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Abstract: Land Surface Temperature (LST) products obtained by thermal infrared (TIR) remote
sensing contain considerable blank areas due to the frequent occurrence of cloud coverage. The
studies on the all-time reconstruction of the cloud-covered LST of geostationary meteorological
satellite LST products are relatively few. To accurately fill the blank area, a hybrid method for
reconstructing hourly FY-4A AGRI LST under cloud-covered conditions was proposed using a
random forest (RF) regression algorithm and Savitzky-Golay (S-G) filtering. The ERA5-Land surface
cumulative net radiation flux (SNR) reanalysis data was first introduced to represent the change in
surface energy arising from cloud coverage. The RF regression method was used to estimate the
LST correlation model based on clear-sky LST and the corresponding predictor variables, including
the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI),
surface elevation and slope. The fitted model was then applied to reconstruct the cloud-covered
LST. The S–G filtering method was used to smooth the outliers of reconstructed LST in the temporal
dimension. The accuracy evaluation was performed using the measured LST of the representative
meteorological stations after scale correction. The coefficients of determination derived with the
reference LST were all above 0.73 on the three examined days, with a bias of −1.13–0.39 K, mean
absolute errors (MAE) of 1.46–2.4 K, and root mean square errors (RMSE) of 1.77–3.2 K. These results
indicate that the proposed method has strong potential for accurately restoring the spatial and
temporal continuity of LST and can provide a solution for the production and research of gap-free
LST products with high temporal resolution.

Keywords: Land Surface Temperature (LST); cloud-covered pixels; reconstruction; FY-4A; random
forest regression; Savitzky-Golay filtering; cumulative net surface radiation flux

1. Introduction

Land Surface Temperature (LST) is one of the most important parameters for regional
and global energy exchange, and the radiative balance of the surface–atmosphere system.
The temporal and spatial information of Land Surface Temperature has not only been
widely used to study the urban heat island effect, detect geothermal resources, and monitor
fire points, but it also directly affects important parameters like soil moisture and surface
evapotranspiration [1–5]. Satellite-based thermal infrared (TIR) remote sensing plays an
important role in quickly obtaining large-scale LST, due to its direct relationship with the
thermal remote sensing signal [6–8]. Many thermal infrared sensors can provide high-
precision LST datasets. However, due to the inability of thermal radiation to penetrate
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clouds, many LST products contain considerable blank areas due to the frequent occurrence
of cloud coverage, which seriously destroys the spatial and temporal continuity of LST
and limits the application of LST products. Given the importance of LST, it is essential to
accurately estimate the LST of cloud-covered pixels and restore the spatial and temporal
continuity of LST products.

Currently, three main methods have been developed to fill the missing values of
LST resulting from cloud coverage [9]. Spatial information-based methods are based on
the high correlation between the cloud-covered LST and the adjacent clear-sky LST, or
the predictor variables of LST. Neteler (2010) used Kriging interpolation to interpolate
and fill the gap in MODIS LST datasets considering the gradient relationship of clear-sky
LST [10]. Ke et al. (2013) used the Regression Kriging (RK) to interpolate and reconstruct
the cloud-covered LST in large-scale mountainous areas [11]. Simple statistical approaches
can interpolate the missing values of LST datasets. Nevertheless, these approaches fail
to consider the physical relationships of environmental variables between surface and
atmosphere. Therefore, interpolated results tend to be hypothetical clear-sky LST instead of
actual cloudy-sky LST [12]. Considering the disadvantages of the simple statistical methods,
Jin and Dickinson (2000) proposed a physical algorithm to reconstruct cloud-covered skin
temperature based on the surface energy balance (SEB) equation [13]. The equation was
constructed through land surface energy terms, including sensible heat flux, latent heat
flux, canopy and soil energy, surface net solar radiation and surface net longwave radiation.
Each term of the SEB was first expressed as a function of skin temperature, then the SEB
was solved to derive cloud-covered skin temperature from neighboring clear-sky skin
temperature. This algorithm is suitable for LST reconstruction at night and high latitudes.
However, the values of the energy terms in SEB are difficult to obtain, and the accuracy
of the algorithm depends on the accuracy of the clear-sky skin temperature and the input
parameters. With the rapid development of artificial intelligence, machine learning has
recently shown a tremendous ability to capture the spatial relationship of variables and
reconstruct missing data in remote sensing [14,15]. Considering the advantages of the
random forest (RF) in finding the nonlinear relationship between LST and its predictor
variables, Zhao and Duan (2020) proposed a method to estimate the actual daytime cloud-
covered MODIS LST by using RF regression algorithm [16]. The method estimated a
cumulative downward surface solar radiation flux (DSSF) to represent the impact from
cloud cover on incident solar radiation. Results indicated that RF has strong potential for
reconstructing LST under cloud-covered conditions. Nevertheless, this method is only
suitable for reconstructing a daytime LST image of a polar-orbiting satellite due to the
lack of solar radiation in the nighttime. Moreover, when the spatial resolution is lower,
the spatial correlation between LST and prediction variables is weakened, which makes
it harder to accurately estimate cloud-covered LST with relatively low spatial resolution
but high temporal resolution, such as geostationary meteorological satellite LST products.
Therefore, further research is required in reconstructing the actual cloud-covered LST
products of a geostationary meteorological satellite.

Multi-temporal information-based methods are based on the LST variation of target
pixels in a time series to reconstruct cloud-covered LST. At the daily scale, the diurnal
temperature cycle (DTC) model was first proposed by Parton and Logan (1981) and was
further studied by Jin and Dickinson (1999) and Jin (2000) [17–19]. This model applied
a daily scale interpolation to obtain diurnal LST cycles, thus recovering the cloudy-sky
LST. At the annual scale, the annual temperature cycle (ATC) was proposed and applied
to fill the missing values of Landsat long-term LST products [20]. The multi-temporal
information-based methods have made extraordinary progress [21]. Nevertheless, the
accuracy of the methods is closely related to factors such as surface conditions, model
fitting ability, and optimal parameter selection, which may introduce additional errors in
LST reconstruction and accuracy verification.

Hybrid methods were developed to fill the missing values, combining the spatial and
temporal information of LST. Wang et al. (2021) proposed an algorithm that considered
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the spatial and temporal characteristics [22]. Firstly, using the similar characteristics of
the adjacent time LST, the partial reconstruction of the FY-4A LST product was performed
in the temporal dimension. Secondly, the normalized difference vegetation index (NDVI)
was used to find similar pixels to the target pixels, and interpolation was performed to fill
the gap. Finally, the preliminary reconstructed LST was denoised using a Savitzky–Golay
(S–G) filter, thus realizing the reconstruction of the cloud-covered pixels of geostationary
meteorological satellite LST products. However, this method did not consider the physical
relationship between the surface and the atmosphere either; thus, the reconstruction results
were hypothetical clear-sky LST. Wu et al. (2019) proposed a multiscale feature connection
model using a convolutional neural network (CNN) [9]. This model achieves a high-
accuracy reconstruction of high missing rate regions. However, the reconstruction method
requires a lot of computing resources, and difficulties in batch data processing make
this model less practical. Ding et al. (2022) proposed an RTG method integrating China
Land Surface Data Assimilation System (CLDAS) reanalysis data and FY-4A TIR data for
reconstructing hourly all-weather LST based on RF regression, the DTC model and the
ATC model [23]. The method was applied to the Tibetan Plateau and the validation results
indicated that the accuracy of the reconstructed all-weather LST was better than the CLDAS
LST and FY-4A LST under clear-sky, cloudy-sky, and all-weather conditions.

In general, great progress has been achieved in this field. Nevertheless, there are
some limitations of the proposed reconstruction methods that deserve to be noted, which
can be listed as follows: (1) Due to the relatively low spatial resolution of geostationary
meteorological satellite LST products and the negative effects of mixed pixels and the
scale effect, it is quite difficult to verify the accuracy of the results by simply using ground
measured LST. Therefore, studies on the reconstruction of geostationary meteorological
satellite LST products under cloud-covered conditions are relatively few. (2) Because of the
lack of consideration regarding the physical relationships of the environmental variables
between the surface and atmosphere, the reconstruction results of cloud-covered LST in
some methods were hypothetical clear-sky LST instead of actual cloudy-sky LST. (3) Due
to the radiation balance and energy transfer mechanism of the surface being different
at night than in the daytime, some methods are only applicable in the daytime rather
than nighttime. In response to these challenges, this study aims to develop an all-time
reconstruction method by combining the spatial and temporal information of LST and the
surface energy balance theory, ensuring the recovery of the actual cloudy-sky LST of a
geostationary meteorological satellite is attainable with reliable accuracy.

Based on the above considerations, the study proposed a hybrid method for recon-
structing the Fengyun-4A (FY-4A) AGRI LST under cloud-covered conditions by combining
the spatial and temporal information of LST. The ERA5-Land surface cumulative net ra-
diation flux (SNR) reanalysis data was first introduced to represent the change in surface
energy arising from cloud coverage. The RF regression method was used to estimate the
LST correlation model based on clear-sky LST and the corresponding predictor variables,
including the normalized difference vegetation index (NDVI), the normalized difference
water index (NDWI), surface elevation and slope. The fitted model was then applied to
reconstruct cloud-covered LST. The S–G filtering method was used to smooth the outliers
of reconstructed LST in the temporal dimension. The proposed method was applied to
Heilongjiang Province, Northeast China and the results of the validation were presented to
verify its accuracy.

2. Materials and Methods
2.1. Study Area

Heilongjiang Province, China, shown in Figure 1, was selected as the study area. Hei-
longjiang Province is located in Northeast China (43◦26′–53◦33′N,121◦11′–135◦05′E). The
terrain of this region is complex, including plains, mountains, etc. The altitude difference of
the whole area can reach over 1600 m. As is shown in Figure 1, the land cover types of this
region include cropland, forest, shrubbery, grassland, impervious, etc. The 30 m land cover
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data can be obtained from the website of China National Cryosphere Desert Data Center
(http://www.ncdc.ac.cn/, accessed on 13 September 2023) [24]. Heilongjiang Province has
an obvious temperate continental monsoon climate. In summer, it is warm and rainy due to
the influence of the southeast monsoon. In winter, it is cold and dry due to the influence of
the northwest monsoon. The diversity of terrain, land cover types and climate types in this
region make the LST change greatly, and the spatial and temporal distribution has strong
uncertainty. Therefore, the variability of the land thermal characteristics and their complex
influencing factors make this region an ideal area for studying LST reconstruction methods.
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2.2. Data
2.2.1. FY-4A AGRI L2 LST

The Fengyun-4A (FY-4A) satellite is a new generation of geostationary meteorological
satellite launched in China on 11 December 2016. The sensor of an Advanced Geostationary
Radiation Imager (AGRI) can perform full-disk detection every 15 min. AGRI has a total
of 14 bands, including four long-wave infrared bands, and band 12 (10.3–11.3 µm) and
band 13 (11.5–12.5 µm) are mainly to retrieve LST products by using the split-window
algorithm. The LST products provided by the FY-4A AGRI have the characteristics of high
temporal resolution and high accuracy. The AGRI LST has a spatial resolution of 4 km in
NetCDF format, which can be downloaded for free from the Feng Yun Satellite Remote
Sensing Data Network (https://satellite.nsmc.org.cn/, accessed on 10 April 2023). The
study selects three days from different seasons (5 April 2021, 15 July 2021, 22 October 2021)

http://www.ncdc.ac.cn/
https://satellite.nsmc.org.cn/
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as the research period, and downloads the hourly FY-4A AGRI L2 LST of these days from
the website.

According to statistics, the average vacancy rate of LST on 5 April 2021 is 47.81%, of
which the average vacancy rate during the day is 58.71%, and 34.74% at night; on 15 July
2021, the average vacancy rate of LST in the whole day was 79.60%, of which the average
vacancy rate in the daytime was 87.13%, and 72.06% at night. The average vacancy rate
of LST for the whole day on 22 October 2021 is 23.92%, of which the average vacancy rate
during the day is 24.21%, and 23.63% at night.

2.2.2. Predictor Variables of LST

Land Surface Temperature is the product of land surface–atmosphere energy balance,
which contains abundant geological information and represents the energy change in
the interaction between land surface and atmosphere. The diurnal variation and spatial
distribution of LST are affected by many factors, including atmospheric condition, surface
albedo, land cover types, topographic condition, etc. [25]. These factors affect the balance
of surface absorbing and emitting energy, thus affecting the value of LST. In the surface–
atmosphere system, the direct driving force of the LST diurnal variation comes from the
surface cumulative net radiation flux. The surface cumulative net radiation flux refers
to the cumulative net radiation energy absorbed and emitted by the surface, which is
an important part of the surface energy balance. In the temporal dimension, the surface
mainly absorbs solar shortwave radiation during the day, making surface net radiation
flux increase to a positive value. Therefore, daytime LST tends to show an upward trend.
At night, the surface is dominated by upward long-wave radiation and the surface net
radiation flux decreases to a negative value, which makes nighttime LST show a downward
trend. In the spatial dimension, the main energy source of LST in the daytime is solar
radiation. The presence of clouds blocking the solar radiation affects the change in the
surface net radiation flux, resulting in the clear-sky LST being generally higher than cloudy-
sky LST. Moreover, the surface is dominated by upward long-wave radiation at night. As
for cloudy-sky pixels, clouds prevent the surface long-wave radiation from dissipating
into space and retain the heat of the surface to a certain extent. In contrast, the long-wave
radiation from the clear-sky pixels will be directly lost to space, resulting in a quicker
decrease in LST. Therefore, the cloudy-sky LST at night will generally be higher than the
clear-sky LST. In conclusion, the surface cumulative net radiation flux takes into account
the shielding effect of clouds and the reflection and thermal radiation of clouds, and can
accurately represent the change in actual cloudy-sky LST. The study first introduced the
surface cumulative net radiation into the LST reconstruction model, as the lead impact
factor in recovering the actual cloud-covered LST.

In addition to the surface cumulative net radiation flux, different land cover types
also have different effects on LST. In general, areas with more vegetation cover usually
have a lower LST, because vegetation can absorb solar radiation and release heat through
transpiration. Conversely, bare land or urban areas usually have a higher LST because they
can absorb more solar radiation and store heat. Moreover, water bodies can also affect LST.
Water bodies have a high heat capacity, which can absorb and release a large amount of
heat, thereby reducing the LST of the surrounding area. Therefore, the study selects the
normalized difference vegetation index (NDVI) and the normalized difference water index
(NDWI) to quantitatively describe the impact of different land cover types on LST.

Moreover, LST has a close relationship with the terrain. The LST in high altitude areas
is relatively low, because higher altitudes can lead to changes in atmospheric pressure and
humidity, thus resulting in low atmospheric temperature and weak solar radiation, which
in turn affect LST. Additionally, the surface slope also affects LST. Surface slope greatly
controls the amount of direct solar radiation received by the land surface through the angle
between the normal surface slope and the solar beam [26]. To quantify the terrain effect
on LST, the study selects surface elevation (ELV) and surface slope (SLP) as the predictor
variables. The selected remote sensing datasets are shown in Table 1.
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Table 1. Introduction of the remote sensing data in this study.

Data Spatial
Resolution Usage

FY-4A AGRI L2 LST 4 km As the target of this study

ERA5-Land reanalysis data
(SNSR, SNLR, DSSR) 0.1◦ As the radiation factor of LST

MOD09A1 8-day
synthetic reflectance data 500 m

As the spectral factor of LST
MOD13A2 16-day

synthetic NDVI data 1 km

ASTER GDEM V3 surface elevation data 30 m As the topographic factor of LST

Measured LST of
meteorological stations / As the reference LST for accuracy validation

Land cover data 30 m As the reference data to select representative
meteorological stations

• ERA5-Land Reanalysis Data

Compared with polar-orbiting satellite products, reanalysis data has the advantage
of spatio-temporal continuity [27]. The reanalysis of global land surface (ERA5-Land)
products, carried out by the fifth-generation European center for medium-range weather
forecasts (ECMWF), is simulated by the modified land surface model HTESSEL [28]. Com-
pared with previous generations, ERA5-Land reanalysis datasets have higher accuracy and
resolution. ERA5-Land provides global hourly surface data from 1950 to the present, which
can be downloaded for free on the European Copernicus Meteorological Data website
(https://cds.climate.coprnicus.eu/, accessed on 15 April 2023). In this study, the hourly
data of ERA5-Land surface cumulative net short-wave radiation (SNSR), surface cumula-
tive net long-wave radiation (SNLR), and downward cumulative surface solar radiance
(DSSR), covering the study area at the corresponding time of AGRI LST, were selected
as the radiation influencing factors of LST, the spatial resolution of which is 0.1◦ × 0.1◦.
Moreover, in this study, the surface cumulative net short-wave radiation and the surface
cumulative net long-wave radiation value are added together as the surface cumulative net
radiation (SNR), which acts as the actual radiation influence factor of LST.

• MODIS Data

The Moderate-Resolution Imaging Spectroradiometer (MODIS) is a sensor mounted
on both Aqua and Terra satellites. It has 36 visible and infrared wavebands with a wide
spectral range of 0.4–14.4 µm. In this study, MOD09A1 500 m 8-day synthetic reflectance
data was used to calculate the NDWI of the study area, and MOD13A2 1 km 16-day
synthetic NDVI data was used as the surface spectral influence factor of the study area.
The MODIS data can be downloaded from the NASA LAADS DAAC website for free
(https://ladsweb.modaps.osdis.nasa.gov/, accessed on 15 April 2023).

• ASTER GDEM Data

Terrain has a great influence on the spatial distribution and variation of LST. The height,
slope, aspect, and topography of the terrain all affect the reception and reflection of solar
radiation, resulting in large differences in LST on different terrains. Therefore, it is necessary
to obtain high-precision terrain data to describe the influence of terrain on LST. This study
selected the ASTER global digital elevation model (GDEM) Version 3 dataset, which can be
downloaded from the NASA Earthdata website (https://urs.earthdata.nasa.gov/, accessed
on 15 April 2023) for free, with a spatial resolution of 30 m. The DEM data are used to
calculate the slope, and the surface elevation and slope are used as the terrain influence
factors of LST.

https://cds.climate.coprnicus.eu/
https://ladsweb.modaps.osdis.nasa.gov/
https://urs.earthdata.nasa.gov/
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2.2.3. LST Measurements of Meteorological Stations

To evaluate the accuracy of the proposed LST reconstruction model, this study ob-
tained hourly measured LST observation data from 82 meteorological stations in Hei-
longjiang Province to verify the accuracy of cloud-covered pixel reconstruction LST. The
LST data are measured on the flat and loose bare land surface in the observation field of
the meteorological stations, and have undergone strict quality control, which has good
representativeness and reliability.

2.3. Methods
2.3.1. Flowchart Description

The flowchart of the hybrid reconstruction method for FY-4A AGRI LST under cloud-
covered conditions is shown in Figure 2. The main steps include: (1) Data preprocessing:
including geometric correction of AGRI LST, spatial registration of LST predictor variables,
and resampling to 4 km spatial resolution using bilinear interpolation. (2) LST correlation
model: The clear-sky LST is used as the target variable, and the corresponding predictor
variables (SNR, NDVI, NDWI, ELV, SLP) are used as the predictors of LST to train the
random forest correlation model. Then the trained random forest correlation model is
applied to cloudy-sky pixels to recover LST. (3) Temporal smoothing: For each pixel, the
Savitzky–Golay filtering is used to smooth the temporal dimension to remove the LST
outliers. (4) Accuracy assessment: This involves using the representative meteorological
station measured LST after spatial scale correction as the reference LST to evaluate the accu-
racy of LST reconstruction results, so as to explore the reliability of the LST reconstruction
model proposed in this study.

2.3.2. LST Correlation Model Based on Random Forest Regression

Land Surface Temperature is the result of surface energy balance, which is affected
by atmospheric environment, land cover types, terrain conditions and other factors. The
cumulative net surface radiation flux is a direct manifestation of the surface energy budget,
including the absorption and reflection of short-wave radiation, and the absorption and
emission of long-wave radiation, which plays a decisive role in the change in LST. The
coverage of clouds significantly changes the surface energy balance, blocking the surface
to receive short-wave radiation from the sun and long-wave radiation emitted from the
surface. Meanwhile, it also emits upward and downward thermal radiation, which greatly
changes the surface energy balance and then affects the change in LST. Among the input
factors used to fit the model, except for the surface cumulative net radiation flux, the
remaining predictors remain almost unchanged in one day. The reconstruction result based
on these unchanged predictive variables is the hypothetical clear-sky LST. The surface
cumulative net surface radiation flux considers the shadowing effect and the reflection and
radiation transmission of clouds, so it can accurately represent the change in LST under both
clear-sky and cloudy-sky conditions in the whole time period. To quantitatively describe
the nonlinear relationship between LST and its predictor variables, the LST correlation
model can be established as follows [29]:{

LSTactual = LSTest + e
LSTest = f (VSNR, VNDVI , VNDWI , VELV , VSLP)

(1)

where LSTactual is the actual cloud-covered LST; LSTest is the estimated cloud-covered
LST; e is the error of the correlation model; f is a function that correlates the nonlinear
relationship between LST and its impact variables. The predictor variables include surface
cumulative net radiation VSNR, the normalized difference vegetation index VNDVI, the
normalized difference water index VNDWI, surface elevation VELV and surface slope VSLP.
The surface cumulative net radiation is obtained by adding the surface cumulative net
short-wave radiation flux to the surface cumulative net long-wave radiation flux.
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The core idea of LST reconstruction is to explore the relationship between LST and
its predictor variables. Due to the complex relationship between LST and its predictor
variables, it is difficult to construct a suitable numerical model to reflect this relationship.
Therefore, this study uses the Random Forest regression model in machine learning to fit
the nonlinear relationship between LST and its predictor variables, thus constructing the
LST correlation model. The random forest regression algorithm is an ensemble learning
model based on the decision tree algorithm [30]. Multiple decision trees are constructed
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by randomly selecting a subset of training samples to form a random forest, and the
average value is used to improve the prediction accuracy and prevent the model from
overfitting [31]. When fitting the LST correlation model using the RF regression model,
the impact of the surface net radiation flux and other variables on clear-sky LST can be
learned via the correlation model. Due to the existence of an intersection between clear-sky
LST and cloudy-sky LST with respect to the influencing mechanism of cloud coverage on
LST [16], the influencing mechanism of the predictor variables on clear-sky LST should
also be applicable to cloud-covered pixels. Therefore, when the LST correlation model is
extended to cloud-covered conditions, the impact of predictor variables can be effectively
quantified and the actual cloudy-sky LST can be predicted.

Before fitting the random forest regression model, the optimal hyperparameter setting
of the random forest regression algorithm is as follows: the number of decision trees is
500, the maximum depth of decision trees is 20. The clear-sky LST and the corresponding
predictor variable value of 70% are used as the training set, and the value of 30% is used
for the test set. The cross-validation method is used to select the optimal model, and then
the trained model is applied to the cloud-covered pixels. The predictor variables of the
cloud-covered pixels are used to calculate the actual LST under cloud-covered conditions.

2.3.3. Temporally Smoothing Based on S–G Filtering Method

In addition to the characteristics of spatial distribution, the variation characteristics of
LST in the temporal dimension are also obvious. LST reconstruction based on the random
forest regression algorithm is a spatial information-based LST reconstruction method.
Although it can fill the missing value of FY-4A AGRI LST products, this method only
considers the spatial distribution characteristics of LST but does not consider the temporal
variation characteristics, which makes it difficult to ensure the continuity and variation
characteristics of the reconstructed LST in the temporal dimension. Therefore, it is necessary
to smooth the LST reconstruction results in the temporal dimension, to process the discrete
values of the spatial dimension reconstruction, reduce the error of the correlation model,
and further improve the reconstruction accuracy and reliability.

Savitzky–Golay (S–G) filtering is a filtering method based on local polynomial least
squares fitting in the temporal dimension, which was first proposed by Savitzky and Golay
in 1964 [32]. By selecting a fixed number of objects in the adjacent time phase of the filtering
object for polynomial fitting, and using the least squares to select the optimal polynomial
of the fitting effect, its value at the filtering object is the S–G filtering smoothing result. The
S–G filtering process can be expressed as follows:

LST′
i =

∑m
j=−m k jLSTi+j

N
(2)

where LST′
i is the smoothed LST result; LSTi+j is the original value of LST; m is the width

of filtering window; N is the amount of data in the filtering window, whose value is
equal to (2 m + 1); and kj is the corresponding weight of the jth LST original value in the
filtering window.

In this study, the LST value of each pixel is extracted by time phase. The polynomial
order is determined to be 2, the window width m is determined to be 9 after plenty of tests.

2.3.4. Selection of Representative Meteorological Stations and Scale Conversion of
Measured LST

To verify the accuracy of the reconstructed LST, hourly LST observation data from 82
meteorological stations across Heilongjiang Province were selected as the reference LST.
However, the low spatial resolution of geostationary meteorological satellite LST leads
to a more serious mixed pixel effect. Consequently, the scale discrepancy between the
reconstructed LST and the reference LST makes it less reliable to compare them directly. To
evaluate the accuracy of the AGRI LST reconstruction results more reliably using measured
LST data, it is necessary to select meteorological stations with better spatial representation
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and convert their measured LST to the correct spatial scale, so as to eliminate the scale
discrepancy between meteorological stations and remote sensing observations as much
as possible.

1. Selection of Representative Meteorological Stations

Representative meteorological stations should be characterized by a relatively homo-
geneous underlying surface surrounding the station, with minimal variation in land cover
types. This homogeneity ensures that the measurements are reflective of consistent and
representative samples of the local atmospheric conditions, thereby enhancing the accuracy
and reliability of the ground measured LST. Therefore, to elevate the reliability of the
reference LST, it is critical to conduct the selection of representative meteorological stations.

To better quantify the representativeness of the meteorological stations, the study
employed the 30 m land cover data of Heilongjiang Province obtained from the China
National Cryosphere Desert Data Center [24]. With the pixel housing the meteorological
stations as the center, a rectangular search window was established with a side length
of 4 km. Within this window, the number of land cover types that differ from that of
the center pixel, where the meteorological stations were located, was tallied. A lower
count of different land cover types within the search window indicates a higher degree
of homogeneity, suggesting that the LST measured at this meteorological station is more
reliable and representative.

2. Scale Conversion of Measured LST

Due to the relatively small spatial scale of the measured LST data at the representative
meteorological stations, in order to make the reference LST and reconstructed LST more
comparable, it is necessary to perform scale conversion on the measured LST. The measured
LST at the representative meteorological stations and the LST observed by satellites tend
to show a similar variation trend in both the spatial and temporal dimensions. Therefore,
there is a relatively obvious linear relationship between them. Taking the clear-sky LST of
a FY-4A pixel corresponding to the location of the representative meteorological station
as the reference LST, the linear correction model of the measured LST can be established
as follows:

LSTFY−4A = a × LSTstation + b (3)

where a and b are linear regression coefficients; LSTstation is the measured LST of the
representative meteorological stations, and LSTFY−4A is the LST corresponding to the
FY-4A pixel where the station is located. Considering the different spatial and temporal
distribution and variation of LST during the day and night, this study established the scale
conversion model during the day and night, respectively.

2.4. Accuracy Variation Method

After the selection of representative meteorological stations and the scale conversion of
measured LST, the corrected measured LST is used as the reference temperature to evaluate
the accuracy of the reconstructed LST results of cloud-covered pixels. The quantitative
evaluation indicators include the coefficient of determination R-square (R2), bias, mean
absolute error (MAE) and root mean square error (RMSE).

3. Results
3.1. Results of Selecting Representative Meteorological Stations and Scale Conversion of
Measured LST

Based on the spatial representative analysis of 82 meteorological stations in Hei-
longjiang Province, 50 stations are selected to evaluate the accuracy of reconstruction
results. After selection, the linear regression model is used to scale the hourly measured
LST on 15 April, 15 July, and 22 October 2021. The measured LST before and after the scale
correction are compared with the LST corresponding to the FY-4A clear-sky pixels where
the stations are located, and the coefficient of determination R2 and the root mean square
error (RMSE) are calculated to evaluate the scale conversion effect. The scale conversion
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results are shown in Table 2. It can be seen from Table 2 that the average coefficients of
determination of the three-day scale conversion results total 0.52, and the average RMSE
after scale conversion is about 2 K, which is significantly lower than the RMSE before
conversion (8 K in average), indicating that the effect of the linear scale conversion model
is satisfactory. Because of the high missing rate of LST, the coefficients of determination of
the scale transformation are relatively lower throughout the whole day of 15 July and the
night of 22 October.

Table 2. The result of the scale correction of the three-day hourly measured LST by representative
meteorological stations using simple linear model. The gains (a) and offsets (b) represent linear
regression coefficients in Equation (3).

Date Samples Gains (a) Offsets (b) R2
RMSE (K)

before
Correction

RMSE (K)
after

Correction

5 April 2021
Daytime 313 0.69 82.17 0.74 7.59 3.19

Nighttime 356 0.61 103.90 0.63 3.27 1.51

15 July 2021
Daytime 133 0.13 254.70 0.35 21.22 1.64

Nighttime 173 0.41 169.60 0.30 7.72 1.93

22 October 2021
Daytime 409 0.71 77.89 0.85 5.03 2.19

Nighttime 452 0.46 145.50 0.22 2.97 1.90

3.2. Reconstruction of Hourly FY-4A AGRI Cloudy-Sky LST

In this study, the proposed method is used to reconstruct the hourly FY-4A AGRI LST
under cloud-covered conditions on 5 April, 15 July, and 22 October 2021, and S–G filtering
is used to process the discrete values at the temporal dimension. Taking the four moments
of 3:00, 9:00, 15:00 and 21:00 (UTC+8) as examples, the results are shown in Figure 3.

Figure 3 shows the gap-filled LST of FY-4A AGRI on 5 April, 15 July, and 22 October.
It can be obviously seen that the proposed hybrid LST reconstruction model based on the
random forest regression algorithm and S–G filtering shows a satisfactory result. Through
visual interpretation, it is obvious that the LST reconstruction results are continuous in the
spatial dimension, and the outliers can be corrected by S–G filtering without obvious abrupt
points and boundaries. In the temporal dimension, LST generally shows a downward-
upward-downward trend, and the temporal changes in LST in different seasons have
different characteristics. The temperature difference in LST in the morning and evening in
spring and autumn is larger, while the temperature difference in LST in the morning and
evening in summer is smaller.

The random forest regression algorithm can not only construct the LST correlation
model to predict the LST of cloud-covered pixels, but also provide the variable score to
show the contribution of the selected predictor to LST. The higher the score, the more
important the predictor is. Figure 4 shows the average score and standard deviation of the
variable importance of each selected predictor variables on the selected three days. Among
all the predictors, the score of the surface cumulative net radiation flux (SNR) is the highest
(the average score of which is 6.19), because the surface cumulative net radiation flux
directly determines the surface energy budget and has a controlling effect on the change in
LST. The score of surface elevation (ELV) comes second, the average score of which is 4.38.
The terrain of Heilongjiang Province is complex, and the changes between different terrains
are obvious. Therefore, the surface elevation also has a significant controlling effect on LST.
In contrast, the importance of surface slope (SLP) is relatively low (the average score is 2.62).
This is because Heilongjiang Province is dominated by plain terrain, and the terrain is not
undulating, so the control effect of surface slope on LST is not particularly obvious. Among
the prediction variables, the scores of the surface spectral variables (NDVI and NDWI) are
relatively low, indicating that for Heilongjiang Province, the control effect of the surface
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spectral factors on LST is not particularly obvious. Among the spectral factors, the average
score of NDWI is the lowest, which is 1.97 points. This is because the water distribution in
Heilongjiang Province is generally less, and most of the water bodies are covered by clouds
at the imaging time. Therefore, the correlation model trained by clear-sky pixels cannot
represent the influence of water bodies on LST well.
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3.3. Methods Comparison

During the daytime, since the surface receives shortwave radiation from the sun
as an energy source for the increase in LST, Zhao and Duan (2020) used the cumulative
downward surface solar radiation flux (DSSR) to characterize the effect of cloud duration on
LST changes, and then used the random forest regression algorithm to reconstruct cloudy-
sky LST in the spatial dimension [16]. In this study, the surface–atmosphere energy balance
process is considered, and the surface cumulative net radiation flux (SNR) is used to replace
DSSR to realize the reconstruction of LST under cloud-covered conditions throughout the
day. Therefore, it is necessary to evaluate the LST reconstruction effect of the two methods
during the daytime.

Taking the FY-4A AGRI LST from 9:00 to 18:00 (UTC+8) on 5 April with a relatively
low missing rate as an example, SNR and DSSR are selected as radiation predictor variables
in the LST correlation model, and other impact parameters remain the same. The results of
LST reconstruction by these two radiation factors are compared. The results are shown in
Figure 5, and the accuracy evaluation results, compared with the measured LST data of
meteorological stations after linear correction, are shown in Figure 6.

From the reconstruction results of Figure 5, it can be obviously seen that both the
cumulative net radiation flux (SNR) and the cumulative downward solar radiation flux
(DSSR) can be used to reconstruct the missing values of FY-4A AGRI LST under cloud-
covered conditions during the daytime. The results of the two methods show a gradual
decreasing trend in LST from south to north in the spatial dimension, and the LST in the
time series shows a demonstrated change of first rising and then falling from 9 a.m. to
18 p.m., indicating that the reconstruction results are reliable.

It can be seen from Figure 6 that, compared with the measured LST of representative
meteorological stations after scale conversion, the coefficients of determination of the
258 cloud-covered pixels of the stations reconstructed using the surface cumulative net
radiation energy (SNR) is 0.46, the MAE is 2.88 K, the RMSE is 3.68 K, and the bias is
1.06 K; the coefficients of determination of the method using cumulative downward solar
shortwave radiation energy (DSSR) is 0.51, the MAE is 3.01 K, the RMSE is 3.75 K, and
the bias is 0.94 K. From the accuracy evaluation results, the accuracy of reconstruction
using SNR is relatively better than that of reconstruction using DSSR, indicating that the
surface cumulative net radiation flux considers the influence of surface energy balance



Remote Sens. 2024, 16, 1777 14 of 20

and cloud more comprehensively than the cumulative downward solar radiation flux. The
description of LST changes is more accurate, and the reconstruction results are closer to the
measured LST of the ground meteorological stations.
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Figure 6. The validation of the reconstructed LST using two methods against the reference LST in the
daytime of 5 April. Each point represents an hourly comparison between the reconstructed LST of
FY-4A cloudy-sky pixel and the reference LST from the corresponding representative meteorological
station in the daytime of 5 April. The red line represents the 1:1 line.
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3.4. Accuracy Verification and Error Analysis

The accuracy of the LST reconstruction results of cloud-covered pixels for three days is
evaluated by using the measured LST of representative meteorological stations after scale
conversion as the reference LST. The validation results are shown in Figure 7.
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Figure 7. Accuracy validation of the hourly reconstructed cloud-covered LST against reference LST
measured by representative meteorological stations after scale correction on the selected three days.
(5 April, 15 July, 22 October). Each point represents an hourly comparison between the recon-
structed LST of FY-4A cloudy-sky pixel and the reference LST from the corresponding representative
meteorological station on the specified dates. The red line represents the 1:1 line.

It can be seen from Figure 7 that there is a strong correlation between the reconstructed
LST of the selected three days and the reference LST (the coefficients of determination
are between 0.73 and 0.88), and the scatter points are distributed along the 1:1 line. The
lowest R2 is 0.73 on 15 July, which is because the missing rate of LST on 15 July is the
highest, resulting in less clear-sky LST data available for model training, and the correlation
between clear-sky LST and predictive variables may be biased. The high missing rate also
leads to relatively higher bias on 15 July, at −1.13 K. The average MAE of the three-day
reconstruction results is 2.02 K, and the average RMSE is 2.62 K, and there is no obvious
overestimation or underestimation area. The validation results of the study indicate that
the proposed hybrid method has strong potential for recovering cloudy-sky LST and can
achieve high accuracy.

In addition, this study used the hourly measured LST of representative meteorological
stations after scale conversion to form time series reference data, and compared them
with the reconstructed LST of corresponding pixels in the temporal dimension. Taking
Longjiang meteorological station (47.3◦N, 123.2◦E) and Baoqing meteorological station
(46.4◦N, 132.2◦E) as examples, the time series of the reconstructed LST and the reference
LST are shown in Figure 8.

It can be seen from Figure 8 that the reference LST of the selected two meteorological
stations has a high similarity with the reconstructed LST in the temporal dimension, which
can be explained as follows: (1) From 0:00 to 4:00, due to the surface upward long-wave
radiation energy being greater than the atmospheric downward radiation energy, and the
lack of solar short-wave radiation energy as a source of heat, the surface net radiation flux
is negative, resulting in the LST generally showing a downward trend. (2) At 5:00, the sun
gradually rises, and the surface begins to absorb solar short-wave radiation energy. The net
radiation flux gradually changes from negative to positive, and the LST shows an upward
trend. At about 13:00, the net radiation flux reaches the peak value, resulting in the LST
reaching the maximum value. (3) After 14:00, the solar elevation angle gradually decreased,
and the solar radiation energy absorbed by the surface gradually decreased. Meanwhile,
the surface continued to radiate outward, and the LST showed a downward trend.
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Moreover, the reconstructed LST appears to be temporally smoother than the reference
LST. This phenomenon can be explained from both data and methodological perspectives.
From a data standpoint, the reconstructed LST, which is derived from a larger scale of
pixels, inherently captures a more generalized trend of LST, thus averaging out localized
anomalies and microclimatic variations, leading to a temporal series that is less suscepti-
ble to the fluctuations that might be observed in station-specific measurements. On the
methodological side, during the process of LST reconstruction, the S–G filtering method
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was implemented pixel-by-pixel in the temporal dimension to reduce the impact of noise
and to address outliers. Abrupt increases or decreases of LST within individual time
segments are mitigated through the application of S–G filtering.

4. Discussion
4.1. Advantages

The FY-4A AGRI LST products often contain blank areas due to cloud coverage.
To address this problem, the study proposed a hybrid method for reconstructing the
spatially and temporally continuous LST datasets of a geostationary meteorological satellite
combining spatial and temporal information. The spatial distribution and the time series of
the reconstructed LST shown in Figures 3 and 8 indicate that the random forest regression
algorithm has strong potential in capturing the relationship between LST and its predictor
variables, and the proposed method can maintain the spatial and temporal variation trend
in LST to the greatest extent. Moreover, the accuracy validation based on the reconstructed
LST and the reference LST, measured by representative meteorological stations after scale
correction, has proven that the results of the proposed method have a strong correlation
with the reference LST, indicating that the results of the method are actual cloudy-sky LSTs.

The LST prediction data used in this study come from a variety of high-precision
remote sensing data sources, which can be downloaded for free and are easy to obtain.
The LST correlation model can be constructed using random forest regression to realize
the fusion of multi-source remote sensing data. As shown in Figure 3, the proposed
method has a robust performance when applied to FY-4A AGRI LST data of different times
and seasons.

In addition, the study compared the proposed method with the method proposed by
Zhao and Duan (2020) by applying these methods to reconstruct daytime LST on 5 April.
As shown in Figure 5, both methods could recover the missing value of LST under cloud-
covered conditions. Based on the visual comparison, the results of the two methods showed
a similar trend of the LST in the spatial dimension. The LST reconstructed by SNR contains
relatively less obvious abrupt points and boundaries than those reconstructed by DSSR.
Moreover, the accuracy validation of the two methods shown in Figure 6 indicate that the
reconstruction method proposed in this study has a relatively high accuracy. Therefore, the
proposed hybrid method proved to have strong potential for recovering actual cloudy-sky
LST. Moreover, due to the lack of solar radiation at night, the method proposed by Zhao
and Duan can only apply to the daytime reconstruction of actual cloud-covered LST. In
contrast, this study first introduced surface cumulative net radiation reanalysis data to
describe the variation of LST throughout the whole day, therefore reconstructing hourly
LST under cloud-covered conditions in high accuracy.

4.2. Limitations

Although the LST reconstruction model proposed in this study can achieve good
results in the reconstruction of the missing values of cloud-covered pixels in all-day LST
products, there are still some limitations in this method. First, because this model is based
on the random forest regression algorithm, and the random forest regression algorithm is a
machine learning model, the number and quality of training samples are required to be
high. Therefore, it is difficult to use this method to construct an accurate LST correlation
model for cases where a large area of cloud cover leads to a high missing rate of LST, which
greatly affects the accuracy of the reconstruction results.

Secondly, there are many remote sensing data sources obtained in this study. The scale
conversion process of different data sources is a simple bilinear interpolation resampling
method for upscaling or downscaling, without considering the actual natural conditions
of the surface, which may have a certain impact on the accuracy of the LST correlation
model, thereby affecting the reconstruction accuracy of LST. Therefore, the scale conversion
method between different data sources needs to be studied further. Moreover, the LST
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correlation model constructed based on the random forest regression algorithm is essentially
a statistical model, and its physical laws are difficult to explain.

Finally, as for the verification method, this study uses the measured LST of the repre-
sentative meteorological station as a reference and performs quality control. A simple linear
correction method is used for the scale conversion of the measured LST of representative
sites. Although the correction effect of this method shows satisfying results, it is difficult to
ensure the applicability of this method to each moment. Therefore, the questions of how
to find the appropriate validation data, and how to find the appropriate scale conversion
method, remain to be studied further.

5. Conclusions

The coverage of clouds has great influence on the spatial and temporal continuity
of FY-4A AGRI LST products, which limits the application of the products in scientific
research, such as surface thermal environment monitoring. With this problem in mind,
this study uses a variety of remote sensing data sources and proposes a hybrid method
based on random forest regression algorithm and S–G filtering to reconstruct LST under
cloud-covered conditions, which realizes the effective filling of the cloud-covered pixel
missing values and restores the spatial and temporal continuity of FY-4A AGRI LST.

In this study, the method was applied and tested in three days of different seasons in
the study area, and the accuracy was evaluated by using the measured LST of representative
meteorological stations after scale conversion as a reference. The results showed that there
was a strong correlation between the reconstructed LST and the reference LST, and high
similarity in the changes in a single-day time series. Validation of the reconstructed LST
revealed that the bias remained within the interval of −1.13 K to 0.39 K, the average MAE
was 2.02 K, and the average RMSE was 2.62 K, which indicated that the overall performance
of the method was satisfactory, and the reconstruction accuracy was reliable.

The hybrid model based on random forest regression algorithm and S–G filtering
proposed in this paper successfully realized the reconstruction of FY-4A AGRI Land Surface
Temperature products under cloud-covered conditions. The multi-source remote sensing
data selected in this study are easily obtained and the model is easily implemented. The
LST reconstruction results have spatial and temporal continuity and high accuracy. In
the case of a certain number of clear-sky pixels for reconstruction model training, the LST
reconstruction model proposed in this study can provide a new solution for filling the
vacancy values of high temporal resolution Land Surface Temperature products.
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