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Abstract

Processive enzymes like polymerases or ribosomes are often studied in bulk experiments

by monitoring time-dependent signals, such as fluorescence time traces. However, due to

biomolecular process stochasticity, ensemble signals may lack the distinct features of sin-

gle-molecule signals. Here, we demonstrate that, under certain conditions, bulk signals from

processive reactions can be decomposed to unveil hidden information about individual reac-

tion steps. Using mRNA translation as a case study, we show that decomposing a noisy

ensemble signal generated by the translation of mRNAs with more than a few codons is an

ill-posed problem, addressable through Tikhonov regularization. We apply our method to

the fluorescence signatures of in-vitro translated LepB mRNA and determine codon-position

dependent translation rates and corresponding state-specific fluorescence intensities. We

find a significant change in fluorescence intensity after the fourth and the fifth peptide bond

formation, and show that both codon position and encoded amino acid have an effect on the

elongation rate. This demonstrates that our approach enhances the information content

extracted from bulk experiments, thereby expanding the range of these time- and cost-effi-

cient methods.

Author summary

Ensemble (bulk) in-vitro experiments are less complex and expensive than single-mole-

cule measurements, but their read-outs are blurred due to the stochastic nature of biomo-

lecular processes. Our study investigates how information about individual steps in

processive reactions can be deduced from ensemble experiments, despite these inherent

challenges. We introduce a least-squares method for decomposing ensemble signals from

synchronized enzymatic reactions, allowing us to reveal distinct features of individual

reaction steps. Using mRNA translation as a showcase, we propose a systematic approach
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to assess the feasibility of ensemble signal decomposition. To demonstrate the efficacy and

limits of our approach, we decompose simulated fluorescence signatures of in-vitro
mRNA translation processes. We then apply our method to experimental data of LepB

mRNA translation, where a codon-by-codon analysis reveals that both the codon position

and the encoded amino acid impact the translation dynamics. Our approach can be

applied to assess bulk signals of other processive enzymatic reactions beyond mRNA

translation, provided a comprehensive quantitative understanding of the process is avail-

able. The introduced method offers a robust means to extract detailed information from

bulk experimental setups, thus helping to bridge the gap between cost-effective bulk

experiments and detailed single-molecule studies.

Introduction

Many biochemical reactions are driven by processive enzymes that catalyze multiple rounds of

reactions while staying attached to the same polymeric substrate molecule. Prominent exam-

ples of processive enzymes are DNA and RNA polymerases, ribosomes, cellulases, or endonu-

cleases [1, 2]. To study the kinetics of the biochemical processes driven by processive enzymes,

basically two distinct approaches can be taken: single-molecule experiments and ensemble

studies [3–5]. In single-molecule experiments, the action of an individual enzyme is monitored

over time, which results in a detailed picture of the step-by-step motion of this molecule (see

Fig 1). Because thermal fluctuations cause differences in the molecular activities, single-mole-

cule experiments have to be performed on a multitude of individual enzymes to obtain a com-

plete picture of the biochemical process. This need for repetition in combination with an often

complicated setup can make single-molecule experiments a technical and financial challenge.

In comparison, ensemble (bulk) experiments are relatively cost- and time-efficient. Their

results have a high statistical power, because they are performed on a large number of enzymes

in parallel. However, the signal of an ensemble experiment is typically a superposition of all

individual signals, each of which is emitted by a single enzyme in the reaction volume. Due to

the stochasticity of processive biochemical processes, these individual signals differ from each

other to some extend. Consequently, features or characteristics of the individual signals are

blurred or even lost during superposition and, thus, are not present in the ensemble signal [6,

7]. The more time has passed after start of the experiment, the more pronounced is this blur-

ring, even for initially synchronized ensemble reactions. Therefore, ensemble time traces need

to be computationally decomposed to reveal hidden information about the underlying enzy-

matic process [8]. A meaningful computational analysis of ensemble data relies on a mathe-

matical model that fulfills two requirements: First, the model has to reproduce the

experimental data and, second, it must do so with an appropriately limited set of parameters.

In general, an under-parameterized model lacks the complexity required to reflect the true bio-

chemical process, whereas model over-parameterization leads to overfitting, which causes

ambiguous and unreliable results [9, 10]. However, which number of parameters is appropri-

ate is highly case-specific.

In the context of molecular biology and biochemistry, fluorophores are used for different

purposes, e.g., for visualization of cell compartments or localization of compounds [11, 12].

Because the intensity of the light emitted by a fluorophore depends on the physico-chemical

properties of environment via quenching and de-quenching, fluorophores can also be applied

as molecular probes for state transitions in biochemical reactions [13–18]. For the latter case, it

is required that to each state of the reaction process a specific fluorescence intensity can be
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assigned. We refer to these state-specific fluorescence intensities as “intrinsic fluorescence

intensities” (IFIs). The aim of the decomposition of an ensemble fluorescence time trace is to

determine these state-specific signal intensities for the individual states. For the sake of clarity,

we restrict our analysis to processes that can be assumed to have a fixed (non-stochastic) num-

ber of rounds of reactions, i.e., where fluctuations in the processivity can be neglected (e.g.,

template-directed reactions such as mRNA translation or nucleic acid polymerization). Fur-

thermore, we assume that the state-specific signal intensities are the only parameters to be

determined by the decomposition procedure and that the kinetic rates related to the action of

the enzyme do not need to be inferred from the particular ensemble time trace that is to be

decomposed. Of course, determination of IFIs by signal decomposition can be part of an

Fig 1. Schematic representation of the decomposition of ensemble time traces. a): The action of an individual processive enzyme is monitored over

time. Changes in the signal are interpreted to obtain a detailed picture of step-by-step transitions and related kinetics of this molecule. b): Ensemble

time trace for a large number of enzymes in parallel. The detected signal is a superposition of all individual signals. Due to the stochasticity of

biochemical processes, these individual signals differ from each other to some extend. Consequently, the features of the individual signals are blurred or

even lost during superposition. c): The ensemble time trace needs to be computationally decomposed to reveal the hidden information on the

transitions of a single molecule.

https://doi.org/10.1371/journal.pcbi.1011918.g001
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extended experimental and model fitting strategy that in addition also allows for the fitting of

kinetic parameters, as we have shown [8].

A well-known example for a processive biochemical process is messenger RNA (mRNA)

translation, i.e., the biosynthesis of peptides by molecular machines called ribosomes [19].

Briefly, during translation initiation a ribosome binds to mRNA, i.e., single-stranded RNA

which consists of a sequence of trinucleotides called codons that encode for the different

amino acids. After binding to the mRNA, the ribosome moves from codon to codon catalyzing

the peptide bond formation of the corresponding amino acid molecule and the nascent peptide

chain. Translation of the mRNA is finished when the ribosome reaches the stop codon and

gets released from the mRNA. Premature drop-off of ribosomes from mRNAs is a rare event

(probability of roughly 10−4 per codon [20]), therefore the processivity of a translating ribo-

some is mostly simply determined by the length of the mRNA, i.e., the number of codons the

mRNA consists of. Except for a few specific cases [21–26], directly assessing the kinetics of

mRNA translation in its natural in-vivo environment, i.e., in the living cell, is currently infeasi-

ble without heavily disturbing the system. However, the movement of ribosomes along

mRNAs can be indirectly monitored in in-vitro translation experiments by using fluorescent

molecules that are attached to the N-termini of the nascent peptides, see ref. [8] for details.

The experiments are constructed in a way such that each mRNA is translated only a single

time: Once a ribosome reaches the end of the truncated mRNA, it is bound to remain there

and does not engage in another round of translation. This yields a unique fluorescence time

trace for each translated mRNA that we refer to by the mRNA’s “fluorescence signature”. All

ribosomes are initially synchronized and are simultaneosly translating identical mRNA

sequences [8]. The ensemble fluorescence time trace (or ensemble fluorescence signature) is a

superposition of all fluorescence signals. Translation is a stochastic process, thus the ensemble

fluorescence signature obtained from a bulk experiment is much smoother than the individual

fluorescence time traces generated by single mRNA translation processes, which consist of dis-

crete gradations [8]. The goal is to find the fluorescence intensities that are associated with the

individual states of the translation process from the ensemble fluorescence signature.

In this work, we investigate the feasibility of the decomposition of ensemble time traces that

result from the simultaneous action of a multitude of identical, initially synchronized ribo-

somes. In particular, we consider the typical processivity of the enzymes and analyze its impact

on the meaningfulness and truthfulness of ensemble signal decomposition. At first, we show

that time traces of low-processivity reactions can be decomposed with good fidelity, in contrast

to reactions with higher processivity. We then analyze this phenomenon in terms of the condi-

tion number associated to the underlying biomolecular process. Finally, we show that the

application of a regularization method can expand the applicability of ensemble signal decom-

position to reactions with higher processivity.

Results

Decomposition of time traces from low-processivity reactions:

Fluorescence signatures of mRNAs consisting of only four codons can be

fitted by standard least-squares approach

At first, we study the consecutive translation of only four codons by the ribosome, which can

be seen as an enzymatic action with comparably low processivity. To assess the quality of the

decomposition results and to precisely quantify the deviations of output (fitted) from input

(assigned) parameter values, we use simulated ensemble fluorescence signatures instead of

experimentally obtained data: We first generate artificial ensemble fluorescence signatures

from mRNAs that consist of four identical codons. Then, we “forget” all IFI values that were
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used to generate the data and, instead, apply fluorescence signature decomposition to obtain

estimates for the IFIs.

For data generation, we simulate translation as a continuous-time Markov process where

the states comprising the Markov chain represent the steps that a ribosome undergoes during

translation. Each state in the Markov process is associated with a respective IFI. The Markov

model used in this work includes 6n + 2 states and n + 3 assigned IFIs, where n is the number

of codons of each mRNA. Therefore, the Markov model for translation of an mRNA consisting

of four codons includes 26 states and seven IFIs. The IFIs are assigned to the states in a way

such that they represent expected changes in fluorescence intensity during the biochemical

process of translation, e.g., after translocation of the ribosome to the next codon. Therefore

and in the interest of fit parameter reduction some states are assigned the same IFI value. For

further information on the Markov model and the assignment of the IFIs, see [8] and Methods.

Using our Markov model of translation, we calculate the time-dependent state occupancy

probabilities P, see Methods. These probabilities express how likely it is to find a ribosome at a

specific time in a certain state. Furthermore, we construct IFI input vectors~x in consisting of

n + 3 random positive real numbers. The simulated input ensemble fluorescence signature

~s inðtÞ is then given by the sum over all components of the IFI vector~x in weighted by the time-

dependent state occupancy probabilities P of the Markov process:

~s inðtÞ≔ P~x in: ð1Þ

To imitate experiments in which thermal fluctuations modulate the fluorescence signal, we

overlay the simulated input fluorescence signature~s inðtÞ by a Gaussian random noise ~S such

that resulting final simulated data are given by~sðtÞ≔~s inðtÞ þ ~S, see Methods.

To test our decomposition strategy for the simulated ensemble fluorescence signature, we

pretend that all state-specific IFIs are unknown. Analogously to experimental data analysis,

where short-term fluctuations are smoothed out, the simulated data~sðtÞ are also smoothed by

a moving average operation, i.e.,~ssmðtÞ≔smoothð~sðtÞÞ. Fig 2a) shows an example for a

smoothed simulated ensemble fluorescence signature~ssmðtÞ. The smoothing step is necessary

to fit the model using a least-squares solver to obtain the output IFI vector~xout

P~xout ¼~ssmðtÞ; ð2Þ

see Methods for details.

Ideally, a perfect fit would reveal the IFI values that were used to generate the fluorescence

time traces, i.e.,~xout ¼~x in. However, due to the added noise, the output and input IFI values

~xout and~x in may slightly deviate. Figure A in S1 Text shows that the uncertainty is lower in fit-

ted IFI values that correspond to the states in the beginning and towards the end of the studied

process. This inhomogeneity in the fit quality is a consequence of the constraints given by the

particular “imitated” experimental setup [8]: First, the translation processes are initially syn-

chronized in the sense that all ribosomes simultaneously start to translate the mRNA molecule

that they are bound to. By definition, the intrinsic fluorescence intensity that corresponds to

the initial state is set to IFI1 = 1, i.e., it serves as a reference for the normalization of all fluores-

cence values. Second, all ribosomes end up and remain in the same last “end” state. Therefore,

the IFI corresponding to the “end” state can be well determined as long as the process is moni-

tored long enough, see also Fig B in S1 Text.

In summary, time traces from initially synchronized biochemical reactions with low proces-

sivity can be decomposed by standard least-square approaches, and even subtle differences in

intrinsic fluorescence intensities of different states can be detected, see Fig 2b).
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Standard least-squares approach is not sufficient to decompose time traces

from higher-processivity reactions

In this paragraph, we show that signal time traces from reactions with higher processivity gen-

erally cannot be decomposed by standard least-square methods and that, instead, more elabo-

rate data analysis methods are required to obtain meaningful fits. To show the limits of the

standard least-square approach, we proceed as described in the previous paragraph. However,

here we analyze simulated ensemble fluorescence signatures corresponding to translation of

mRNAs consisting of 26 identical codons, see Fig 3a), instead of just four codons as in the pre-

vious paragraph. The Markov model includes 6n + 2 = 158 states and n + 3 = 29 assigned IFIs,

with n = 26 the number of codons on the mRNA. Decomposition of these ensemble fluores-

cence signatures by a standard least-square approach reveals IFI values that greatly deviate

Fig 2. Fluorescence signature of an mRNA that consists of four identical codons for random IFI input vector. a): The simulated fluorescence

signature is compared to the best theoretical fit in terms of least squares. The theoretical model and simulated data curves are in perfect agreement. b):

Fitted IFIs obtained from the analysis of the fluorescence signature compared to the given IFI input vector.

https://doi.org/10.1371/journal.pcbi.1011918.g002

Fig 3. Fitting fluorescence signatures of longer mRNAs reveals signs of an ill-posed problem. a): Fluorescence signature of an mRNA that consists

of 26 identical codons for a random IFI input vector. The simulated fluorescence signature is compared to the best theoretical fit in terms of least

squares. No regularization is applied. b): Fitted IFIs obtained from the decomposition of the fluorescence signature in a) compared to the given IFI

input vectors. No regularization is applied.

https://doi.org/10.1371/journal.pcbi.1011918.g003
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from the randomly chosen input IFI values that were used to generate the fluorescence data,

see Fig 3b). The components of the fitted IFI vector exhibit strong oscillations, span several

orders of magnitude, and have negative values. These unreasonable fitting results indicate that

the present least-squares problem is ill-posed [27]. To validate this assumption, the singular

values σi and the condition number κ(P) of matrix P are calculated, see S2 Text for definitions

and further details: The singular value decomposition of matrix P reveals that the singular val-

ues σi decay gradually to zero, see Fig C in S1 Text. Furthermore, the condition number κ(P)

of matrix P is very large, with a value of κ(P) = 4.8 × 109. Both criteria imply that the matrix P

is ill-conditioned, which means that the computed solution of the ill-posed problem Eq (2) is

potentially very sensitive to perturbations in the input data, i.e., the presence of thermal noise

in the simulated ensemble fluorescence signature~s [27, 28]. Fig 4a) shows that the condition

number grows exponentially with the level of processivity, i.e., the number of repeats of the

enzymatic action performed by the processive enzyme. This exponential growth is accelerated

when the number of repeats is larger than five. The condition number corresponding to trans-

lation of mRNAs consisting of 26 codons is several orders of magnitude higher than the condi-

tion number corresponding to translation of four-codons mRNAs. Therefore, solving Eq (2)

for the unknown IFI values in the sense of least-squares is feasible for signals from the transla-

tion of 4-codon-mRNAs, but is an ill-posed problem for longer mRNAs, e.g., in the case of

mRNAs with 26 codons. In addition, the condition number depends on the kinetics of the

Fig 4. Characteristics of the occupancy probabilities matrix P. a): Condition number κ for translation of mRNAs consisting of n identical codons

with elongation rates ωelo = 10s−1 and ωelo = 20s−1. b): Condition number κ for translation of an mRNA that consists of 26 identical codons for various

elongation rates ωelo.

https://doi.org/10.1371/journal.pcbi.1011918.g004
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biochemical reaction, see Fig 4b). Here, the kinetics are determined by the elongation rate of

the translating ribosomes, which is reflected in the state occupancy probabilities matrix P.

Application of Tikhonov regularization to restore decomposability of

signals from high-processivity processes

To find a meaningful solution of a linear ill-posed problem by the method of least squares, the

inclusion of additional information is required, which is commonly done by applying Tikho-

nov regularization [29]. The purpose of regularization is to include side constraints and pro-

vide robust methods for choosing the weight given to these side constraints to solve the ill-

posed problem, see S2 Text for an introduction to the method. Briefly, a damping is added to

filter out the components corresponding to the small singular values σi of the matrix P [28].

The amount of applied filtering is controlled by the regularization parameter α. For larger val-

ues of the regularization parameter α, stronger regularization is applied, i.e., more filtering is

introduced, the fitted solution vector~xout;a gets smoother and changes only little with higher α.

Simultaneously, the regularization error increases, which means that some physically mean-

ingful components of the unknown solution are filtered out (regularization error). For a small

regularization parameter α, the fitted solution vector~xout;a is dominated by terms correspond-

ing to the smallest singular values σi and its entries show oscillatory sign changes (perturbation

error). In addition, small changes in α result in strong changes in the solution~xout;a. To choose

an optimal value for the regularization parameter α, the norm of the regularized solution

jj~xout;ajj2 and the residual norm jjP~xout;a � ~ssmjj2 are plotted against each other. For discrete ill-

posed problems, the plot in log-log scale shows a characteristic L-shaped curve with the opti-

mal regularization parameter α corresponding to the corner of the curve [27, 30]. The optimal

regularization parameter α balances the regularization and the perturbation error to find a sta-

ble solution.

Fig 5a) shows an example of the L-curve for the decomposition of the fluorescence signa-

ture of an mRNA that consists of 26 identical codons. For three different choices of α, the cor-

responding fitted IFI vectors~xout;a are shown in Fig 5b), together with the random input IFI

vector~x in. For all choices, Tikhonov regularization led to much more reliable fit results

Fig 5. Decomposition of fluorescence signatures of mRNAs consisting of 26 identical codons with Tikhonov regularization. a): For different values

of α, the norm of the regularized solution jj~xout;ajj2 is plotted versus the residual norm jjP~xout;a � ~s smjj2. The log-log plot shows the characteristic L-

shaped curve. The optimal regularization parameter in terms of trade-off between regularization and perturbation error is α = 0.01 and is found by

locating the corner of the curve. b): Input and fitted IFI vectors for three different regularization parameter values.

https://doi.org/10.1371/journal.pcbi.1011918.g005
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compared to the standard least-square approach (Fig 3b)). However, high-frequency features

of the input vector are filtered out and thus cannot be recovered by the fitting. For small regu-

larization parameters (see α = 0.005 in Fig 5b)), the perturbation error increases and oscillatory

sign changes appear. Nonetheless, the fitted IFI values are still smoother than the input values.

Because of this effect, the fit quality depends on the smoothness of the input IFI values. Fur-

thermore, for the same reasons as discussed above for the decomposition of fluorescence sig-

natures of 4-codon-mRNAs, IFI values corresponding to the first and the last states of the

translation process are fitted best, see also Fig D in S1 Text.

Additional simulation results can be found in Figs F—S in S1 Text and Figs A—H in S2

Text for a) the decomposition of fluorescence signatures of mRNAs with different lengths, b)

translation processes with uniform and non-uniform translation rates, and c) processes where

an unknown kinetic rate is determined simultaneously with the unknown IFI vector.

Decomposition of experimentally determined fluorescence signatures of

LepB mRNA translation

In this paragraph, we apply our method to fluorescence signatures of LepB mRNA translation.

As the kinetics of LepB mRNA translation are not known at codon resolution, the simulta-

neous fitting of unknown kinetic rates and IFI values is necessary (see Determination of kinetic
rate ω45 in S1 Text for more details). To this end, we follow an approach introduced previously

for the analysis of the translation of short poly(U) mRNAs [8]: Translation of truncated

mRNAs (denoted here as LepB2 to LepB11) of increasing length in terms of codons is moni-

tored via fluorescent molecules that are attached to the N-termini of the nascent peptide chains

and move along the Escherichia coli ribosomal exit tunnel. The resulting fluorescence signa-

tures are decomposed, where for short mRNAs the simultaneous fitting of kinetic rates and IFI

values yields a unique solution. In contrast, for longer mRNAs the analysis gets ambiguous

(see S2 Text) and requires to take into account additional information. A longer mRNA—e.g.

LepB11—cannot be directly decomposed to reveal the IFI values together with the kinetics of

the process. A step-by-step analysis of the translation of increasingly longer mRNAs is

required, where the results obtained for a specific mRNA can be retained for each subsequent

analysis.

As an example, Fig 6 shows the measured and fitted fluorescence signatures of translation

for LepB3 and LepB11 (see Figs I to K in S2 Text for all nine analyzed mRNAs). During fluo-

rescence signature decomposition, Tikhonov regularization was applied for mRNAs with five

or more codons. The fitted intrinsic fluorescence intensities of the different states are depicted

in Fig 7. The IFI that belongs to the translation states between binding of Phe and binding of

the second Ala is considerably lower than all other IFI values (IFI5, see Fig 8b) for definition).

The corresponding fitted kinetic rates are listed in Table 1. Notably, within the initial five

codons (after the start codon), the translation process exhibits a significant slowdown at the

fourth codon (Phe). This observation aligns with our earlier findings derived from the analysis

of short poly(U) mRNA translation [8]. Furthermore, codons coding for Ile are the slowest in

the studied mRNAs (positions 7 and 10), and codons coding for identical amino acids have

very similar elongation rates (positions 1 and 5, 6 and 8). Together with our previous study

[8], these results indicate that both the position of the codon and the encoded amino acid

influence the translation rate.

Discussion

We presented a least-squares approach to decompose time-dependent ensemble signals of ini-

tially synchronized processive enzymatic reactions and analyzed the limits of the method. The
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decomposition allows to identify state-specific signal intensities for the individual steps of a

reaction, which can be valuable information already by itself or part of a larger model-fitting

procedure [8]. To demonstrate the method with a practical example, we modeled mRNA

translation as a Markov process and assigned a specific intrinsic fluorescence intensity (IFI) to

each state in the Markov chain. We computed the time-dependent fractions of ribosomes in

Fig 6. Decomposition of fluorescence signatures of LepB mRNAs. Measured fluorescence signatures of the in-vitro translation of LepB3 and LepB11

mRNA (colored lines) and best fits in terms of least squares (black lines).

https://doi.org/10.1371/journal.pcbi.1011918.g006

Fig 7. Fitted IFIs obtained from the analysis of the fluorescence signatures of truncated LepB mRNAs of different lengths. The IFIs correspond to

the different states of the translation process (see Fig 8 and [8]). The lowest IFI (IFI5) is associated to the states after binding of Phe and before binding

of the second Ala to the nascent peptide chain. The IFIs associated to the artificial state of a ribosome at the end of a truncated mRNA are not shown.

https://doi.org/10.1371/journal.pcbi.1011918.g007

PLOS COMPUTATIONAL BIOLOGY Decomposing bulk signals to reveal hidden information in processive enzyme reactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011918 March 5, 2024 10 / 18

https://doi.org/10.1371/journal.pcbi.1011918.g006
https://doi.org/10.1371/journal.pcbi.1011918.g007
https://doi.org/10.1371/journal.pcbi.1011918


Fig 8. Representation of mRNA translation elongation as a Markov process and assigned IFIs for a mRNA that consists of four codons. The

Markov model for translation of a short mRNA consisting of n = 4 codons includes 6n + 2 = 26 states and n + 3 = 7 assigned IFIs. Each state in the

process corresponds to one biochemically resolved step: State 01 represents the initiation complex with the start codon in the ribosomal A site. States 01-

41 describe initial selection, including ternary complex binding and recognition, GTPase activation, GTP hydrolysis and rearrangement of EF-Tu. This

is followed by tRNA accommodation and peptide bond formation (51). Afterwards, the ribosome translocates to the second codon (02). The elongation

cycle is repeated for the next three codons before the ribosome reaches the end of the truncated mRNA (E4) where the P site is occupied by the fourth

codon while the A site remains empty. See refs. [39–45] for more details on the translation process. Possible transitions between the states are indicated

by arrows and occur with transitions rates ωij, which is exemplified by the ternary complex binding rate ω01 and the unbinding rate ω10. The average

rate of translation for one codon is denoted by ωelo. For the first codon, changes in the state-specific IFIs are assumed to occur both after peptide bond

formation and translocation, and states assigned with identical IFI values have the same color. Note that due to initial synchronization of ribosomes, the

two IFI changes on the first codon become visible in the ensemble fluorescence signature. For all following codons only one change in fluorescence

intensity after peptide bond formation (after transition from state (4k) to state (5k)) is considered to avoid overfitting. The final intrinsic fluorescence

intensity E4 corresponds to the artificial state of the ribosome at the end of the truncated mRNA. Previously published as the 6n2/n3 model in [8].

Nomenclature of IFIs for a): a generic mRNA, and b): the specific case of LepB5 mRNA.

https://doi.org/10.1371/journal.pcbi.1011918.g008
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the different states of the translation process and determined the corresponding ensemble

fluorescence signatures of mRNA translation, including thermal noise. These simulated

ensemble fluorescence signatures were then used to test our decomposition method by com-

parison of input and fitted output IFI values. Additionally, we applied our method to decom-

pose experimental fluorescence signatures of LepB mRNA translation. We found that for

reactions with low processivity (corresponding to seven different IFI values in our mRNA

translation example), a standard least-squares approach is sufficient to reliably fit IFI values

with good precision. In contrast, investigation of model properties in terms of singular values

and condition numbers revealed clear signs of ill-posed problems for reactions with higher

processivity. However, by using least-square fitting with Tikhonov regularization it is still pos-

sible to obtain meaningful solutions. From these observations we draw the conclusion that

even before a bulk experiment with initially synchronized processive enzymes is conducted,

the following steps can be taken to assess the feasibility of ensemble signal decomposition:

First, a model that appropriately describes the stochastic biochemical process of interest needs

to be developed, including the assignment of IFIs to the different states of the model. Second,

based on this model, the matrix of state occupancy probabilities and its condition number

have to be computed (see Eq (4) and S2 Text). For small condition numbers, a standard least-

squares approach might be sufficient to decompose ensemble time traces, given that no other

factors, such as a low signal-to-noise ratio, prevent a meaningful analysis of the data. Other-

wise, regularization is required or, alternatively, strategies must be developed to help decrease

the condition number, including, for example, additional measurements to reduce the number

of free parameters. Bulk experiments are often much more cost- and time-efficient than meth-

ods probing single molecules directly, but they lack the depth of information that the latter

approaches achieve. Decomposition of ensemble signals can expand the range of bulk methods

by providing a way to extract more detailed information from the same experimental setup.

For example, analysis of the codon-by-codon translation of LepB mRNA presented here dem-

onstrates the differences of elongation rates at different codons and supports the notion that

Table 1. Codon position-specific translation rates calculated from fitted in-vitro rates.

Peptide Last amino acid Codon position (after start codon) Codon position-specific elongation rate ωelo [s−]

LepB2 A 1 4.5 ± 0.3

LepB3 N 2 3.3 ± 0.7

LepB4 M 3 2.1 ± 0.4

LepB5 F 4 0.8 ± 0.3

LepB6 A 5 4.5 ± 0.4

LepB7 L 6 0.9 (- 0.5 + 0.8)

LepB8 I 7 0.6 (- 0.5 + 1.6)

n/a L 8 1*
LepB10 V 9 1.2 ± 0.6

LepB11 I 10 0.2 (- 0.1 + 0.9)

For short mRNAs, simultaneously fitting kinetic rates and IFI values results in a unique solution, while the analysis

gets more ambiguous for longer mRNAs (see Figs L and M in S2 Text). “Peptide” indicates which peptide is encoded

by the mRNA that was analyzed to determine the reported codon position-specific translation rate. The second

column states the last amino acid of the peptide, which is encoded by the codon at the indicated position in LepB

mRNA.

*: The translation rate ωelo,8 of the eighth codon (after the start codon) is not directly fitted from a data curve (n/a)

but inferred based on reasonable IFI values for subsequent analysis. For detailed information see Table B in S2 Text.

https://doi.org/10.1371/journal.pcbi.1011918.t001
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translation rate drops at the fourth translated codon (i.e., the last codon of LepB5 mRNA),

consistent with earlier data [8]. We also observe slow translation at positions 7 and 10. The rea-

sons for the observed slow down are unknown and may be related to both translation per se or

protein folding in the narrow exit tunnel of the ribosome, which may regulate the translation

rate. Of note, the stalling codons at positions 7 and 10 encode for Ile, which is one of the

amino acids prevalent in inhibitory bicodons [31]. These results in combination with our pre-

vious findings [8] show that both the codon position and the encoded amino acid have an

effect on the elongation rate. Also IFI analysis reveals an anisotropic environment of the N-ter-

minal reporter group, which in the future can be used to study the effect of individual muta-

tions in the peptide or mutations in the ribosome, e.g., on translational rates or co-

translational protein folding. Our approach extends beyond the decomposition of fluorescence

signatures in mRNA translation and can be applied to assess various bulk signals originating

from biological processes. To achieve this, a prerequisite is a comprehensive understanding of

the underlying process, including its potential states and the kinetic rates governing transitions

between these states. The subsequent conscientious assignment of state-specific fluorescence

intensities ensures biological relevance throughout the analysis.

Materials and methods

Modeling of mRNA translation as a Markov process

In the literature, different approaches are used for the modeling of mRNA translation and the

determination of kinetic rates ([15, 32–36]). In this work, we modeled mRNA translation as a

time-continuous Markov process as is described in ref. [8, 37], and [38]. For the sake of consis-

tency both in terms of modeling approach and model parameterization, like in our earlier

work, the Markov model used here describes a large fraction of the translation-elongation

cycle steps that were biochemically resolved and of which the corresponding kinetic rates were

investigated by Rodnina and co-workers over the past decades [39–45]. Fig 8 shows as an

example the Markov model for translation of an mRNA that consists of four codons. By solv-

ing the master equations of the Markov process

d
dt

PiðtÞ ¼
XN

j¼1

PjðtÞoji � PiðtÞoij ð3Þ

the time evolution of the occupancy probability Pi(t), which is the probability to find a ribo-

some in state i = 1, . . .N at time t, is obtained for a given set of transition rates ωij from state i
to state j (see Table 2). The average rate of translation ωelo for one codon can be calculated by

first step analysis [46] using the transition rates ωij [37]. According to the experimental setup

in [8], the translation processes are initially synchronized at state i = 0 at time t = 0, i.e., the ini-

tial condition is

P0ð0Þ ¼ 1 and Pið0Þ ¼ 0 for all i 6¼ 0:

The matrix of occupancy probabilities P is defined as

P ¼

P0ðt1Þ P1ðt1Þ � � � PNðt1Þ

P0ðt2Þ P1ðt2Þ � � � PNðt2Þ

..

. ..
. . .

. ..
.

P0ðtMÞ P1ðtMÞ � � � PNðtMÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

; ð4Þ
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where N is the number of states in the Markov process and M is the number of considered

time points. The time points of the simulation were selected based on the experimental tempo-

ral resolution [8].

Generation and fitting of test data

The random IFI input vector~x in is created using the MATLAB function rand() for uni-

formly distributed random numbers as follows:~x in ¼ 2 � randðn; 1Þ, where n is the number of

required IFI components. The values of the IFI input vector range between 0 and 2, where the

first IFI is set to 1. The simulated ensemble fluorescence signature~s inðtÞ contains m = 1...M
fluorescence values, one for each time point tm. Each individual component of~s inðtÞ is given

by the sum over all components of the IFI input vector~x in weighted by the time-dependent

state occupancy probabilities P of the Markov process (see Eqs (1) and (4)). The simulated

fluorescence signature~s inðtÞ is superimposed with a Gaussian random noise ~S with a standard

deviation of 0.005. The influence of the chosen standard deviation on the fitted IFI vector~xout

is shown in Fig E in S1 Text. The time points in the simulation and the random noise levels are

based on experimental data [8]. The data are smoothed using the MATLAB function smooth
() with the specified method moving and a subset size of 30 data points to obtain

~ssmðtÞ≔smoothð~sðtÞÞ. See Fig 9 for an exemplary representation of~s inðtÞ,~sðtÞ, and~ssmðtÞ. We

use the non-negative least-squares solver lsqnonneg in MATLAB to solve the system of lin-

ear Eq (2) with the components of the IFI vector~xout as adjustable parameters.

Buffer and reagents

All experiments were carried out in HiFi buffer (50 mM Tris-HCl, pH 7.5, 70 mM NH 4Cl, 30

mM KCl and 3.5 mM MgCl2, 8 mM putrescine, 0.5 mM spermidine, and 1 mM DTT) [47].

Chemicals were from Roche Molecular Biochemicals, Sigma Aldrich or Merck, nucleotide tri-

phosphates from Jena Bioscience. Radioactive compounds were from Hartmann Analytic.

Total E. coli tRNA was from Roche. EF-Tu, initiation factors, [3H]Met-tRNA fMet, and Bod-

ipy-[3H]Met-tRNA fMet were prepared from E. coli as described [47]. 70S ribosomes were

prepared from E. coli according to the published protocol [48]. 70S initiation complexes were

Table 2. Transition rates.

Rate Value at 37˚C

ω01 350 s−1

ω10 700 s−1

ω12 1500 s−1

ω21 2 s−1

ω23 1500 s−1

ω34 450 s−1

ω40 1 s−1

ω45 13.8 s−1

ω50 53 s−1

ωend 0.3 s−1

ωelo 10 s−1

Apart from the rates ω45, ω50 and ωend all transition rates ωij are as used in the Markov model description of the

translation process in [37]. The average rate of translation ωelo for one codon is calculated by first step analysis [37].

The rate ωend describes the transition into the artificial end state of the ribosome at the end of the truncated mRNA.

https://doi.org/10.1371/journal.pcbi.1011918.t002
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prepared by incubating 70S ribosomes (typically 0.5 μM) with a 1.5-fold excess of IF1, 2, and 3,

1.5-fold excess of Bodipy-[3H]Met-tRNA fMet, and a 4-fold excess of the mRNA of the indi-

cated length in the presence of 1 mM GTP, 3 mM phosphoenolpyruvate and 1 μg μL-1 pyruvate

kinase for 15 min at 37˚C. Translation was performed in the stopped-flow apparatus by mixing

70S initiation complexes (0.025 μM final concentration) with EF-Tu (15 μM), purified total

aminoacyl-tRNA (40 μM) and EF-G (0.05 μM) in the presence of 1 mM GTP, 3 mM phospho-

enolpyruvate and 1 μg μL-1 pyruvate kinase. The fluorophore Bodipy was exited at 470nm and

the emission monitored after passing a 500 nm cut-off filter. The time courses are averages of

6–8 technical replicates.

Supporting information

S1 Text. File containing additional simulation results.

(PDF)

S2 Text. File containing additional simulation results and further supplementary informa-

tion.

(PDF)
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