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ABSTRACT 
 
The phycotoxin Goniodomin A is a Dinoflagellate of the Alexandrium genus and is a macrocyclic 
lactone. It is found widely in sea water and is known to open slowly the lactone in water. The 
cleavage of the lactone is sensitive to the pH of the water. As one changes the pH from ~6 to 8 its 
solvolytic rate dramatically increases.  Treatment of kinetic data previously published indicates that 
there are two competing first-order reactions, an SN1 and an intramolecular SN2, which is a pseudo 
first-order reaction. 
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1. INTRODUCTION 
  
Dinoflagellate of the Alexandrium genus (GDA) is 
produced by four species of the genus - hiranoi, 
A. pseudogonyaulax, A. monilatum and A. 
taylorii. [1-4]. Murakami and Takeda determined 
the structure of GDA [1,5], which was recently 
confirmed by X-ray crystallography [6]. GDA is a 
polyketide macrolide containing six oxygen 
heterocycles, five macrocyclic rings with two of 
them constituting spiro ketals. The sixth ring 
contains a hemiketal, which will be the focus of 
this presentation.  
 

In 2020 Onofrio reported that GDA degrades in 
pure water at pH 7, and significantly faster in sea 
water where the pH is approximately 8 [7]. 
Further studies by Hintze [8] found that the rate 
of degradation of GDA (1) in deionized water 
(~pH 6.5), Milli-Q water (pH 7.2), and in culture 
medium (pH 8.2) became significantly faster with 
increase of the pH. 
 

 
 

Chemical Structure 1. GDA (1) 
 

The product of the degradation is a carboxylic 
acid like the seco acid of GDA (2). One might 
expect the reaction to proceed simply with 
hydrolysis of the lactone. 
  

 
 

Chemical Structure 2. GDA-SA (2) 
 

However, an alternative mechanism would be 
that of solvolysis with the leaving group being the 
carboxylate anion with production of a 
carbocation at C31. While the carboxylate is one 

of the worst known leaving groups in nucleophilic 
substitutions, there are two aspects of the 
structure of GDA (1), which might make the 
solvolytic mechanism the preferred one. The first 
is that the forming carbocation is allylic since the 
developing positive charge on C31 is allylic. The 
second one is that the OH group at C32 might 
interact as a neighboring group in which case an 
epoxide would be formed; or the epoxide                
might simply exist on the concerted reaction 
pathway. In the latter case it would not form the 
C31 carbocation but rather the C32 carbocation, 
which would be stabilized by the lone pair                  
of the ether oxygen. The solvolytic degradation        
of GDA (1) was confirmed by Harris with H2

18
O 

[9].  
 
This study treats computationally a model   
system to determine the solvolytic mechanism. 
The dramatic change in rate vs pH found by 
Hintze [8] suggests that there might be two 
competing mechanisms, as mentioned above. 

 
2. KINETICS OF THE SOVOLYTIC 

REACTIONS 
 
Hintze studied the degradation of GDA (1) at 
three different pH values. Included in his thesis 
were the plots of kinetic data (concentration vs. 
time in days). It was found that these kinetic data 
all arose from first order reactions – straight lines 
were found when plotting the natural log of the 
concentration at time t divided by the initial 
concentration (t=0). Our kinetic treatment of 
these data are presented in Fig. 1. 

 
The t1/2, half-lives, of these three kinetic 
treatments are 3.4, 2.0 and 1.2 days, 
respectively. The dramatic change in t1/2 lives 
suggests that there might be two competing first- 
order reactions occurring, one being dominant at 
pH 6 and the other at pH 8. What is the 
difference between these two pH values? Given 
that both are likely nucleophilic substitutions, it is 
possible that the hydroxide ion might be involved 
in the major reaction occurring at pH 8, since the 
hydroxide concentration is two orders of 
magnitude higher at pH 8 than at pH 6. At this 
point it was possible that the dominant reaction 
at pH 6 is SN1 and at pH 8 SN2. The calculations 
described below were done to confirm this 
proposal. 
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Fig. 1. The kinetically treated data of Hintze [8] at pH ~6.5, 7.2 and 8.2 

 

 
 

Fig. 2. The concerted, but asynchronous, transition structure for the SN1 reaction dominant at pH 6
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Fig. 3. The computed concerted reaction pathway for the SN1 reaction dominant at pH 6 
 

3. DFT CALCULATIONS   
 
The calculations [10] described below were done 
to explain the proposal based on the kinetic 
results. At pH 6 an SN1 reaction occurs with a 
unimolecular ionization with the carboxylate 
acting as the leaving group. Using the model 
system mentioned above a transition structure 
(Fig. 2) was located, which suggested a 
concerted rearrangement with the forming 
carbocation. As seen the ionization is assisted by 
the double bond attached to C31 as well as 
migration of the OH group from C32 to C31 and is 
further stabilized by interaction of the hemiacetal 
oxygen attached to C32.  The latter is crucial in 
stabilizing the final rearranged carbocation. 
Intrinsic Reaction Coordinate (IRC) calculations 
produced the reactant and product as                  
shown in Fig. 3. In the case of the reactant the 
IRC gave a conformer of that in the x-ray 
structure [6]. 
 
The IRC reactant conformer has a dihedral angle 
of the two carbons connecting the acyclic chain 
to the carboxylate carbon of the lactone of -
175.5

o 
and dihedral angle of its conformer is -

56.9
o. 

The x-ray conformer has a dihedral angle 
that would prevent OH group participation in the 
concerted reaction. The IRC gave a product with 
the six-membered ring in a boat conformation. 
Interestingly, its chair conformer was higher in 
energy than that of the boat conformer. 

 
DFT (Density Functional Theory) calculations 
were carried out in a water medium, however, 
SN1 reactions are not accurately described by 
these calculations [11]. It is known that during 
such reactions at first it forms a contact ion pair, 

which in turn forms a solvent separated ion pair. 
With this type of calculation, these ion pairs are 
not well described, and the leaving group has 
only one choice, that is to collapse to the newly 
formed carbocation produced by the concerted 
reaction. The activation energy is also large, 
since while the calculation is modeled with a 
surrounding solvent of water, no water molecules 
are present in the vicinity of the ionization of the 
C-O bond to “assist” in the ionization, leading to 
the formation of the solvent separated ion pair. 
Consequently, the computed activation energy is 
much higher than the experimental one. 
 
However, it is possible to obtain a better estimate 
of the overall energetics of carbocation          
reactions by carrying out calculations on the 
formed carbocation. There is good evidence for 
this in recent computations of carbocation 
rearrangements in terpene chemistry [12]. 
Beginning with the carbocation that is formed by 
loss of the carboxylate group in our model 
system a transition structure (Fig. 4) was              
located remarkably like that presented above 
(Fig. 2).  
 

More dramatic is the difference in the overall 
energetics of the carbocation reaction in Fig. 5 
than that in Fig. 3. Note the exceptionally low 
activation energy (+4.0 kcal/mol), and the overall 
energy of reaction between the reactant and the 
IRC product is -14.5 kcal/mole. It is apparent that 
the major driving force for this concerted 
rearrangement is the ability of the ether oxygen 
in the oxane ring to stabilize the carbocation on 
C32. This is not unexpected given that the 
methoxy group has a large negative Hammett 

para constant. 
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Fig. 4. The SN1 transition structure (with an overall positive charge) located for the model 
system carbocation 

 

 
 

Fig. 5. The overall DFT pathway of the carbocation in the SN1 reaction dominant at pH 6 
  

 
 
Fig. 6. The reaction pathway which includes a hydroxide ion of the solvolysis of the ester at pH 

8 or under basic conditions 
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Fig. 7. The SN2 reaction at pH 8 beginning with the proton removed from the oxygen at C32 

 
Turning to the dominant reaction at pH 8, a DFT 
study was conducted with the addition of a 
hydroxide ion. A transition structure was located 
(Fig. 6) for removing the hydrogen from the OH 
group on C32.  IRC calculations gave the 
reaction pathway shown in Fig. 6. 
 
Again, the overall reaction studied in the 
modeled water solution suffers from no individual 
water molecules present near the structures 
along the reaction pathway. For example, the 
carboxylate leaving group would be hydrated 
with water molecules, which would change the 
energy of the reaction. The pathway was also 
studied beginning with the anion of the reactant 
(Fig. 7). This reaction is indeed an intramolecular 
SN2 reaction. In this case the attacking nucleus is 
the negatively charged oxygen on C32. While the 
overall reaction energy is now negative, it is 
small at -0.8 kcal/mol. Again, the energetics are 
different from what one would expect 
experimentally because of lack of water 
molecules interacting with the structures along 
the reaction pathway. 
 

4. DISCUSSION 
 
The study revealed that treatment of the kinetic 
data shown in Fig. 1 shows a dramatic increase 
in t1/2 as pH is increased and is highly likely a 
result of two competing first order reactions, both 
of which have a dependence on pH. At the lower 
pH the reaction is a typical SN1 reaction with a 
neighboring group participation of the OH group 
on the carbon adjacent to the developing positive 

charge that is produced by the leaving group. 
The driving force of this is the formation of the 
positive charge on the adjacent carbon (Fig. 5), 
which is stabilized by the oxane oxygen by 
participation of its unshared pair of electrons. 
 
At higher pH the second reaction becomes 
dominant because of the increase in hydroxide 
ion concentration, which acting as a base,  
removes the proton from the OH (see Fig. 6) 
allowing the formation of the epoxide. In this 
reaction the rate determining step involves two 
reactants. Note that one reactant is the hydroxide 
ion, whose concentration is constant during the 
reaction. Hence this is simply a pseudo first- 
order reaction since the change in the 
concentration of the substrate is far higher than 
that of the hydroxide. Hence, the kinetic 
treatment shows two competing first order 
reactions, but as seen from the calculations, the 
one at higher pH is a pseudo-first order reaction. 
 
Whether or not the epoxide is stable under the 
basic reaction conditions is an interesting 
question. It has two pathways that ring opening 
of the epoxide can occur as shown in Fig. 8, with 
the two products being diastereomers. In 
addition, the product giving rise to the R-R one 
favored because of steric hindrance at the 
carbon undergoing the nucleophilic attack. 
Interestingly the SN1 reaction would also                    
give rise to a C31 S -C32 S glycol. However,       
under the aqueous conditions, the C32 carbon 
might be racemized by mutarotation of the 
hemiketal. 
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Fig. 8. Potential products of base catalyzed opening of the epoxide 
 

5. CONCLUSIONS 
 

The DFT results suggest that indeed there might 
be in the ring-opening of the lactone competing 
first-order nucleophilic substitution reactions. At 
the lower pH the SN1 dominates and at higher pH 
an intramolecular SN2 reaction is predicted to 
dominate as a pseudo first-order reaction. 
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