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Abstract

Despite significant technical advances in machine learning (ML) over the past several

years, the tangible impact of this technology in healthcare has been limited. This is due not

only to the particular complexities of healthcare, but also due to structural issues in the

machine learning for healthcare (MLHC) community which broadly reward technical novelty

over tangible, equitable impact. We structure our work as a healthcare-focused echo of the

2012 paper “Machine Learning that Matters”, which highlighted such structural issues in the

ML community at large, and offered a series of clearly defined “Impact Challenges” to which

the field should orient itself. Drawing on the expertise of a diverse and international group of

authors, we engage in a narrative review and examine issues in the research background

environment, training processes, evaluation metrics, and deployment protocols which act to

limit the real-world applicability of MLHC. Broadly, we seek to distinguish between machine

learning ON healthcare data and machine learning FOR healthcare—the former of which

sees healthcare as merely a source of interesting technical challenges, and the latter of

which regards ML as a tool in service of meeting tangible clinical needs. We offer specific

recommendations for a series of stakeholders in the field, from ML researchers and clini-

cians, to the institutions in which they work, and the governments which regulate their data

access.
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Author summary

The field of machine learning has made significant technical advancements over the past

several years, but the impact of this technology on healthcare practice has remained lim-

ited. We identify issues in the structure of the field of machine learning for healthcare

which incentivise work that is scientifically novel over work that ultimately impacts

patients. Among others, these issues include a lack of diversity in available data, an

emphasis on targets which are easy to measure but may not be clinically important, and

limited funding for work focused on deployment. We offer a series of suggestions about

how best to address these issues, and advocate for a distinction to be made between

“machine research performed ON healthcare data” and true “machine FOR healthcare”.

The latter, we argue, requires starting from the very beginning with a focus on the impact

that a model will have on patients. We conclude with discussion of “impact challenges”—

specific and measurable goals with an emphasis upon health equity and broad community

impact—as examples of the types of goals the field should strive toward.

Introduction

The 2012 paper “Machine Learning that Matters” [1] introduced Impact Challenges as a mecha-

nism for opening discussion in the machine learning (ML) community about the limitations in

datasets, metrics, and the impact of results in the context of their originating domains. The arti-

cle presents the ML community as overly concerned with theoretical, benchmark-focused work

detached from real-world problems, and ultimately failing to address tangible issues. Despite

the incredible progress that has been made in ML [2], particularly in the field of large generative

models [3], many of the paper’s original criticisms continue to ring true. We contend that these

issues are of particular concern in the field of machine learning for healthcare (MLHC).

Despite its challenges, such as the safety-critical [4] nature of decisions and the complex

multi-stakeholder [5] environments, healthcare is in many ways an ideal setting for the appli-

cation of machine learning [6]. The amount of data involved is vast [7], and the setting is

deeply meaningful. Research in this space can have immense value [6]–from providing timely,

more precise and more objective decision support for providers and patients [8,9], to cognitive

offloading for overburdened healthcare workers [10,11], to improving health system efficiency

and population health outcomes [12].

Yet, in our opinion, there exists a stark contrast between the stated ambition (and associ-

ated hype) of the MLHC field and its limited degree of meaningful impact to date. The

approach of the field to the COVID-19 pandemic serves as an illustrative example. With the

pandemic affecting countries world-wide, there were multiple coordinated efforts to collect

and share data for ML-based COVID-19 diagnosis [13]. However, despite the generation of

several hundred published predictive models, systematic reviews found severe roadblocks to

the use of these models in clinical practice [14,15]. Particularly, only a handful were promising

enough for deployment in real clinical settings [16].

We believe that this example, while an extreme case, is not an outlier. While technical tools

in the space of ML for healthcare have made great leaps [17], social aspects of such tools in

practice–be it their design, development or deployment–are often afterthoughts [18–20]. Mod-

els are too often developed without appropriate scrutiny of underlying data and subsequent

outputs [14,21]. Therefore, machine learning models learn and ultimately reproduce the biases

of society [22] at large, as reflected in racial differences in care patterns [23–27], poor
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performance of clinical devices such as oxygen saturation probes for patients with dark skin

[28,29], and numerous other aspects of the broader care system [30].

The MLHC field has, in our opinion, failed to address these issues, and has indeed exacerbated

them through structures which broadly reward technically novel innovations over tangible clinical

impacts. Throughout this paper, we will explore issues in the background environment, develop-

ment processes, research evaluation, and clinical deployment of MLHC projects. We seek to criti-

cally analyze misaligned incentives which have led to a stark disconnect between our field’s

research and its broader societal impact. While several prior works [6,31–37] have addressed this

topic to varying degrees, we intend this work to summarize gaps and pain points, and we present

recommendations to re-center the focus of machine learning as applied to healthcare.

We conclude with a series of renewed impact challenges, hoping to re-center the notion

that the core purpose of MLHC is to achieve equitable impact on meaningful clinical out-

comes. All aspects of MLHC—background environment, development processes, evaluation

metrics, and deployment efforts–must be understood in terms of how they advance or hinder

such tangible goals. An overview of our suggestions can be seen in Fig 1.

Environment: Background for building

The context in which research is conducted serves as the foundational platform, influencing

the formation, development, and impact of research findings. Particularly in the rapidly-evolv-

ing field of MLHC, the broader research environment sets the stage for how and what kind of

knowledge is generated. It is crucial to recognize that the nature and quality of data, the acces-

sibility of this data, the inherent biases present, and the diversity of those conducting research

all converge to form this dynamic milieu. The importance of this research background extends

beyond the realm of technical advancements, shaping the ethical, societal, and practical impli-

cations of AI technologies.

Fig 1. Machine learning for healthcare impact framework and recommendations.

https://doi.org/10.1371/journal.pdig.0000474.g001
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Understanding social determinants and data biases

Disparities in health and healthcare are present along numerous axes, including but far from

limited to race, gender, socioeconomic status, and nationality [27]. Uncritically trained MLHC

models tend to learn, reproduce, and further entrench these disparities—as shown in the

prominent case of an algorithm which used past spending received as a proxy for health needs

and further disadvantaged Black patients [27]. It is not enough to simply remove these attri-

butes from the datasets, as ML models have demonstrated a concerning degree of ability to

ascertain protected characteristics even in the absence of obvious proxies [38]. The data pro-

duced by social processes cannot be understood in isolation from those processes [39]. Simi-

larly, work must be done not merely to eliminate the biases in health data, but to actively

characterize and counteract the conditions which generate these biases in the first place.

Researchers must seek to achieve “data empathy” [40], and understand the intensely human

processes and stories that data—particularly data in healthcare—embed [41].

We recommend:

• Work to actively characterize and counteract underlying disparities and social determinants

of health embedded in healthcare data, particularly in international contexts.

• Engage critically with processes underlying data production, and seek both upstream and

downstream measures to ensure that all patients are equitably represented and impacted.

• Ensure that patient perspectives and insights are represented during data creation, valida-

tion, and release phases.

• Pursue the goal of “data empathy”, ensuring that the human stories underlying medical data

are not forgotten amidst the abstracting processes of MLHC.

Improving diversity among researchers

Illness impacts us all, but the burdens of both disease and substandard care tend to fall most

heavily upon those who are already marginalized [42]. However, neither the demography nor

the processes of the MLHC field reflect this reality. Both the broader MLHC field at large and

the subfield of fairness research are disproportionately composed of male, white, and Asian

researchers from a small set of high-income countries [43]. The research community as a

whole also skews both younger and more able bodied than broader patient populations [44].

The result is a field with significant blind spots, and a broader failure to adequately consider

and align with the voices of those who have greatest need [45]. In order to truly achieve impact,

the MLHC field must embrace diversity in its deepest sense, with researchers from a wide

range of racial, gender, and national backgrounds.

The need for diversity also includes the training background and professional roles of those

involved, and a wide range of stakeholders must be actively invited in at every stage of the

research process. In this regard, the MLHC field should engage with and build upon existing

“patient engagement” practices in clinical trials [46], which seek to ensure that research is

aligned with patient needs [47–49]. With MLHC envisioned to impact a broad range of health-

care contexts, all of those involved may have valuable insights in co-designing projects [50]—

including patients, caregivers, and practitioners historically underrepresented in the academic

research process such as homecare workers or nursing aides [51].

We recommend:

• Promote MLHC training to a wide range of health and computer science trainees, with a

particular emphasis upon members of underrepresented groups.

PLOS DIGITAL HEALTH Machine learning for healthcare that matters

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000474 April 15, 2024 4 / 22

https://doi.org/10.1371/journal.pdig.0000474


• Carry out international events such as datathons [52] to build global collaborative networks,

ensuring that the agenda of the field is not controlled by those in a narrow set of high-

income countries.

• Actively invite patient and caregiver stakeholders into all levels of the process, ensuring that

procedures and outputs are aligned with tangible patient needs.

• Emphasize diversity in training and practice contexts (such as inclusion of clinicians from

minority-serving institutions in high income countries), in addition to diversity in

background.

• Improve the upstream training pipeline through investment in developing foundational data

science capacity at minority-serving institutions such as historically Black colleges and

universities,

Fostering diverse dataset creation

Machine learning thrives on data, yet this is not fully reflected in current conference proceed-

ings, where papers that discuss the development of datasets are rare. Some venues have

emerged (such as the NeurIPS Datasets and Benchmarks track) [53], but they remain relatively

novel and rare. The causes of this are multifactorial. Developing datasets requires significant

effort, particularly in complex domains such as healthcare [54], and requires collaborations

[55], resources, and funding which are often limited to only the largest of institutions [56].

Concerns regarding patient privacy and downstream data use further limit these collabora-

tions specifically in the healthcare context.

As a consequence, a significant proportion of machine learning work tends to be excessively

focused on a few publicly available datasets [57]. When these datasets are not sufficient for

data hungry models, researchers can combine multiple datasets resulting in the so-called Fran-

kenstein datasets [14], which are difficult to audit and can have misleading assumptions when

a class label is assigned. ML works related to healthcare are subsequently limited in scope to a

small set of problems such as prediction of mortality [58] or hospital length of stay [59], while

widespread issues of critical importance such as maternal mortality [60,61] or discrepancies in

healthcare access remain underexplored [62]. Further, these few datasets are skewed toward

representing the subset of patients served by large institutions in affluent geographic locations

[63]. Subsequently, algorithms developed using these datasets may serve to further exacerbate

disparities to the disadvantage of underrepresented patient populations.

There are a growing range of initiatives designed to increase the diversity of dataset crea-

tion. NIH projects such as AIM-AHEAD [64] and BRIDGE2AI [65] aim to expand health data

science capacity throughout the United States. Capacity in developing countries is being fos-

tered by programs such as the NIH DS-I Africa program [66], as well as initiatives from the

Gates Foundation [67] and Wellcome Trust [68]. It is critical to ensure that these capacity

building efforts are not merely limited to the provision of funding, but also include work to

foster a data sharing culture, address local privacy concerns [69,70], and promote multidisci-

plinary collaboration [71]. Local leadership and agency in this regard must remain paramount,

in order to avoid perpetuation of global health power imbalances. In addition, datasets from

underrepresented sources must be actively included in the mainstream of MLHC research, so

that cutting-edge core models and methodologies are representative of all patients.

We recommend:

• Recognize the critical importance of dataset creation work in funding, hiring, and promo-

tion contexts.
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• Focus the creation of novel datasets on rectifying existing issues of patient

underrepresentation.

• Provide detailed dataset descriptions (such as those described in “Datasheets for Datasets”

[72,73]) that inform data harmonization practices, especially when the data use is different

from its original intended use.

• Ensure that datasets created in low resource settings are included in the mainstream

advancement of MLHC, rather than being limited to regional use.

Opening data and increasing accessibility

Where robust and comprehensive datasets do exist, they are often subject to significant restric-

tions which limit their accessibility and usefulness to the MLHC community [57]. This may be

due to concerns from host health organizations regarding patient privacy or re-identification

risk [74,75]. There may also be a desire on the part of dataset creators to maintain exclusivity

and reap the professional rewards of their hard work in creating the dataset in the first place.

Experience with existing open datasets, such as the Medical Information Mart for Intensive

Care (MIMIC) [76], has demonstrated both sets of concerns to be often overblown [77]. With

respect to privacy, de-identification measures are highly effective in practical terms, and there

have been no known instances of re-identification of individuals in this dataset since its initial

release in 1996 [78]. With respect to research output, experience has shown that open datasets

beget a synergistic momentum, with multiple groups able to both collaborate and compete to

drive the field forward. As the 5500+ citations of the MIMIC-III database have demonstrated

[76], there is no shortage of clinical questions to be answered on a given set of data.

We recommend:

• Promote the creation of FAIR (Findable, Accessible, Interoperable, and Reusable) [79] data-

sets in healthcare, alongside the sharing of relevant supportive resources and code for dataset

cleaning and optimization.

• Expand privacy-preserving efforts in areas such as vectorization, synthetic data, and feder-

ated learning, while remaining wary of their limitations and favoring completely open data

sharing where possible.

• Ensure that efforts toward open data are inclusive of a broad range of healthcare settings,

both internationally and within a given country. This includes not only large academic ter-

tiary hospitals, but also regional hospitals, and alternative care settings such as community

clinics.

Building foundational tools for MLHC success

If the benefits of machine learning in healthcare are to be realized equitably, they must be real-

ized at scale within numerous diverse clinical contexts. Where this localization does occur, it is

often performed in labor-intensive ways by high-cost teams of experts, who often find them-

selves reinventing the proverbial wheel. For scalable success, MLHC must embrace the spirit

of the open source movement, and work collaboratively to develop open automated methods

to assist in model development, localization, and validation [80]. A notable and successful

effort in this direction is the work done by the OHDSI consortium [81]. The field must recog-

nize and reward such infrastructural work, given its critical importance to achieving scalable

impact.

We recommend:
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• Develop and standardize ML methods for data harmonization, reducing the significant exist-

ing barriers to bringing together data from multiple clinical sources.

• Require sharing of data cleaning and preprocessing code, in addition to final model develop-

ment code, with detailed performance breakdowns for data subgroups using reporting tools

like model cards [82].

• Create automated systems for comparing methods and facilitating evaluation.

• Create open-sourced autoML frameworks to automatically compare developed models sys-

tematically on important metrics. [80]

• Contribute to developing robust open frameworks for enduring research data sharing and

distribution (such as dataverse). [80]

Process: Training for impact

In the ever-evolving landscape of machine learning in healthcare (MLHC), the importance of

process—how we frame, conduct, and evaluate our research—is paramount. It’s not merely a

question of pursuing advanced technology as abstractly defined. Rather the process itself holds

the key to ensuring the relevance, applicability, and ethical integrity of our findings. The forth-

coming section explores this fundamental concept, illustrating how meaningful task selection,

ambitious benchmarking, consistent responsibility standards, and operationalized fairness are

critical in shaping the impact of MLHC research. By anchoring our efforts in these principles,

we transition from myopic technical novelty to a more balanced pursuit of solutions that are

patient-centered, equitable, and ultimately transformative for healthcare.

Selecting meaningful tasks

Given the field’s hunger for technical novelty, MLHC research can sometimes focus on “solu-

tions in search of problems” [83]. Researchers may regard healthcare primarily as a source of

complex interesting data with compelling real-world justifications. There can be a tendency to

focus on implementing the most interesting and novel techniques on healthcare data, rather

than solving the most urgent and tangible healthcare problems. While “machine learning on

healthcare data” can be a meaningful way to drive forward ML research, it must not be con-

fused with true “machine learning for healthcare”. Problems in healthcare are generally com-

plex and context-specific.

We recommend:

• Distinguish between “machine learning on healthcare data” and “machine learning for

healthcare problems”, recognizing that the technical novelty of the former does not innately

translate to impact on the latter.

• Engage with clinical stakeholders early in the clinical process, and working from problem to

solution with earnest evaluation of whether a particular method—or machine learning at all

—is most appropriate to address the problem.

Moving past the status quo

A common approach in MLHC is using clinical data to predict variables corresponding with a

clinician’s decision, such as the diagnostic label of an X-ray [84,85], or the decision to prescribe

a medication [86]. Such approaches implicitly treat that clinical assessment as the ground

truth, and in so doing establish contemporary clinician-level performance as a ceiling. This is
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problematic given the well-documented fallibility of human clinicians [87], and the pervasive

biases which further worsen the quality of care for underserved patients [88,89].

While learning from clinicians (particularly ensembles of clinicians) is important, MLHC

should strive where possible to surpass the quality and accuracy of existing clinical practice. A

particularly illustrative example was provided by Pierson et al. [90], who demonstrated that

training a knee X-ray algorithm to predict patient-reported pain rather than radiologist-
assessed arthritis burden produced a model which eliminated pre-existing racial disparities in

X-ray assessment.

We recommend:

• Focus wherever possible on prediction of either objective ground truth metrics such as mor-

tality or relevant patient centered metrics such as reported pain, rather than strict agreement

with human clinician assessments alone.

• Engage in ambitious attempts to elevate existing clinical standards, rather than simply striv-

ing to meet the baseline status quo.

Establishing consistent responsibility standards

Current MLHC development lifecycles consider “performance improvement” in a given core

metric such as area under the precision-recall curve (AUPRC) or accuracy metrics as the pri-

mary target [91–93]. The field is focused upon defining and carrying out narrow tasks, with

the broader context and ultimate impact of the model often considered an afterthought [94].

This reality shapes every step of the MLHC process, from data collection, to model develop-

ment, to validation—with issues of responsible AI such as fairness, accountability, and trans-

parency considered after the fact if at all. While significant literature explores standards related

to these issues [72,95–97], they are implemented in a patchy and inconsistent manner which

renders comparison and accountability between institutions difficult.

We recommend:

• Establish and propagate industry standards for responsible AI development, incorporating

patient-centric and ethical values. [83]

• Dethrone narrow performance metrics as the primary assessment method, and consider

them alongside clinical impact and responsible AI issues throughout the development

process.

Operationalizing fairness

Fairness and equity are often posited as goals of MLHC development, however the terms are

often used vaguely and without clear meaning, as previous criticism has noted [98]. Failure on

the part of both the MLHC community and the broader regulatory apparatus to develop a

clear set of expectations in this regard enables research with a wide range of actual impact to

be passed off as sufficiently “fair”. Far too often, the equity-focused analyses performed are

only cursory, hidden away in supplemental tables and hardly engaged within the main body of

a paper. Regardless of the specific consensus definition of the field, if fairness is to be achieved

in MLHC, it must be baked into the process rather than painted on after the fact. It must be

understood in concrete terms, and have the power to meaningfully shape the development

process.

We recommend:
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• Pursue consensus definitions of fairness in MLHC contexts, both procedural as well as out-

come-based.

• Engage in subgroup analysis of the outputs of all MLHC projects, in order to understand

and engage in dialogue and remediation regarding relevant disparities.

• Develop and hold projects to explicit standards regarding fairness, equity, and maximally

permissible performance disparities between demographic groups.

• Render fairness constraints an integral part of training processes, rather than an ad-hoc or

after-the-fact correction.

Evaluation: Re-aligning incentives

Recognizing that innovation isn’t merely about technical novelty but also about potential clini-

cal impact can lead to a paradigm shift in how research is conducted and valued. The lure of

common metrics of success can lead researchers to overlook the complex realities of real-

world clinical contexts, and the sometimes subtle but significant disparities that exist between

controlled research environments and the day-to-day chaos of healthcare provision. Whether

through completing moonshot projects or solving overlooked last-mile challenges, MLHC

researchers must work to create health equity, rather than merely managing bias. We advocate

for a broadened perspective on the value of innovation, a more nuanced understanding of

real-world applicability, and an appreciation for audacious endeavors, thus forging a path

towards a more impactful MLHC landscape.

Recognizing advances for more than just algorithmic/ technical novelty

Innovation is often equated with novelty in academic research, particularly in the increasingly

intense competition for conference reviewer attention and approval. Commending research

primarily for its originality encourages new and creative methods which may be ultimately

only incremental in impact. At the same time, this philosophy acts to relatively disincentivize

the unglamorous work necessary to develop an idea fully and address all of the various chal-

lenges which arise in its deployment in the clinical context. The result is an excess of incom-

plete research agendas, as researchers face rapidly diminishing returns for the additional

follow-up work required to fully develop the implications of an initially novel work.

This issue is not merely in the realm of academic recognition, as both governmental grants

and industry funding tend to follow a similar pattern. Given the increasing costs of model

training, assessments of what will be fundable act to shape and ultimately bias research in

directions which may be more attention-grabbing than impactful. Further, projects which are

funded for technical novelty often lack access to the necessary follow-on funding to be main-

tained through the full life cycle and achieve impact.

We recommend:

• Recognize that novelty has multiple aspects by creating explicit research tracks highlighting

technical significance and clinical relevance.

• Provide opportunities for follow-on funding to carry ideas forward to implementation and

tangible impact.

• Conduct retrospective analyses of trends in machine learning applications for health [99],

and introspect on areas that might require more research focus.
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Moving on from clinically unimportant metrics

MLHC research tends to focus on label prediction accuracy metrics such as sensitivity, speci-

ficity, and the precision-recall curve [91–93]. However, accuracy when predicting labels on a

curated dataset does not always translate to accuracy in real-world clinical settings when

deployed, often due to dataset shift [100,101] caused by critical and inescapable differences

between the populations used in testing versus deployment [102]. More substantially, all accu-

racy metrics should be considered with respect to a clinical goal and a clinical workflow. Even

an accurate prediction may have little clinical value [103] in certain circumstances—it may be

too late, too early, about an event that cannot be prevented, or add little useful information to

existing clinical assessments. Thus, the value of accuracy metrics as proxies for clinical rele-

vance is highly variable and ultimately task- and context-specific.

We recommend:

• Develop and validate metrics in line with clinical goals and workflows, with an awareness of

when information will augment meaningfully what clinicians already know [104].

• Validate clinical targets and metrics via clinical trials focused on tangible patient-relevant

endpoints such as mortality or disability reduction.

• Pursue causal modeling for automated assessment of whether a given alert is likely to impact

clinical decision-making.

• Evaluate machine learning solutions against already existing methods used in relevant

healthcare settings as well as simple non-machine learning baselines.

• Monitor performance after deployment to identify the presence of dataset shift and help

inform decisions about when model re-training is needed.

• Evaluate models in the local context of their intended deployment, recognizing that perfor-

mance can be sensitive to subtle specifics.

Encouraging moonshots

Stepping outside the comfortable bounds of topping established benchmarks purely in silico
exposes a project to a wide range of uncertainties, and the most potentially impactful MLHC

projects are often also the riskiest. They require seeking the approval of a wide range of stake-

holders, and they often play out across extended multi-year timelines [105]. This can conflict

with the career incentives of MLHC academics, particularly those on short tenure timelines, as

well as students with brief PhD or even briefer MSc timelines. Researchers may fear—and with

some justification—that pursuing such projects places the eggs of their career into a single

fragile basket. If the field is going to succeed in having impact, this dynamic must be reversed.

We recommend:

• Recognize the insights gained from ambitious projects, even (or especially) if they ultimately

are not successful.

• Encourage publication of process descriptions and intermediate results [106] for prolonged,

multi-stage development and implementation.

• Allocate grant funding to ambitious projects with longer timelines, aiming at real-world clin-

ical benchmarks and equitable outcomes.

• Publish “lessons learned” from projects that may not have succeeded at their original goals

but nevertheless have insights of value for the rest of the field.
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Deployment: From code to clinic

The path from theory to practice is paved with often-overlooked aspects, including rigorous

engineering, a profound understanding of human processes, acknowledgment of system limi-

tations, anticipation of ongoing impact, and a commitment to parallel valuation of validation

and innovation [105]. Each of these dimensions bears a unique set of considerations and

requires explicit focus to ensure successful, safe, and sustainable implementation of MLHC. In

the subsequent section, we delve into these complexities and offer recommendations that aim

to foster an approach that is not just technically sound, but also holistic, human-centered,

transparent, and future-oriented. Through these concerted efforts, we aspire to enhance the

reliability, efficacy, and ultimately, the patient outcomes of MLHC deployment in diverse

healthcare environments.

Valuing engineering effort

Machine learning models require significant work to be deployed in practice, especially in

high-stakes domains such as healthcare [107,108]. The scientific experiments accompanying

the proposal of a new model, while necessary, are not sufficient to deem a model useful and

practical [14]. Deployment involves significant work [107,108], such as cross-contextual vali-

dation, development of platforms or APIs for model access, online model monitoring, and

data collection for further model improvements. All this accompanying work may, unfortu-

nately, not be recognized as part of the research process, despite the fact that it is mandatory to

achieve wide model use. This work is often separated out as “engineering” and deemed unin-

teresting in the academic context despite its presence as an essential component of any transla-

tion effort. This is particularly problematic in healthcare, given the variability and complexity

of both the digital systems and sociotechnical structures involved.

The MLHC community should learn from and build upon preceding efforts in public

health and health promotion in this regard. The Reach, Effectiveness, Adoption, Implementa-

tion, and Maintenance (RE-AIM) framework [109] is one robust example, which seeks to find

a balance between the internal and external validity of projects by highlighting these challenges

from the outset of a project. In particular, the MLHC community must come to regard the

effort necessary to adapt to existing, complex healthcare contexts as core to, rather than ancil-

lary to, any new project.

We recommend:

• Develop research tracks encouraging “last-mile” work, with an emphasis on deployment and

impact evaluation.

• Create specific conference venues dedicated to engineering problems in machine learning

for healthcare.

• Seek active collaboration with colleagues with expertise in data engineering, software engi-

neering, systems engineering, bioinformatics, and related subfields.

• Develop and adopt standards that reduce the technical burden of organizations to deploy

and monitor algorithmic performance in the real world setting.

• Utilize frameworks such as RE-AIM [109] to conceptualize and prepare for the work which

must be done to adapt MLHC initiatives to real-world contexts.

Considering human processes

While many MLHC projects are designed and reported in controlled computational isolation,

all clinical processes involve the variability and complexity inherent to human involvement
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[110]. Numerous questions arise at this juncture. How will model outputs be understood by

clinicians? What does it take for a model’s output to be trusted? Will the presence of an inaccu-

rate model recommendation cause clinicians to second-guess their better judgment [111]? The

MLHC field must work to further develop the multidisciplinary work that has been done to

characterize human-machine systems, and the habits that clinicians build when working with

machines. Well-characterized issues include automation bias [112–114] (overreliance on

machine recommendations), algorithm aversion [115,116] (underreliance on machine recom-

mendations), and alarm fatigue [117] (becoming overwhelmed by the frequency of alerts).

Any approach which understands an ML model in isolation is fundamentally incomplete, and

models developed in such isolation will fail to have tangible clinical impact.

We recommend:

• Work to understand the role of algorithms amidst the broader human-machine system

[118].

• Engage clinicians, nurses, patients, and other end-users of systems in order to understand

how model outputs are understood, and how their presentation can be optimized.

• Collaborate with colleagues in fields such as medical anthropology, human factors engineer-

ing, psychology, sociology, feminist techno-science, and user experience design.

• Establish processes for ongoing monitoring of clinician feedback, ensuring that the practical

usability of models is continuously optimized.

• Ensure that appropriate backup procedures are in place to recognize and respond to model

downtime or performance deterioration.

• Continue training clinicians for model-free circumstances, in order to avoid deskilling

[119].

Identifying system limitations

Current MLHC research is biased toward demonstration of the unique and novel capabilities

of a model at its best. Yet, of equal importance is a robust understanding of what a given

model cannot do. Characterizing and elaborating upon the particular failure cases of a model

is essential to safe and impactful deployment, and enables amelioration measures such as

learning when to defer to human clinician assessments [120,121]. Identification of limitations

is also essential to ensure that a model is not uncritically deployed outside of the initial scope

for which it was developed and validated.

We recommend:

• Reward researchers in peer review and publication processes for honest and thoughtful char-

acterization of the limitations of a given model architecture.

• Ensure that regulatory processes require clear establishment of model limitations, and that

these are consistently made clear to health systems and model end users.

• Work to generate standardized adversarial assessments [122] to probe the vulnerabilities of a

given clinical model.

• Utilize standardized model reporting techniques, such as “Model Cards” [82] in order to

ensure that model training contexts, targeted uses, and limitations are clearly disclosed.
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Building for continued impact

Rewards in academic MLHC research are heavily skewed toward the initial design and deploy-

ment of a model [100], whereas the ultimate clinical impact accumulates gradually over an

extended period of time. The continued maintenance and execution of an MLHC project is a

complicated endeavor in its own right, with issues such as dataset shift impacting model accu-

racy, and advancements in treatment protocols possibly impacting a project’s overall appropri-

ateness. Anticipating and addressing such factors must be considered an integral part of the

MLHC enterprise, rather than being relegated as an unimportant ongoing maintenance task

for the end-user [123]. Projects which are initiated but not maintained may even act as a net

harm to patients overall, as processes may be altered and resources may be re-allocated in ways

that are not easily reversed.

We recommend:

• Encourage the publication and dissemination of longitudinal assessments reporting retro-

spectively on the impact of models years after initial deployment.

• Establish guidelines and checklists to update and/or retrain models [123] in response to

changing data and process environments.

• Establish institutional monitoring teams and processes for the longitudinal assessment and

adjustment of clinical models for issues such as dataset shift.

• Offer rewards for long-lived, successful deployments of MLHC projects, as well as terminat-

ing projects assessed to have harms or negative impacts.

Valuing generalization on par with innovation

Even where MLHC projects are successfully implemented at a single site, machine learning

models experience a notorious degree of difficulty generalizing outside of their initial contexts.

If MLHC is going to have an impact on patients broadly, there is significant work to be done

in ensuring that the proverbial wheel does not require re-inventing in every hospital and clinic

around the world [124]. At the other end of the spectrum, some models have been widely

deployed without any significant effort toward validation, with deleterious consequences

[124]. Yet as has been described with the replication crisis in psychology and other sciences,

academic research conveys relatively little reward for the co-equal work necessary for

validation.

Further, validation remains often project and context-specific, with a paucity of generaliz-

able methods for comparison between projects. When considered in terms of patient impact,

however, performance at each additional site is equally important to performance at the index

institution. Methods such as “realist evaluation” [125] are highly useful in this regard, provid-

ing for formal structures to evaluate “what works, for whom, and in what circumstances”

[126]. The framework ensures that contextual factors (such as the individuals involved, and

their broader infrastructure) and context-specific mechanisms are explicit targets of evaluation

and assessment.

We recommend:

• Dedicate increased focus to the techniques of transfer learning and local fine-tuning when

necessary.

• Develop consistent interoperability standards, and methods for understanding the shifts in

model performance as adapted to different contacts.
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• Encourage publication of validation studies, with particular description of pitfalls faced in

local translation.

• Create pipelines for the systematic comparison and validation of methods [80].

Impact challenges in machine learning for healthcare

We believe that MLHC must be oriented first and foremost toward its impact upon the health

of individual patients and the community at large. In the same vein as Wagstaff (2012) [1], we

seek to offer a series of impact challenges which highlight tangible, meaningful goals for prog-

ress in the field [127].

1. A model deployed in an American urban hospital recognizes high-risk prenatal patients,

recommends interventions, and successfully reduces the Black-white maternal mortality

disparity by> = 50%.

2. A model deployed and maintained at a single center to predict patient deterioration [128]

continues to maintain > = 95% of its initial predictive performance and impact on mortal-

ity across all demographic groups over a 10-year timeframe.

3. Data pipelines and transfer learning methods are used to deploy a chest x-ray diagnostic

model [129] with significant clinical impact across urban and rural hospitals in three coun-

tries in Sub-Saharan Africa.

4. A “second opinion” diagnostic language model [130] for common clinical ailments is

actively consulted as a part of regular outpatient clinical workflow with a>90% physician

satisfaction rate with answer usefulness across multiple health systems in diverse socioeco-

nomic contexts.

The purpose of these challenges is not to be prescriptive, but rather to highlight examples of

concrete end-goals which the broader MLHC enterprise must be in service of. The structural

recommendations highlighted elsewhere in this paper aim to create the contexts and processes

—the “where”, “who” and “how”—necessary to work toward such end-goals. Crucially, these

goals do not need to be achieved from beginning to end by a single group, and MLHC endeav-

ors do not need to be limited to grand projects. Rather, they are meant to frame and guide the

field as a whole—that is, even smaller projects should be conceived, understood, and imple-

mented in terms of how they move towards ambitious goals with tangible clinical impact.

Seeking to achieve (1), for example, would require moving beyond the task of simply pre-

dicting patient outcomes, and toward building MLHC as an integral part of a broader complex

system considering the social dimensions of health. It would require not only technical exper-

tise, but also consideration of patient needs and clinical barriers in a specific socio-technical

context. In doing so, it would necessitate the collaborative involvement of members of a

racially, culturally, and disciplinarily diverse team, which requires the expansion of inclusive

training pathways, and efforts to promote MLHC among those interested in maternal health.

Further, it would require the upstream expansion of data pathways to gather data outside of

traditional academic centers, and the creation of open datasets necessary for fundamental ML

methods to be applied to the field of maternal health.

Both machine learning and healthcare are highly complicated topics in isolation, and

MLHC is in many ways even more so. We believe that a healthy and thriving MLHC commu-

nity and research apparatus is one that is able to consistently, aim toward and ultimately

achieve goals such as those embodied by these challenges. It is incumbent upon all of us
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working in this field to work toward building such an apparatus—working not only to demon-

strate technical novelty on data gathered amidst the background of healthcare, but to consis-

tently generate solutions which work for all.

Conclusion

Despite major advancements in the underlying technology, we contend that the impact of

MLHC on meaningful clinical problems has been limited. This limitation in part reflects the

inherent difficulty of deploying ML solutions in such a high-complexity and high-stakes

domain. However, it also reflects significant issues in the structure and culture of the field of

MLHC at large.

Data access [107,131] is woefully limited and inadequate to reflect the diversity of patient

populations [132]. The research process often fails to select and engage with meaningful tasks.

Evaluation tends to prize novelty over impact [1], and the field gravitates toward simplistic

metrics. A majority of research and development efforts focus on technical “novel” model

development rather than data collection and deployment. Underpinning this all, significant

issues of bias in both data and process lead to the production of models which may only exac-

erbate existing healthcare disparities [27].

As we have discussed throughout this paper, these problems are real and substantial, but far

from intractable. We are hopeful that this article may help to spark reflection and conversation

within the MLHC field. We must work to distinguish between “machine learning research per-

formed on healthcare data” and “machine learning for healthcare”. We must re-orient our-

selves toward the grand challenges which exist, and the tangible steps required to address

them. We must strive to be a field defined first and foremost by our impact on the lives of

patients and their families—that is, to engage in machine learning for healthcare that matters.
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40. Brönnimann S, Wintzer J. Climate data empathy. Wiley Interdisciplinary Reviews: Climate Change.

2019 Mar; 10(2):e559.

41. Faghmous JH, Kumar V. A big data guide to understanding climate change: The case for theory-

guided data science. Big Data. 2014 Sep; 2(3):155–63. https://doi.org/10.1089/big.2014.0026 PMID:

25276499

PLOS DIGITAL HEALTH Machine learning for healthcare that matters

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000474 April 15, 2024 17 / 22

https://doi.org/10.1126/science.aaz3873
https://doi.org/10.1126/science.aaz3873
http://www.ncbi.nlm.nih.gov/pubmed/31649182
https://doi.org/10.1111/1468-0009.12411
http://www.ncbi.nlm.nih.gov/pubmed/31512293
https://doi.org/10.3390/children6010010
https://doi.org/10.3390/children6010010
http://www.ncbi.nlm.nih.gov/pubmed/30646634
https://doi.org/10.1016/j.anai.2018.11.015
http://www.ncbi.nlm.nih.gov/pubmed/30465859
https://doi.org/10.1053/j.gastro.2018.11.060
https://doi.org/10.1053/j.gastro.2018.11.060
http://www.ncbi.nlm.nih.gov/pubmed/30521807
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1126/science.aax2342
http://www.ncbi.nlm.nih.gov/pubmed/31649194
https://doi.org/10.4187/respcare.09795
https://doi.org/10.4187/respcare.09795
http://www.ncbi.nlm.nih.gov/pubmed/34772785
https://doi.org/10.1093/sleep/zsaa159
https://doi.org/10.1093/sleep/zsaa159
http://www.ncbi.nlm.nih.gov/pubmed/32893865
https://doi.org/10.1016/j.socscimed.2016.12.012
https://doi.org/10.1016/j.socscimed.2016.12.012
http://www.ncbi.nlm.nih.gov/pubmed/28043036
https://doi.org/10.1146/annurev-biodatasci-092820-114757
https://doi.org/10.1146/annurev-biodatasci-092820-114757
http://www.ncbi.nlm.nih.gov/pubmed/34396058
https://doi.org/10.1038/s41551-018-0305-z
http://www.ncbi.nlm.nih.gov/pubmed/31015651
https://doi.org/10.1056/NEJMe2206291
http://www.ncbi.nlm.nih.gov/pubmed/36988598
https://doi.org/10.1056/NEJMc2104626
https://doi.org/10.1056/NEJMc2104626
http://www.ncbi.nlm.nih.gov/pubmed/34260843
https://doi.org/10.1016/S2589-7500%2823%2900045-6
https://doi.org/10.1016/S2589-7500%2823%2900045-6
http://www.ncbi.nlm.nih.gov/pubmed/36963907
https://doi.org/10.1038/s41746-022-00595-9
http://www.ncbi.nlm.nih.gov/pubmed/35459793
https://doi.org/10.1016/S2589-7500%2822%2900063-2
https://doi.org/10.1016/S2589-7500%2822%2900063-2
http://www.ncbi.nlm.nih.gov/pubmed/35568690
https://doi.org/10.1089/big.2014.0026
http://www.ncbi.nlm.nih.gov/pubmed/25276499
https://doi.org/10.1371/journal.pdig.0000474


42. Institute of Medicine, Board on Health Sciences Policy, Committee on Understanding and Eliminating

Racial and Ethnic Disparities in Health Care. Unequal Treatment: Confronting Racial and Ethnic Dis-

parities in Health Care (with CD). National Academies Press; 2009. 432 p.

43. Alberto IRI, Alberto NRI, Altinel Y, Blacker S, Binotti WW, Celi LA, et al. Who does the fairness in

health AI community represent? [Internet]. medRxiv. 2023 [cited 2023 Jun 16].

p. 2023.03.20.23287471. Available from: https://www.medrxiv.org/content/10.1101/2023.03.20.

23287471v1

44. Mogensen L, Hu W. “A doctor who really knows . . .”: a survey of community perspectives on medical

students and practitioners with disability. BMC Med Educ. 2019 Jul 29; 19(1):288.

45. Basu S, Berkowitz SA, Phillips RL, Bitton A, Landon BE, Phillips RS. Association of Primary Care Phy-

sician Supply With Population Mortality in the United States, 2005–2015. JAMA Intern Med. 2019 Apr

1; 179(4):506–14. https://doi.org/10.1001/jamainternmed.2018.7624 PMID: 30776056

46. Patrick-Lake B. Patient engagement in clinical trials: The Clinical Trials Transformation Initiative’s

leadership from theory to practical implementation. Clin Trials. 2018 Feb; 15(1_suppl):19–22. https://

doi.org/10.1177/1740774518755055 PMID: 29452519

47. Domecq JP, Prutsky G, Elraiyah T, Wang Z, Nabhan M, Shippee N, et al. Patient engagement in

research: a systematic review. BMC Health Serv Res. 2014 Feb 26; 14:89. https://doi.org/10.1186/

1472-6963-14-89 PMID: 24568690

48. Liberati A. Need to realign patient-oriented and commercial and academic research. Lancet. 2011 Nov

19; 378(9805):1777–8.
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