
CoT is calculated as follows:

Z

CoT ¼
Z vx max¼1:6 m=s

vx min¼0:7 m=s
ð0:6v2

x � 1:2vx � 0:1Þ dvx ’ 0:556: ð43Þ

Fig 10 right presents relative
R

CoT value of the generated gaits with different A values.

Regardless of the A value, vxmin (=0.6 m/s) and vxmax (=1.6 m/s) were set to be identical. We

Fig 9. The regression curve derived through PWLS with different A values. Upper: The prepared dataset comprises 18 × 9 data points, each is

evaluated through the CoT. The black-colored data points represent a lower CoT value of 0.5 (efficient), while the gray-colored data points represent a

higher CoT value of 1.0 (inefficient). Lower: Calculated regression curves, with a polynomial degree set to 6.

https://doi.org/10.1371/journal.pcbi.1011771.g009
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found that lower
R

CoT for larger A: more energy-efficient walking was generated with larger

A. However, excessive A resulted in increased instability: we could not find steady walking at

specific vtarx values for A> 108.

Identifying factors essential for improving energy efficiency

In this study, we aim to identify the key reflex circuits that influence energy-efficient walking

across a wide range of velocities. First, to identify the essential factors for improved energy effi-

ciency, we substituted the optimized function of each control parameter that derived at

A = 106, which achieved more energy-efficient walking over a wide range of velocities, in the

gait with A = 1. Fig 11 illustrates this approach. Fig 12 illustrates the absolute change in

Fig 10. Contribution of the PWLS to gait generation. Left: Estimated CoT curves for generated gaits with different A values. Right: Relative
R

CoT

value of the generated gaits with different A values (n = 3). The generated gait with A = 1 is the baseline.
R

CoT is the integral of the estimated CoT

curves from the lower limit velocity (=0.7 m/s) to the upper limit velocity (=1.6 m/s).

https://doi.org/10.1371/journal.pcbi.1011771.g010

Fig 11. Illustration of the replacement of the optimized function. Left: Before the replacement, all functions were derived with A = 1. Right: Only the

target control parameter function (red) was replaced with A = 106. Functions with other parameters were not replaced.

https://doi.org/10.1371/journal.pcbi.1011771.g011
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percentage of the
R

CoT values, Δ|
R

CoT|, to the generated gait with A = 1. From the results, we

found that GHFL, ltarHAM and y
tar
t are the three parameters that changed Δ|

R
CoT| value by more

than 0.5%. This result suggests that reflex circuits that involve these parameters may have a sig-

nificant impact on energy-efficient walking across a wide range of velocities. The two length-

feedback reflex circuits, GHFLðlHFL � ltarHFLÞ and GHAM HFLðlHAM � ltarHAM HFLÞ, is the primary circuits

involved in these parameters, GHFL and ltarHAM: both reflex circuits stimulate HFL muscle during

the swing phase (Fig 13). y
tar
t , which is the reference angle of the torso, changed Δ|

R
CoT| value

Fig 12. Absolute change in
R

CoT values when the optimized function of each parameter was substituted to that derived with A = 106 in the

generated gait with A = 1 (n = 3). The red bars represent control parameters associated with the reflex circuits under focus.

https://doi.org/10.1371/journal.pcbi.1011771.g012

Fig 13. Key reflex circuits for energy-efficient gait. GHFLðlHFL � ltarHFLÞ is the positive length feedback stimulating HFL to swing the leg forward.

GHAMHFL
ðlHAM � ltarHAMHFL

Þ is the negative length feedback inhibiting the HFL proportional to the stretch of the HAM in the swing phase. In these terms, G
represents the gain, l represents the length of the muscle, and ltar represents the constant target length. Both reflex circuits are active only in the swing

phase.

https://doi.org/10.1371/journal.pcbi.1011771.g013
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of the third. This parameter was not related to a specific reflex circuit but was shared with sev-

eral reflex circuits.

Key reflex circuits for energy-efficient walking over wide range velocity

The aforementioned results suggest that GHFLðlHFL � ltarHFLÞ and GHAM HFLðlHAM � ltarHAM HFLÞ could

be the parts of the essential reflex circuits on the wide-range velocity walking with maintaining

energy efficiency. Therefore, we proceeded to investigate how modulating these reflex circuits

affects the energy efficiency of the gait. We measured the change in
R

CoT values when the

optimized functions of the control parameters associated with GHFLðlHFL � ltarHFLÞ (reflex circuit

1) and GHAM HFLðlHAM � ltarHAM HFLÞ (reflex circuit 2) were replaced with those derived with

A = 106 in the generated gait with A = 1 (a baseline), similar to Fig 11, and the result is shown

in Fig 14. The cyan and olive bar represents the relative
R

CoT value when we replaced only the

optimized functions associated with reflex circuits 1 and 2, respectively. The pink bar repre-

sents the relative
R

CoT value when we replaced the optimized function of both reflex circuits.

The results indicated that the modulation of only these two reflex circuits resulted in a compa-

rable or even more substantial reduction in
R

CoT value compared to the modulation of all 56

Fig 14. Relative
R

CoT values to the generated walking with A = 1 when modulating identified reflex circuits (n = 3). The cyan and olive bar

represents the relative
R

CoT value when only the optimized function of control parameters associated with reflex circuit 1 (i.e. GHFL and ltarHFL) and reflex

circuit 2 (i.e. GHAM_HFL and ltarHAMHFL
) were replaced with those derived with A = 106 in the generated gait with A = 1, respectively. The pink bar

represents when the optimized function of the control parameters associated with both reflex circuits (i.e., GHFL, ltarHFL, GHAM_HFL, ltarHAMHFL
) were replaced.

The purple bar indicates the value in the generated gait using the optimized functions derived with A = 106. When circuit 2 was modulated, some

generated gaits did not follow the specific input vtarvel , with their velocities being changed by more than 0.05 m/s. Data acquired from the target velocity

that resulted in these outliers were excluded from the calculation of estimated CoT curves.

https://doi.org/10.1371/journal.pcbi.1011771.g014
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parameters for the case of A = 106 shown in the purple bar. This finding strongly suggests that

the two length-feedback reflex circuits, GHFLðlHFL � ltarHFLÞ and GHAM HFLðlHAM � ltarHAM HFLÞ, are the

key reflex circuits of the energy efficiency in the reflex-based bipedal walking control.

To elucidate the mechanism behind the improved energy efficiency, we examined the

change in energy consumption by individual muscles, muscle activation patterns, and stimula-

tion signal for the corresponding muscle when we modulated the two identified reflex circuits.

Fig 15 shows the energy consumed by individual muscles during a 30 m walk at vtarx ¼ 1:0. We

found that energy consumption of the HFL, GLU, and HAM muscles was significantly

reduced after reflex circuits 1 and 2 were modulated. Fig 16 shows the muscle activations of

the bipedal model for vtarx = 1.0 m/s. HFL muscle was mainly activated in the swing phase while

GLU and HAM muscles were activated in the stance phase. Fig 17 illustrates the stimulation

signal applied to HFL muscle during the swing phase before (blue line) and after the modula-

tion (pink line) of reflex circuits 1 and 2: the stimulation signal applied to HFL muscle

decreased after the modulation of these identified reflex circuits.

Robustness to parameter changes

Under various parameter conditions, leg length, sensory time delay, and weight coefficients

for the cost function, we have validated the reliability and robustness of the identified two

reflex circuits concerning their impact on energy-efficient walking over a wide range of

velocities:

• shorten segment length by 20% (different body structure)

• double the time delay of sensory information transmission to the controller (different neural

system)

• change the weight coefficients in the objective cost function (Eq (31)), αE = 2500, αv = 5, and

αt = 0 (different cost function)

Fig 18 illustrates the relative
R

CoT values to the baseline (A = 1) under various conditions.

We found that modulating reflex circuits 1 and 2 resulted in decreased
R

CoT values, compara-

ble to the result for all 56 parameter modulation (generated gaits can be seen in S1 Video).

Fig 15. Energy consumed by individual muscles compared to the generated gait with A = 1 during a 30 m walk. vtarx was set to 1.0 m/s. The pink bars

represent the values when the optimized functions of the control parameters associated with reflex circuits 1 and 2 are replaced with those derived with

A = 106 in the gait generated with A = 1, and the purple bars represent the values in the gait with A = 106. The negative value indicates that the energy

consumption at the muscle was reduced compared to the generated gait with A = 1, while the positive value indicates increased energy consumption.

https://doi.org/10.1371/journal.pcbi.1011771.g015
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Fig 16. Individual muscle activations. The gait was generated using the optimized functions derived with A = 106 and vtarx was set to 1.0 m/s. The red

bar indicates the timing of the transition from stance to swing.

https://doi.org/10.1371/journal.pcbi.1011771.g016

Fig 17. Stimulation to the HFL in the swing phase before and after modulating reflex circuit 1&2. vtarx was set to 1.0 m/s. The blue and pink lines are

the stimulation to the HFL, which does not drop below 0, at generated gait with A = 1 and after the optimized function of the control parameters

associated with reflex circuit 1 and 2 are replaced with those derived with A = 106, respectively.

https://doi.org/10.1371/journal.pcbi.1011771.g017
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Discussion

This study aimed to extend the reflex-based control system including velocity control and

identify key reflex circuits that play a significant role in energy-efficient walking. We demon-

strated that a musculoskeletal model driven by reflex-based control can achieve controlled

speeds based on the input target velocity. Subsequently, by utilizing the generated gaits of vary-

ing energy efficiencies, we identified two key reflex circuits having a significant impact on CoT

values.

We found that the proposed PWLS regression method optimizes the parameter modulator

for the reflex-based controller to reproduce more energy-efficient walking across a wide range

of velocities. We verified that the
R

CoT values were decreased by giving the bias to the high-

performing data in calculating regression curves as shown in Fig 10. These results demonstrate

that the PWLS fitting method is more adaptive in evaluating each data point as a weight for

performance. However, we also found that the walking generated at an excessively large A
value resulted in less stability, resulting in a fall at specific target velocities. This can be attrib-

uted to insufficiently fast leg swing. Putting the swing leg fast enough in front of the stance leg

is essential to prevent falling down [52]. As illustrated in Fig 17, the stimulation applied to the

HFL during the swing phase decreased with larger A. Consequently, this led to a slow hip flex-

ion resulting in less stability.

As shown in Fig 14, we identified that GHFLðlHFL � ltarHFLÞ and GHAM HFLðlHAM � ltarHAM HFLÞ sig-

nificantly contributed to improve the energy efficiency of the gait generated through reflex-

based control. Furthermore, this conclusion has been robustly validated across various set-

tings, including a different body structure, different neural systems, and different cost func-

tions, as shown in Fig 18. Our findings elucidated that the modulation of these reflex circuits

resulted in a reduction of stimulation to the HFL during the swing phase, subsequently leading

to reduced energy consumption by the HFL, GLU, and HAM (Fig 15). HFL expended less

energy due to reduced stimulation. GLU and HAM were mainly activated during the stance

phase (Fig 16), and these two muscles are used to maintain the torso balance in the stance

phase [28]. Reduced HFL activity during the swing phase leads to less energy consumption at

the contralateral GLU and HAM because the work to compensate for torso acceleration caused

by HFL is decreased. Therefore, it can be concluded that minimizing the stimulation to the

Fig 18. Relative
R

CoT values to the generated walking with A = 1 under different setting parameters (n = 2). In a different body structure setting,

the segment lengths of the model were shortened by 20%. In a different neural system setting, the time delay of the sensory information to the controller

was doubled. In this setting, stable gaits were not generated for A> 100. In a different cost function setting, the weight coefficients in the objective

function (Eq (31)) were changed to αE = 2500, αv = 5, and αt = 0.

https://doi.org/10.1371/journal.pcbi.1011771.g018
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HFL during the swing phase while ensuring sufficient hip swing to prevent falls is essential to

improve energy efficiency in reflex-based walking control. This not only reduces HFL activity

but also the effort of the GLU and HAM, which compensates for torso acceleration caused by

HFL.

The generated walking has several characteristics that demonstrate its biomechanical valid-

ity in comparison to the human gait. (i) the R values of the hip and knee kinematics were close

to 1 (R> 0.94 in all cases); (ii) The trajectory of the hip segment height from the ground exhib-

ited a sinusoidal pattern (see Fig. S7 in S1 Appendix) [53]; (iii) we observed both heel strike

and toe-off events [54] (see attached movie file); and (iv) a quadratic relationship between

walking velocities and CoT [50] (Fig 10). These features are similar to those of human walking

from a biomechanical perspective, proving that our simulations do not compromise the

dynamically reasonable properties of human walking. Although we agree that reducing the

number of control parameters would be essential and helpful for understanding the mecha-

nism underlying walking, we used Wang’s extended model rather than Geyer’s original model

to robustly generate walking without losing biomechanical explanatory ability.

The results of this paper have some limitations concerning similarity to human walking.

First, overshoots and undershoots were observed in the measured GRFs (Fig 8) and time evo-

lution of the walking velocities (Fig 9). In the GRF profiles, we found two undershoots in

GRFx and two overshoots in GRFz. The first occurred at heel strike, and the second occurred

at toe-off of the contralateral leg. These overshoots and undershoots can be suppressed by

using a lower-impedance ground. However, employing a lower-impedance ground resulted in

foot penetration into the ground (refer to S1 Appendix). While the extreme GRF peaks are not

biomechanically meaningful, we strongly believe that it is difficult to accurately model contact

in a simulation environment [55, 56]. Moreover, we did not observe abrupt or significant

changes in joint kinematics attributable to these extreme GRF peaks. Thus, given the difficulty

of modeling contact in the simulation environment, the extreme peaks in GRF do not signifi-

cantly affect kinematics. We conclude that the effects of the extreme peaks of GRF on walking

in the musculoskeletal model do not negatively affect the biomechanical meaning of the find-

ings obtained in this study. Second, the cross-correlation values of ankle dorsiflexion were

close to 0 compared to hip and knee joints, as shown in Fig 8. At knee joints, the model

straightened the knee earlier in the stance phase compared to humans. This strategy is known

to generate more efficient solutions in gait optimization [32]. The previous study also showed

low cross-correlation values at ankle joints when optimized to minimize energetic cost [32].

Third, we designed the cost function employed in this study to have minimal task terms to

generate a human-like gait with more weight on the energy efficiency-related term. This

approach optimized the control parameters to improve energy efficiency, consequently allow-

ing the identification of factors that are significant to the energy efficiency of the generated

gait over a wide range of walking velocities. More complex cost functions [29, 34, 36] may be

required to generate human-like ankle joint kinematics. Finally, although this study success-

fully demonstrated the implementation of velocity control in a reflex-based control system, it

took 20 s to transit walking speed by 1.0 m/s without falling. On the other hand, humans can

adjust their walking speed by 1.0 m/s in less than 2 s [57]. Consequently, our control frame-

work lacks the component to change walking speeds rapidly while ensuring stability. Extend-

ing the proposed framework is one of the future works to achieve velocity control as fast as

humans.

Human locomotion involves complex interactions between descending supraspinal com-

mands, interconnected spinal circuits involving reflexes and CPGs, and the musculoskeletal

system. This study primarily focuses on reflexes in the spinal cord. Therefore, we must add

other control components for fast walking velocity control. Moreover, we constrained the
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bipedal model motion into the sagittal plane. Hence, the extension of the motion into three

dimensions is another essential future work to apply the controller to engineering

applications.

Conclusion

Reflex mechanisms contribute significantly to the generation of stable and energy-efficient

walking. However, a major limitation of generating gaits in musculoskeletal models through

reflex-based control is the difficulty in precisely regulating velocity due to the large number of

control parameters that need to be properly tuned. Extending reflex-based systems to affect

velocity controls is essential to explore the reflex modulation mechanism and to understand its

energy-efficient maintenance mechanism across a wide range of velocities. Furthermore, the

development of energy-efficient control over a wide range of velocities in the reflex-based sys-

tem will facilitate advanced engineering applications. Therefore, we developed a reflex-based

control framework that enables the regulation of walking velocity over a wide range of veloci-

ties. Our parameter modulation method using PWLS that calculates the control parameters in

response to a target velocity while optimizing efficiency successfully demonstrates generating

walking gaits from 0.7 to 1.6 m/s. Furthermore, after a detailed analysis of the parameter mod-

ulator in a reflex-based system, we identified that the modulations of two reflex circuits,

GHFLðlHFL � ltarHFLÞ and GHAM HFLðlHAM � ltarHAM HFLÞ, improve energy efficiency of the gait. The

coordinated activity in the swing phase between the HFL and HAM reduced the stimulation

applied to HFL during the swing phase, which not only caused the reduction of HFL activity

but also alleviated the effort of GLU and HAM that compensates for the torso acceleration

induced by the HFL. This research will inspire future investigations into reflex mechanisms

and facilitate the development of advanced walking control systems for practical applications,

such as gait-assisted exoskeletons and prosthetic legs, and robot control.
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