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Abstract: It has been a year since the outbreak of the coronavirus epidemic 2019 (COVID-19). In the
face of the global epidemic, governments in all countries have taken different prevention measures,
such as social isolation, mandatory health protection, and the closure of schools and workplaces.
The situation of the epidemic has clearly varied from country to country. In this context, research
on the impact of policies for the control of the spread of the global epidemic is of great significance.
In this paper, we examined data from a sample of 212 countries between 31 December 2019, and
21 May 2020, using multi-fuzzy regression discontinuity. We found that developed countries had
relatively low sensitivity to the policy stringency index; however, policy control measures had a
significant effect on epidemic control. In addition, the trend analysis showed that the corresponding
management and control came into play only after the policy stringency index reached 50 or the policy
management reached level II, and the robustness was optimal at this time. Therefore, the governments
in all countries should realize that epidemic prevention and control are of great importance. They
can strengthen policy stringency to control the spread of the epidemic, considering their national
conditions in terms of the economy and health system.

Keywords: coronavirus (COVID-19); policy stringency; regression discontinuity

1. Introduction
1.1. Coronavirus Situation

In December 2019, the coronavirus epidemic broke out in the South China Seafood
Market in Wuhan, China, and then quickly swept all over the world. It has now spread
to more than 200 countries, and more than 30 million people have been infected, which
has also attracted the attention of academic circles. The epidemic has not only affected
public health in society but has also had a serious impact on the economy. Specifically, the
increase in infected people, the sharp decline in income, the increase in unemployment,
and the stagnation of economic development have worried people all over the world [1].

At present, the global coronavirus epidemic is still very severe. The number of infected
people has accumulated to 7.24 million as of 26 September 2020, in the United States, the
country with the largest number of infections. The United States took highly decentralized
measures, and different states had different ways of responding to the epidemic. Eleven
states did not strictly close down unnecessary commercial activities, which may be one of
the reasons for the rapid development of the epidemic [2]. According to a survey of the
American people, nearly half of the people said that they would prioritize reducing the risk
of infection and hope to postpone the reopening of non-essential businesses, while the other
group (13%), mostly non-partisans with higher income, strongly urged the resumption of
work and production [3].

India is currently second to the United States in terms of the number of new infections.
The prevention and control policies have not been effective, with a total of 5.9 million
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people infected there due to poor health and medical conditions, overpopulation, the
consequent difficulty in monitoring, and other reasons [4]. The epidemic in Brazil was
also not effectively suppressed. Reis analyzed the infection situation in Brazil through a
ordinary differential equations (ODE) system model. He believed that the effects of Brazil’s
policies on prevention and control were only about half of those of the policies in South
Korea and Italy. This may be due to the volatile Brazilian economy. More than 13 million
people live in slum areas, which makes it difficult to maintain social distance and good
sanitary conditions [5].

The epidemic situation has been relatively controllable in other Asian countries, such
as in Singapore and South Korea. In this epidemic, prevention and control measures
in Singapore were in place, including the temperature monitoring of foreign tourists
implemented in January, strict isolation measures for high-risk areas, and the vigorous
tracking of close contacts of sick groups, leading to a total death toll of only 27 [6]. South
Korea made use of technology to launch various monitoring and tracking systems and
transparently disclosed all tracking data to the public through a central database, effectively
controlling the spread of the virus, which indicated that the application of innovative
technologies had positive significance for epidemic prevention and control [7].

1.2. Research on Effects of Policies for Prevention and Control of the Epidemic

At present, the top priority of research is in the field of medical treatment. However,
policies from the government are also indispensable factors for epidemic prevention and
control. Policies in response to the epidemic are mainly divided into two types: one is
those to reduce morbidity and mortality through various measures, such as confinement
policies, social isolation, and public health services; the other is those to implement various
fiscal and monetary measures to mitigate the economic loss caused by the epidemic itself
and isolation policies [8–12].

This paper focuses on the social epidemic prevention and control policy. In addition
to drug treatment, government interventions, such as the shutdown of unnecessary com-
mercial activities and moderate isolation, may help to prevent the spread of infectious
diseases [13,14]. Therefore, it is worth studying the prevention and control policies issued
by the government. Some scholars have focused on comparing the prevention and control
policies of countries. For example, they analyzed the prevention and control policies
and results for France, Belgium, and Canada, believing that in the face of a large-scale
epidemic, centralized countries would be more effective in allocating resources compared
with countries with federal state systems, and it also helps eliminate inequalities among
regions [15].

Others tested the effectiveness of the policies and made suggestions on policies ac-
cordingly. Based on the analysis of the Rio de Janeiro epidemic situation, Crokidakis
believed that isolation policy had a significant effect on the prevention and control of the
epidemic. Using the susceptible infectives quarantined removed (SIQR) model to calculate,
researchers found that the predicted number of infected people after effective isolation
was 600 times lower than that with no isolation at all [16]. Sardar’s research on India
also proved that isolation policy was effective [17]. Lam determined that border control
measures, such as entry restrictions and compulsory quarantine, effectively reduced the
number of imported cases, using statistics on the number of infected people. Strict domestic
isolation measures, personal hygiene awareness, and community participation were also
of great positive significance in preventing the spread of the epidemic [18].

This study provides a new perspective for policy assessment by having conducted
an accurate and generalized data analysis based on 18,862 samples with a focus on the
influences of policy control on the number of deaths from COVID-19. We propose effective
prevention and control policies based on the regression results, which is of great practical
significance considering that the epidemic has not yet ended in many countries or regions.
The main contributions and innovations of this paper lie in the following points.
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First, the current literature studying epidemic prevention and control policies has
mostly used data analysis to prove the effectiveness of policies in a single country or
qualitative comparisons of policies in several countries, while data from 212 countries
were used in this paper, expanding the research samples and examining the stringency of
policies worldwide. Secondly, the multi-fuzzy regression discontinuity model was used,
where multiple continuous variables exist, among which a threshold was set in this paper.
In this way, individuals on one side of the threshold receive the policy intervention while
those on the other side do not, constituting a quasi-experiment near the threshold.

Since the variable is originally continuous, the differences in output between individ-
uals on these two sides are caused by the intervention. Thirdly, regression discontinuity
is rarely used in existing research to study the effects of policies for epidemic prevention
and control, largely because the policy evaluation criteria are not clear and the recognition
is not accurate. We establish an evaluation model for policy stringency in this paper,
which further improves the precision of policy descriptions and provides a more suitable
analytical basis for using multi-fuzzy regression discontinuity.

2. Materials and Methods
2.1. Dataset

The data in this paper were from OurWorldInData, mostly supported by the officers at
Oxford University. As one of the largest scientific and accessible publications, OurWorldIn-
Data can be accessed free of charge. In 2020, OurWorldInData became one of the main
organizations that publish global data and research on coronavirus (COVID-19).

Considering the many factors influencing the coronavirus epidemic, our study finally
selected 11 research variables to make the research more accurate, namely, location, date,
total number of deaths, policy stringency index, median age, domestic production per
capita, total value, extreme poverty, female smokers, male smokers, hand-washing facilities,
and the number of hospital beds per 1000 people. People in the world were called on to
unite in the fight against the COVID-19 pandemic in the 73rd World Health Assembly
from 18 May 2020, to 19 May 2020. The resolution was co-sponsored by more than 130
countries and was adopted unanimously. This was the resolution that the largest number
of countries have ever sponsored.

Since then, the World Health Organization (WHO) also signed a new agreement
with the United Nations High Commissioner for Refugees (UNHCR) on 21 May 2020, to
contribute to protecting some 70 million people forcibly displaced due to the effects of
COVID-19. This indicates that worldwide attention to the COVID-19 pandemic had risen
to an unprecedented level by late May 2020. This can also be seen in the policy stringency
index of each country, as shown in Figure 1. The global policy stringency index map on
21 May 2020, showed that most countries in the remaining continents had raised their
policy stringency index to 70 or higher, except for some countries in Greenland, Africa, and
Central Asia, where the policy stringency indices were around 50.

This indicated that the policy control of countries around the world had gone through
the complete process ranging from early warning, to slight restriction, to strict control by
around 21 May 2020. Some countries started to lower the policy stringency index during
the second half of 2020, as COVID-19 was gradually stabilizing. Therefore, this study
selected the time from 31 December 2019, to 21 May 2020, which basically covered all the
important stages of policy control in the whole process of the epidemic, a more complete
process of government emergency responses.
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Figure 1. Government response stringency index on 21 May 2020.

The data were from 31 December 2019, to 21 May 2020, generally covering all the
important stages of the spread of the epidemic, and the data included 212 countries and
regions, covering most regions of the world, which is highly representative. As panel data,
after ignoring missing values, the number of observations in the sample reached 18,862.
Finally, the variables in this paper and their descriptions are shown in Table 1.

Table 1. Summary of variable.

Types of Variables Variables Definition of Variables Source

Space Location Where it is located OurWorldInData

Time Date When it is observed OurWorldInData

Dependent variables tdeaths_pm (total number of
deaths per million people)

The total number of deaths from
COVID-19 per million people

ECDC (European Centre for
Disease Prevention and Control)

Categorical variables Stringency

Stringency is a comprehensive
measurement based on 9 response

indicators, including specific
content such as school closures,
workplace closures and travel

bans, mapped to continuous data
from 0 to 100 (100 is the most

stringent strength), representing
the strength of policy control in

digital form

OxCGRT, from Blavatnik School
of Government

Age structure variables m_age (median age)
Based on the UN’s predictions on

the ages in various countries
in 2020

UNPD (United Nations
population division) and World

population prospects, 2017



Healthcare 2021, 9, 116 5 of 20

Table 1. Cont.

Types of Variables Variables Definition of Variables Source

Economic development
variables

gdp_pc (gross domestic
production per capita)

GDP calculated by purchasing
power parity (in international

dollars at constant prices in 2011)

World Development Indicators
from World Bank and Database of

World Comparison Program

e_poverty (extreme poverty) The proportion of extremely poor
people in each region since 2010

World Development Indicators
from World Bank and Database of

World Comparison Program

f_smokers (female somkers) The proportion of female smokers
in total people

World development indicators
from World Health Organization

and database of World Health
Observation Station

Sanitation conditions
variables m_smokers (male smokers) The proportion of male smokers

in total people

World development indicators
from World Health Organization

and database of World Health
Observation Station

handwash
The proportion of people with

their own handwashes in
their regions

NNSD (United Nations
Statistics Division)

hbp (hospital beds per
thousand people)

The hospital beds for every
thousand people

OECD (Organization for
Economic Cooperation and

Development); Eurostat; World
Bank and trackers from

governments in
different countries

The main research variables included dependent variables (tdeaths_pm), categorical
variables (stringency), processing variables (whether the stringency reached 25, 50, or 75),
and control variables that represented national or regional characteristics. The specific
content is described as follows:

1. Dependent variables: tdeaths_pm refers to the total number of deaths caused by
COVID-19 per million people.

2. Categorical variables: Stringency is a comprehensive measurement based on thirteen
response indicators, including specific content, such as school closures, workplace
closures, and travel bans, mapped to continuous data from 0 to 100 (100 = the most
stringent strength), representing the strength of policy control in digital form. Specifi-
cally, the Stringency Index is used to measure the difference in government response.
As a comprehensive indicator, it can be simply explained as a sum of scores, consisting
of nine indicators, using stepped scoring, ranging from 0 to 100. The score is updated
every day. The higher the score, the stricter the government’s response (that is to say,
100 = the most stringent response). The score only calculates the stringency of the
corresponding government policy but does not indicate whether the corresponding
response measures in a county or region are effective or not. This means that for
higher scores, the country’s response measures must be better than those with lower
scores. The specific calculation method and score coding are shown in Table 2:

Processing variable: Whether the stringency reached 25, 50, or 75, it was recorded
as Di. Stringency was comprehensively evaluated based on nine specific indicators, and
the final value interval was mapped from 0 to 100. In addition, combined with the World
Health Organization’s influenza pandemic warning, the alerts can be divided into four
levels, of which the first level indicates that the new virus has appeared in animals but
with no human infections, the second level indicates that the new virus has begun to infect
humans, the third level indicates that the new virus has spread from person to person, and
the fourth level indicates that the new virus has begun to spread between countries.
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Table 2. Calculation methodology and score coding of government response stringency index.

Policy Stringency Levels of Policies for Management and Control

School closures

0—No measures
1—Recommend closing

2—Require closing (only some levels or categories, e.g., just high school or just public schools)
3—Require closing all levels

Workplace closures

0—No measures
1—Recommend closing (or work from home)

2—Require closing (or work from home) for some sectors or categories of workers
3—Require closing (or work from home) all but essential workplaces (e.g., grocery stores and

doctors)

Cancel public events
0—No measures

1—Recommend cancelling
2—Require cancelling

Restrictions on gatherings

0—No restrictions
1—Restrictions on very large gatherings (the limit is above 1000 people)

2—Restrictions on gatherings between 100–1000 people
3—Restrictions on gatherings between 10–100 people
4—Restrictions on gatherings of fewer than 10 people

Close public transport
0—No measures

1—Recommend closing (or significantly reduce volume/route/means of transport available)
2—Require closing (or prohibit most citizens from using it)

Public information campaigns
0—No COVID-19 public information campaign

1—Public officials urging caution about COVID-19
2—Coordinated public information campaign (e.g., across traditional and social media)

Stay at home

0—No measures
1—Recommend not leaving house

2—Require not leaving house with exceptions for daily exercise, grocery shopping, and
“essential” trips

3—Require not leaving house with minimal exceptions (e.g., allowed to leave only once every few
days, or only one person can leave at a time, etc.)

Restrictions on internal
movement

0—No measures
1—Recommend movement restriction

2—Restrict movement

International travel controls

0—No measures
1—Screening

2—Quarantine arrivals from high-risk regions
3—Ban on high-risk regions

4—Total border closure

Testing policy

0—No testing policy
1—Only those who both (a) have symptoms AND (b) meet specific criteria (e.g., key workers,

admitted to hospital, came into contact with a known case, or returned from overseas)
2—Testing of anyone showing COVID-19 symptoms

3—Open public testing (e.g., “drive through” testing available to asymptomatic people)

Contract tracing
0—No contact tracing

1—Limited contact tracing—not done for all cases
2—Comprehensive contact tracing—done for all cases

Face coverings

0—No policy
1—Recommended

2—Required in some specified shared/public spaces outside the home with other people present,
or some situations when social distancing not possible

3—Required in all shared/public spaces outside the home with other people present or all
situations when social distancing not possible

4—Required outside the home at all times regardless of location or presence of other people
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Table 2. Cont.

Policy Stringency Levels of Policies for Management and Control

Vaccination policy

0—No availability
1—Availability for ONE of following: key workers/clinically vulnerable groups/elderly groups
2—Availability for TWO of following: key workers/clinically vulnerable groups/elderly groups
3—Availability for ALL of following: key workers/clinically vulnerable groups/elderly groups

4—Availability for all three plus partial additional availability (select broad groups/ages)
5—Universal availability

Of the 13 calculation indicators that constitute the policy stringency index, except
for the influenza warning from the World Health Organization, most of their optional
scores are at the 3–5 level. Therefore, the policy stringency index can have a standard of
four levels. In this way, comparisons among countries and regions can be made through
the continuous values of the policy score. An evaluation on policy stringency can also be
conducted through the discrete intervals.

Based on this, this paper performed a similar division of the stringency interval, as
shown in Table 3:

Table 3. Classification of policy stringency.

Policy Stringency Levels of Policies for
Management and Control

Conditions of Policies for
Management and Control

0–25 The first level Looser control
25–50 The second level Loose control
50–75 The third level Strict control

75–100 The fourth level Stricter control

The regression discontinuity design in Table 2 shows that the stringency had continu-
ous data, but this jumped at the threshold of each level. Specifically, when the stringency
was less than or equal to 25, the policy control status of the country or region was loose,
and when the stringency was more than or equal to 25, the policy control status of the
country or region was relatively loose. If a value near the threshold continues to increase,
this will also strengthen the policy control. Generally speaking, government agencies will
formulate government control measures based on the stringency of the policy index rather
than the specific stringency value. The regression discontinuity was designed as follows
based on the above.

When the stringency value is near 25, 50, or 75, the slightest change will cause a
change in the level of policy control, which is likely to cause discrete changes in the number
of deaths due to COVID-19. Therefore, the points where the stringency value reached 25,
50, and 75 were regarded as discontinuity points. If the stringency value exceeded these
points, it was the treatment group. Otherwise, it was the control group. The treatment
effect represented the impact of the change in the policy control level at each point on
tdeaths_pm (the total number of deaths per million people). It could be considered that
the samples were characterized by a random distribution near each point value, which
means that the other characteristics of these samples were the same, or at least, there
was no obvious difference. This is also a major advantage of the regression discontinuity
design. In this way, missing variables or some of the control variables were solved in the
empirical process.

Control variables: Among the factors affecting the deaths in the epidemic, aging,
economic development, and sanitary conditions also played essential roles. There was a
higher risk of death from COVID-19 in countries or regions with higher proportions of
aging populations. There was a relatively lower risk in countries with developed economies
and better health and medical conditions where their medical and rescue systems were
relatively complete. Considering what is mentioned above, it is necessary to control the
above factors to eliminate the differences in objective conditions among countries or regions.



Healthcare 2021, 9, 116 8 of 20

To some degree, the avoidance of model setting errors caused by endogenous problems
and fewer deviations of regression discontinuity contributed to more accurate effects of
policy influences.

Based on this, this study selected some variables for control, mainly including age
structure status, economic development, and sanitary facility conditions. Among them,
the age structure was represented by the median age that the United Nations predicted
according to the ages in each country in 2020. The economic development status included
the per capita GDP (2011 constant international dollars as the unit) and presence of extreme
poverty (based on the proportion of extremely poor people in each region). The sanitation
facility conditions included female smokers (based on the proportion of women who smoke
in the total population of the region), male smokers (based on the proportion of men who
smoke in the region in the total population), hand-washing facilities (the proportion of the
population with basic hand-washing facilities to the total population of the area), and the
number of hospital beds per 1000 people (from 2010 to 2020).

As for the dependent variables and categorical variables mentioned in this paper,
Figure 1 was obtained from the samples selected in this study. The tdeaths_pm and
stringency generally showed a positive correlation; however, the corresponding correlation
coefficient was small. Specifically, some developing countries and developed countries
with high mortality were selected to test fit theory. The corresponding fitted line and
credible interval are shown in Figure 2. The fitted curve for developing countries was
relatively steeper and showed a positive marginal effect, which meant that stringency was
more strongly associated with deaths per million people in developing countries (blue dots
and lines), while stringency was not sensitive in developed countries (orange dots and
lines). Chile and Kuwait are at the bottom left; that is, both the policy stringency index and
tdeaths_pm were low, which was in line with the correlation for developing countries.
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2.2. Model Description

It has been almost one year since the outbreak of COVID-19. In the published literature,
simple research models have been used, and the research has focused on the factors
affecting the spread of the epidemic. For example, with the help of the epidemic data
released by the World Health Organization, Iyanda analyzed the three indicators of age,
the proportion of smokers, and out-of-pocket expenditure through spatial analysis [19].
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Scholars have also used the same method to analyze and study the infections in certain
cities and towns in the United States starting from the counties and confirmed that the
relative locations and connectivity of the cities and towns had a greater impact on the
spread of the virus within a smaller geographic area [20].

Srikanta analyzed the COVID-19 cases in Europe through four spatial regression
models, including Geographically Weighted Regression, the Spatial Error Model, the Spatial
Lag Model, and Ordinary Least Squares. The results showed that population and income
were the key factors affecting the casualties from COVID-19 in European countries [21].
Oztig and Cartenì analyzed the correlation between human mobility and the spread of the
epidemic through Negative Binomial Regression and Multiple Linear Regression [22,23].
There are also a small number of scholars who have been committed to establishing
a spread model for the epidemic, such as time series models with mixed and normal
distributions and a susceptible exposed infected removed (SEIR) spread model suitable for
heterogeneous populations to predict the trends of the spread of the epidemic [24,25].

However, of all the literature that has studied the factors affecting the epidemic,
there have been few studies related to policies from the government. Through linear
regression analysis, Sun found that there was no correlation between population density
and the spread of COVID-19 under the strict isolation policy in China, indicating that the
strict lockdown strategy was very effective in controlling the spread and deterioration of
COVID-19 [26]. Chaudhry explored the factors affecting the mortality of those infected
with COVID-19 through negative binomial regression analysis.

The results showed that border blockades and extensive testing had nothing to do
with the COVID-19 death rate per million people, but they were significantly conducive to
the recovery of the infected, which showed that the government’s prevention and control
measures and the speed of the policy had an important impact on the treatment of the in-
fected [27]. In addition, some scholars have analyzed the impacts of the lockdown policies
on the epidemic in China through deep learning models and transmission dynamics mod-
els [28,29]. Although there are many related documents, the discontinuity regression model
has still not been fully applied in the analysis of the impact of policies on the epidemic.

Therefore, the multi-fuzzy regression discontinuity model chosen in this paper, only
second to a random experiment, is a method that can avoid the endogeneity problem
of parameter estimation. Currently, there are more studies on policy effects employing
multi-fuzzy regression discontinuity. However, few are related to epidemiology. A major
reason is that regression discontinuity requires a large number of observations near the
breakpoints, which is very demanding of data. In addition, it is difficult to compare
epidemic policies for infectious diseases that are mostly endemic in small areas, often
involving only a single country. The outbreak of COVID-19 provides multiple samples
in a short period, together with the spread of the epidemic worldwide and differences
in policies in different countries, making it possible to make a comparison and analysis
of policies.

In the empirical method of causality analysis, the most optimized is the random
experiment. However, as the cost of random experiments is high, other methods need
to be adopted. Regression discontinuity is an empirical method that is only second to a
random experiment and can effectively analyze the causality between variables by using
real constraints.

As shown in Equation (1), the variable (xi − c) is the standardized xi, and the break-
point of (xi − c) is 0. The interactive term γ(xi − c)Di was introduced to achieve different
regression line slopes on either side of the breakpoint. The δ in the ordinary least square
(OLS) regression is the estimator of the local average treatment effect (LATE) at xi = c. As
there is a breakpoint in this regression, it is a regression discontinuity design (RDD).

yi = α + β(xi − c) + δDi + γ(xi − c)Di + εi(i = 1, · · · , n), (1)

The methods for estimating regression discontinuity can mainly be divided into two
categories: Sharp RD (SRD) and Fuzzy RD (FRD). The common feature is that the observed
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individuals were divided on both sides of the discontinuity, which is called the processing
state variable. The groups are called the processing group and the observation group. When
the categorical variables of the observed individual are higher than a certain threshold
or equal to it, the individual enters the processing group. The main difference between
the SRD and FRD is as follows: when the processing state variable is a function with
definiteness and discontinuity for the driver variable, it is estimated using an SRD (such as
Equation (2)). On the contrary, if the driver variable is definite, the probability or expected
value of the processing state variable is a function of discontinuous change, and an FRD is
used for estimation.

Di =

{
1 if xi > 25 or 50 or 75
0 if xi < 25 or 50 or 75

(2)

Therefore, due to various reasons, the samples of stringency in the small scale
[25−, 25+], [50−, 50+], or [75−, 75+] were randomly divided so that they could be regarded
as a standard experiment. Due to the random division, the Local Average Treatment Effect
(LATE) could be consistently estimated when the stringency was nearly 25, 50, or 75, which
was an important estimation parameter for this study as shown in Equation (3):

LATE_25 ≡ E(y1i − y0i | x = 25) = lim
x↓25

E(y1i | x)− lim
x↑25

E(y0i | x)

LATE_50 ≡ E(y1i − y0i | x = 50) = lim
x↓50

E(y1i | x)− lim
x↑50

E(y0i | x)

LATE_75 ≡ E(y1i − y0i | x = 75) = lim
x↓75

E(y1i | x)− lim
x↑75

E(y0i | x)

(3)

First, we adopted Equation (4) to estimate the regression discontinuity model but
encountered a problem in the estimation process. Breakpoint regression is based on a local
random experiment, and only observations near the breakpoint can be used; however, the
conventional methods use all samples. Therefore, research is needed to limit the value
range of the stringency to (stringency−h and stringency+h), where h is the bandwidth. To
date, the value has not been determined; therefore, non-parametric regression was chosen
to overcome the constraints of the specific function form and select the optimal bandwidth
by minimizing the mean square error.

In non-parametric regression, the kernel regression method was generally adopted.
The weight was calculated using the kernel function, and the observation value within the
bandwidth h was weighted and averaged. Since the boundary nature of nuclear regression
is not good, the focus of this study was on the value of the regression function at the
endpoint. Finally, this study adopted local linear regression to estimate the model, while
resorting to the kernel function to select the bandwidth to minimize the objective function
shown in Equation (4).

min
|α,β,δ,γ|

∑n
i=1 K[(xi − c)/h][yi − α− β(xi − c)− δDi − γ(xi − c)Di]

2
(4)

K() is the kernel function. For regression discontinuity, the more popular kernel
functions are triangular kernel (K_1) and rectangular kernel (K_2), as shown in Equation (5);
z = [c− h, c + h]. {

K_1 = 1− |z|) · 1(|z| < 1)
K_2 = 1

2 · 1(|z| < 1)
(5)

If a rectangular kernel is adopted, this is equivalent to standard OLS regression, as
well as parameter regression. The essence of local linear regression is performing weighted
least squares estimation on a small scale, z = [c− h, c + h]. This weight is calculated using
the kernel function. The closer the point to c, the greater the weight. The bias and variance
of the kernel regression estimator for a large sample are shown in Equation (6), where m()
represents the corresponding model.
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 Bias(c0) ≡ E[m̂(c0)]−m(c0) = h2
[
m′(c0)

f ′(c0)
f (c0)

+ 1
2 m′′ (c0)

] ∫ +∞
−∞ z2K(z)dz

Var[m̂(c0)] =
1

nh
σ2

ε
f (c0)

∫ +∞
−∞ K(z)2dz + o(1/nh)

(6)

Specifically, a multi-breakpoint method was adopted to determine the significance of
the RDD estimator at multiple discontinuities to avoid false discontinuities. In addition,
the fuzzy breakpoint regression adopted in this paper is based on precise breakpoint
regression. The difference between the two is that accurate breakpoint regression is at the
breakpoint, and the probability of the individual being processed jumps from 0 to 1, while
fuzzy breakpoint regression is at the breakpoint, and the probability of the individual being
processed jumps from a to b, where 0 < a < b < 1. In addition, fuzzy breakpoint regression
holds that the processing variable D is not completely determined by the grouping variable
x. For example, consider studies on the correlation between retirement and household
consumption, exploring changes in household consumption before and after retirement.
Due to the national policy, residents have a legal retirement age, but it is not guaranteed that
everyone will retire in accordance with the provisions; that is, there are early retirement,
normal retirement, and delayed retirement. In this case, the fuzzy breakpoint regression
method is more applicable.

It is also affected by other factors. Ignoring these factors causes the disturbance term
ε to be related to the processing variable D, leading to endogenous problems, which in
turn makes the OLS estimates inconsistent. If x is given, (y1 − y0) is independent of D.
Based on (y1i − y0i)⊥Di | xi, it is assumed that the fuzzy breakpoint regression LATE
can be obtained as shown in Equation (7). The numerator is the LATE of the accurate
breakpoint regression, and the denominator is the jump (b− a) in the probability of being
processed (that is, the propensity score) at breakpoint c. Equation (7) is an extension of the
exact breakpoint regression expression. In the case of an exact breakpoint (b− a = 1), the
expression for the exact breakpoint regression is obtained.

LATE ≡ E[(y1 − y0) | x = c] =
lim
x↓c

(y|x)−lim
x↑c

(y|x)

lim
x↓c

E(D|x)−lim
x↑c

E(D|x) (7)

Since the numerator of Equation (7) is the LATE of the accurate regression disconti-
nuity, the accurate regression discontinuity (local linear regression, etc.) can be used to
estimate the numerator. In addition, the denominator and the numerator are almost the
same in form and so can also be estimated by the correlation method of accurate regression
discontinuity. The only difference is that the result variable y needs to be replaced by the
processing variable D.

The instrumental variable method can also be used to complete fuzzy breakpoint
regression. Z1 = 1(x ≥ c) was defined to determine whether the grouping variable was
greater than or equal to the breakpoint. If it is, then Z1 must be related to the processing
variable D, which meets the relevance requirements of the instrumental variables. In
addition, Z1 = 1(x ≥ c) is equivalent to a local random experiment near the breakpoint,
and so D is the only one to be relied on to affect the outcome variable. This is not related
to the disturbance term, which meets the exogenous requirements of the instrumental
variables. Therefore, Z1 can be used as an effective instrument variable for D, and, on
this basis, two-stage least square (2SLS) regression can be used for estimation. If the same
bandwidth is used, the 2SLS estimator and the local linear regression estimator of the
rectangular kernel are numerically the same.
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3. Results
3.1. Robustness Tests
3.1.1. Games–Howell Test

The Games–Howell test is a non-parametric post-analysis method used for multiple
comparisons of two or more samples. The Games–Howell test is somewhat similar to
Tukey’s post hoc test [30]. However, unlike the Tukey test, it does not assume a homogeneity
of variance or equal sample size. Therefore, the Games–Howell test can be applied to
situations where the hypothesis of Tukey’s test is not true. The Games–Howell test and
Tukey’s test usually produce similar results. It could be assumed that the data had the same
variance and the same sample size. The Games–Howell test uses the Welch–Satterthwaite
degree of freedom equation, also known as the set degrees of freedom, based on Tukey’s
studentized range distribution. It uses the ranks of observations instead of the original
sample observations.

The Games–Howell test is defined as

xi − xj > qσ,k,d f (8)

In the above, σ is the standard error:

σ =

√
1
2

(
s2

i
ni
+

s2
j

nj

)
(9)

The calculation of the degrees of freedom adopted Welch’s correction.

(
s2
i

ni
+

s2
j

nj

)2

 s2
i

ni


2

ni−1 +

 s2
j

nj

2

nj−1

(10)

Therefore, a confidence interval could be formed.

xi − xj ± t

√
1
2

(
s2

i
ni
+

s2
j

nj

)
(11)

As shown in Figure 3, the value of the corresponding F statistic was 76.90 in the
Games–Howell test, and the corresponding overall p value was less than 0.01, which shows
that the overall effect of policy control at the four levels is very significant. Namely, for
tdeaths_pm, there are obvious differences in the different policy control levels. Specifically,
in the 940 samples, except for the missing values, as the policy control intensifies, the
mean and variance of tdeaths_pm continue to increase. However, there was no significant
difference between the first and second levels of policy control. The p values of the other
pairwise comparisons were all no more than 0.002. This means that tdeaths_pm and
stringency generally maintain a positive correlation. Namely, the policy control of various
countries can be related to the trend of the number of deaths from the epidemic globally.
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3.1.2. Continuity Test

In fact, regression discontinuity design implies several important preconditions:
Breakpoint regression has a pre-determined assumption that the conditional density

of the control variable is continuous at the corresponding breakpoint. This is because
if there is a jump in the conditional density function of the control variable, the corre-
sponding processing effect is missing. As shown in Table 4, when the stringency is 25, the
conditional density function with the three variables of m_age, e_poverty, and handwash
is not continuous at the breakpoint. When the stringency is 50, the conditional density
function of the three variables of gdp_pc, e_poverty, and m_smokers is not continuous
at the discontinuity. When the stringency is 75, only the conditional density function of
the two variables m_smokers and hbp is continuous at the breakpoint. In conclusion,
when the breakpoint is at the stringency of 75, there are relatively obvious gaps in its
processing effect.

Another pre-determined hypothesis of regression discontinuity is the following: the
jump in the dependent variable at the breakpoint only comes from the processing variable,
and there is no significant relationship with the control variable. In fact, in the case of
discontinuity 25, the continuity of the drive variable (stringency) is the best. In addition,
stringency has only slight jumps on both sides of breakpoint 50, and it could be considered
that the processing variables obey a random distribution. At this point, the regression dis-
continuity design adopted is more reasonable. However, on both sides of the discontinuity
75, the jump in the processing variables is relatively obvious, indicating that the estimation
is less robust at this point.
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Table 4. Continuity test for control variables in regression discontinuity.

Stringency Tdeaths_pm Coef. z P > |z| 95% Conf. Interval

25

m_age −6.8792 −3.5700 0.0000 −10.6537 −3.1047
gdp_pc 6270.8690 1.2200 0.2210 −3771.3140 16,313.0500

e_poverty 19.3998 3.8400 0.0000 9.4890 29.3107
f_smokers 1.7810 0.7100 0.4770 −3.1310 6.6931

m_smokers 0.2632 0.1000 0.9230 −5.0688 5.5953
handwash −63.8128 −6.6100 0.0000 −82.7468 −44.8788

hbp 0.4461 0.9300 0.3510 −0.4908 1.3831

50

m_age −1.2390 −0.8200 0.4100 −4.1849 1.7069
gdp_pc 5272.5470 1.9800 0.0470 66.4699 10,478.6200

e_poverty 9.9797 2.0900 0.0360 0.6305 19.3289
f_smokers −0.0423 −0.0300 0.9750 −2.7144 2.6298

m_smokers 5.4180 2.9500 0.0030 1.8129 9.0230
handwash 7.9060 1.5900 0.1120 −1.8543 17.6662

hbp 0.4962 1.0300 0.3020 −0.4467 1.4391

75

m_age −5.0188 −7.3600 0.0000 −6.3558 −3.6818
gdp_pc −9404.2130 −6.2100 0.0000 −12,370.3100 −6438.1190

e_poverty 4.6437 3.7900 0.0000 2.2431 7.0443
f_smokers −1.8714 −2.0600 0.0390 −3.6483 −0.0944

m_smokers 0.0253 0.0200 0.9830 −2.2657 2.3163
handwash −24.8325 −7.2100 0.0000 −31.5844 −18.0807

hbp 0.0582 0.3100 0.7590 −0.3144 0.4309

3.2. Multi-Fuzzy Regression Discontinuity

According to Figures 4–6, there is an obvious jump when the stringency reaches 25,
50, and 75. This indicates that when the policy stringency index is at these breakpoints,
the death toll does show an obvious downward trend. Specifically, the fuzzy regression
discontinuity through the optimal bandwidth and triangular kernel is shown in Figure 4
when the stringency is 25. It can be seen that there is a big jump in the propensity score at
the breakpoint 25. Before the stringency reaches 25, the propensity score is almost equal
to 0. After the stringency reaches 25, the propensity score rises to above 0.6. This means
that when the stringency exceeds 25 breakpoints, there is more than a 60% probability that
tdeaths_pm will decrease. At the breakpoint of stringency at 50 (as shown in Figure 5),
there is an extremely obvious jump in the propensity score. Before the stringency reaches 50,
the propensity score is almost equal to 0, and after the stringency reaches 50, the propensity
score rises to above 0.9.
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This means that when the stringency exceeds 50 breakpoints, there is a more than 90%
probability that tdeaths_pm will decrease. Similarly, at the breakpoint of a stringency of
75 (as shown in Figure 6), the propensity score also has a big jump. Before the stringency
reaches 75, the propensity score is almost equal to 0. After the stringency reaches 75, the
propensity score rises to 0.8 or more. This means that when the stringency exceeds the
75 breakpoint, there is a more than an 80% probability that tdeaths_pm will decrease. In
summary, at the breakpoint of the stringency at 50, the effect of fuzzy breakpoint regression
is the most obvious. The corresponding policy control measures need to be escalated to the
third level of policy control to have the most obvious effect.

According to the statistical test, as shown in Table 5, the p value of each statistical indi-
cator is less than 0.05, and the 95% confidence interval does not contain 0 at stringency = 25,
50, and 75, which means that stringency generally controls the tdeaths_pm. Among them,
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the effect value is the smallest at stringency = 25, only −0.3718, and the effect value is the
largest at stringency = 50, which is −34.4109. Therefore, it can be concluded that for multi-
ple discontinuity, an increase in stringency will result in a decrease in the number of deaths
per million people, especially when the stringency reaches the third level; this has the
strongest inhibitory effect on the number of deaths per million people (LATE = −34.4109).

Table 5. Fuzzy regression discontinuity of stringency and tdeaths_pm.

Stringency Tdeaths_pm Coef. Std. Err. z P > |z| 95% Conf. Interval

25
numer −0.2409 0.1118 −2.1500 0.0310 −0.4601 −0.0217
denom 0.6479 0.0634 10.2200 0.0000 0.5236 0.7721
lwald −0.3718 0.1749 −2.1300 0.0340 −0.7147 −0.0289

50
numer −33.8400 7.5731 −4.4700 0.0000 −48.6830 −18.9970
denom 0.9834 0.0116 84.6900 0.0000 0.9606 1.0062
lwald −34.4109 6.2777 −5.4800 0.0000 −46.7149 −22.1069

75
numer −29.6531 6.3416 −4.6800 0.0000 −42.0824 −17.2238
denom 0.8805 0.0176 50.0300 0.0000 0.8460 0.9149
lwald −33.6793 7.2702 −4.6300 0.0000 −47.9287 −19.4299

3.3. Bandwidth Sensitivity Test

The estimation process for breakpoint regression requires that the candidate samples
be around the discontinuity. If the sample is sufficient, it can completely replace a corre-
sponding random experiment, and then, we can use local linear estimation and calculate
according to the different kernel functions. Therefore, the bandwidth selection plays an
important role in the results of the regression discontinuity, and the bandwidth selection is
actually a trade-off between unbiasedness and effectiveness.

The closer the distance between the data and the discontinuity, the more likely the
homogeneity of the sample is to be established, but the available samples will also be
wasted; the farther the distance between the data and the discontinuity, the harder the
homogeneity of the samples will be to achieve; however, the regression efficiency can
be improved. Due to the fact that fewer data are distributed near the discontinuity, the
samples on both sides of the discontinuity have difficulty in meeting the requirements.
Therefore, discussion can only be carried out in the case of limited samples. The bandwidth
scaling combination was chosen to test how robust the estimation results were in this paper.

As shown in Table 6, at the discontinuity stringency of 25, the corresponding average
effect is only significant at the optimal bandwidth (the p value is 0.0340) but not significant
at either 0.5 times (4.5) or 2 times (18). At the stringency of 50, the fuzzy regression
discontinuity is very significant at each optimal bandwidth. Finally, at the stringency of
75, the fuzzy regression discontinuity is not significant at 0.5 times the optimal bandwidth
(4.5) (the p value is 0.5420). On the whole, the fuzzy regression discontinuity of this study
is the most robust at the stringency of 50.

Table 6. Bandwidth dependence test of regression discontinuity.

Type Stringency Tdeaths_pm Coef. Std. Err. z P > |z| 95% Conf. Interval

fuzzy

25
lwald −0.3718 0.1749 −2.1300 0.0340 −0.7147 −0.0289

lwald50 −1.1889 1.2968 −0.9200 0.3590 −3.7305 1.3527
lwald200 −0.2783 0.1886 −1.4800 0.1400 −0.6480 0.0914

50
lwald −34.4109 6.2777 −5.4800 0.0000 −46.7149 −22.1069

lwald50 −16.1610 4.4426 −3.6400 0.0000 −24.8683 −7.4536
lwald200 −36.6040 5.2472 −6.9800 0.0000 −46.8882 −26.3197

75
lwald −33.6793 7.2702 −4.6300 0.0000 −47.9287 −19.4299

lwald50 4.7146 7.7384 0.6100 0.5420 −10.4523 19.8816
lwald200 −28.0387 5.3107 −5.2800 0.0000 −38.4476 −17.6299
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Specifically, as shown in Figure 7, when the fuzzy regression discontinuity is at
stringency = 50, the dependence of the estimated value on the bandwidth is not obvious.
In the case of 0.5 times the optimal bandwidth (4.5), the estimated value is −16.1610 and
the confidence interval does not contain 0. The estimated values (as shown by the vertical
red line in Figure 7) of the optimal bandwidth (9) and two times optimal bandwidth (18)
are −34.4109 and −36.6040, respectively; the corresponding confidence interval is also far
less than 0. This means that at a discontinuity of 50, the fuzzy regression discontinuity can
strongly prove that policy control has a strong mitigation effect on deaths from COVID-19.
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4. Discussion and Research Prospects

Epidemic prevention and control are the priority. Although stringent national policies
may lead to serious economic recessions or ethical problems, governments should still
adhere to policies and regulations that are closely related to epidemic prevention and
control. We must recognize that society is a community of life where all human beings
live, and only global cooperation in the fight against an epidemic can control its further
infections and ensure people’s health. Everyone should comply with national policies with
a responsible attitude and isolate themselves from others to ultimately stop the spread of
the epidemic.

The assessment of this research is as follows in terms of its strengths and limitations.
One strength of this study is that we focused on the impact of policies on the number of
deaths from COVID-19, which is different from general epidemiological studies, which
focus only on aspects such as drug treatment and infection tracking and prediction. The
other strength of this study is that the important role of policy control was proven through
the policy stringency index and a powerful tool in casual inference—breakpoint regression.

On the other hand, a limitation of this study is that policy control was measured
only by the policy stringency index, and other methods for causal inference applicable
to the effect assessment, such as DID (double difference method) and PSM (propensity
score matching), were not used in this study. Thus, more methods are needed for robust-
ness testing. Therefore, future studies should perform analysis through multiple causal
inference tools. In addition, it is important to find more appropriate indicators of policy
control. Finally, there is a lack of empirical studies on local areas (e.g., Asia) and inter-
regional comparisons through which key factors influencing the spread of COVID-19 might
be identified.
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5. Conclusions

It can be seen that the epidemic is still severe. More research on the causal relationship
between policies and the number of deaths from the epidemic will be helpful for optimizing
policies for the prevention and control of the epidemic and stopping the spread of the
epidemic.

Based on the above research, the following conclusions can be drawn:

1. Based on visual analysis and the Games–Howell test, we found that the level of policy
control in various countries largely matched up with the trend of the number of
deaths from the epidemic. Among them, developing countries are more sensitive to
policy stringency and perform better in epidemic prevention and control.

2. In the multiple fuzzy regression discontinuity of the policy stringency, the estimated
value at each discontinuity is very significant. Taking the triangular core as an
example, when the policy stringency is 50, the effect value reaches the maximum
value (LATE = −34.4109)—that is, the number of deaths per million people drops by
about 34 people when the policy stringency index reaches the third level, and it has
the strongest inhibitory effect on the number of deaths from the epidemic at this time.

The correlation between the policy stringency index and the number of deaths from
COVID-19 in the world was accurately analyzed to prove the importance of the policies for
the prevention and control of the epidemic. Based on the above conclusions, the following
recommendations are put forward for effectively mitigating the current world epidemic:

1. Developed countries are less sensitive to policy control; there is an urgent need for
relevant governments to strengthen policy control and take continuous and strict
social isolation measures. Instead, developing countries are more sensitive to policy
control; however, they need to maintain strong policy control sensitivity over time
and gradually improve the basic medical systems to cope with sudden outbreaks.

2. In response to the deaths of the epidemic, policy control plays a significant role. Coun-
tries should attempt to strengthen policy control. Due to the lag and superposition
of policy control effects, epidemic prevention and control will be a longer process.
Therefore, more consistent prevention and control procedures must be formulated
based on the actual conditions of each country.

3. The government should take measures from multiple aspects. Social isolation should
be implemented, as well as comprehensive surveys, resident temperature tracking,
and information tracking. Besides, the government should also improve the construc-
tion of medical institutions and equipment, and optimize the public health system to
achieve both the prevention and control of the epidemic.
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