
applied
sciences

Article

An Improved Collaborative Filtering Recommendation
Algorithm Based on Retroactive Inhibition Theory

Nihong Yang *, Lei Chen and Yuyu Yuan

����������
�������

Citation: Yang, N.; Chen, L.; Yuan, Y.

An Improved Collaborative Filtering

Recommendation Algorithm Based

on Retroactive Inhibition Theory.

Appl. Sci. 2021, 11, 843. https://

doi.org/10.3390/app11020843

Received: 29 November 2020

Accepted: 13 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Key Laboratory of Trustworthy Distributed Computing and Service, Ministry of Education, School of Computer
Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications,
Beijing 100876, China; chenlei1996@bupt.edu.cn (L.C.); yuanyuyu@bupt.edu.cn (Y.Y.)
* Correspondence: nicoleynh960111@bupt.edu.cn; Tel.: +86-1881-138-8890

Abstract: Collaborative filtering (CF) is the most classical and widely used recommendation algo-
rithm, which is mainly used to predict user preferences by mining the user’s historical data. CF
algorithms can be divided into two main categories: user-based CF and item-based CF, which recom-
mend items based on rating information from similar user profiles (user-based) or recommend items
based on the similarity between items (item-based). However, since user’s preferences are not static,
it is vital to take into account the changing preferences of users when making recommendations to
achieve more accurate recommendations. In recent years, there have been studies using memory
as a factor to measure changes in preference and exploring the retention of preference based on the
relationship between the forgetting mechanism and time. Nevertheless, according to the theory of
memory inhibition, the main factors that cause forgetting are retroactive inhibition and proactive
inhibition, not mere evolutions over time. Therefore, our work proposed a method that combines
the theory of retroactive inhibition and the traditional item-based CF algorithm (namely, RICF) to
accurately explore the evolution of user preferences. Meanwhile, embedding training is introduced
to represent the features better and alleviate the problem of data sparsity, and then the item embed-
dings are clustered to represent the preference points to measure the preference inhibition between
different items. Moreover, we conducted experiments on real-world datasets to demonstrate the
practicability of the proposed RICF. The experiments show that the RICF algorithm performs better
and is more interpretable than the traditional item-based collaborative filtering algorithm, as well as
the state-of-art sequential models such as LSTM and GRU.

Keywords: collaborative filtering; recommendation algorithm; retroactive inhibition; item embedding;
embedding clustering

1. Introduction

Since the inception of the Internet, users and hardware devices have generated an
enormous amount of data. The problem of “information overload” has inevitably emerged,
and recommendation algorithms have to solve the problem of how to efficiently extract
valuable information from these massive amounts of unorganized data. Therefore, there is
no doubt that recommendation systems, as the engines of Internet development, provide
great convenience and benefits to users and Internet companies in the “information over-
load” era. They have also seen success in e-commerce and social networking as well as
other fields.

The most traditional and widely used recommendation algorithm is the collaborative
filtering algorithm (abbreviated as CF), which is further divided into item-based collabora-
tive filtering (abbreviated as itemCF) and user-based collaborative filtering (abbreviated
as userCF) algorithm based on item similarity and user similarity, so as to calculate the
ratings of unknown items as well as predict user preferences. For example, for a target
item whose rating needs to be estimated, the userCF chooses to calculate the similarity
between users, and then the unknown rating is predicted by averaging the (weighted)

Appl. Sci. 2021, 11, 843. https://doi.org/10.3390/app11020843 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11020843
https://doi.org/10.3390/app11020843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020843
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/843?type=check_update&version=1

Appl. Sci. 2021, 11, 843 2 of 20

known ratings of the target item by similar users. On the other hand, the itemCF calculates
the similarity between items first and then predicts the unknown rating by averaging the
(weighted) known ratings of similar items by other users [1,2]. As shown in Figure 1,
according to user’s movie-watching history, user a and user b share preferences, so the
userCF recommends movie 3 and movie 6, which user a likes, to user b. Meanwhile, the
itemCF recommends movie 2, which is similar to movie 6 that user b liked before, to user b.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 20

between users, and then the unknown rating is predicted by averaging the (weighted)
known ratings of the target item by similar users. On the other hand, the itemCF calculates
the similarity between items first and then predicts the unknown rating by averaging the
(weighted) known ratings of similar items by other users [1,2]. As shown in Figure 1, ac-
cording to user’s movie-watching history, user ܽ and user ܾ share preferences, so the
userCF recommends movie 3 and movie 6, which user ܽ likes, to user ܾ. Meanwhile,
the itemCF recommends movie 2, which is similar to movie 6 that user ܾ liked before,
to user ܾ.

Figure 1. Demonstration for collaborative filtering (CF) algorithms. (a) user-based CF; (b) item-
based CF.

CF algorithms are all designed to recommend items to users based on the preferences
of similar users or the user’s history, and the process is done by calculating the similarity
between users or items. However, traditional CF algorithms suffer from the problem of
data sparsity and inadequate exploration of mechanisms of how user preferences decay.
In fact, several prior studies [3–5] pointed out that preference decay and memory decay
are very similar. Thus, this paper proposes an improved CF algorithm based on retroac-
tive inhibition of preferences (abbreviated as RICF) to capture the evolution of user’s pref-
erences. There are a number of papers in the field of recommendation systems that meas-
ure the memory forgetting process based directly on the decay of time [6–9]. However,
according to the [10–12] researches in psychology, memory attenuation mainly stems from
memory inhibition. Therefore, RICF adopts the theory of retroactive inhibition, which
measures the retention of the user’s preference on item ܽ by calculating the strength of
inhibition that item ܽ suffered within the corresponding time period, and consequently
affects the weight of the contribution that item ܽ makes to the target item’s rating predic-
tion.

For example, given samples as in Table 1, to predict user ܽ’s rating of movie 4 on
11/12/2018, traditional itemCF calculates the contribution of each similar movie directly
(namely, rating × similarity), so user ܽ’s rating of movie 1 has contributed 2.5 × 0.9 = 2.25
rating to the prediction of user ܽ’s rating of movie 4. However, we need to adjust the
user’s previous ratings to fit real scenarios because of the evolution of user’s preference.

Figure 1. Demonstration for collaborative filtering (CF) algorithms. (a) user-based CF;
(b) item-based CF.

CF algorithms are all designed to recommend items to users based on the preferences
of similar users or the user’s history, and the process is done by calculating the similarity
between users or items. However, traditional CF algorithms suffer from the problem of
data sparsity and inadequate exploration of mechanisms of how user preferences decay. In
fact, several prior studies [3–5] pointed out that preference decay and memory decay are
very similar. Thus, this paper proposes an improved CF algorithm based on retroactive in-
hibition of preferences (abbreviated as RICF) to capture the evolution of user’s preferences.
There are a number of papers in the field of recommendation systems that measure the
memory forgetting process based directly on the decay of time [6–9]. However, according
to the [10–12] researches in psychology, memory attenuation mainly stems from memory
inhibition. Therefore, RICF adopts the theory of retroactive inhibition, which measures the
retention of the user’s preference on item a by calculating the strength of inhibition that
item a suffered within the corresponding time period, and consequently affects the weight
of the contribution that item a makes to the target item’s rating prediction.

For example, given samples as in Table 1, to predict user a’s rating of movie 4 on
11/12/2018, traditional itemCF calculates the contribution of each similar movie directly
(namely, rating × similarity), so user a’s rating of movie 1 has contributed 2.5 × 0.9 = 2.25
rating to the prediction of user a’s rating of movie 4. However, we need to adjust the
user’s previous ratings to fit real scenarios because of the evolution of user’s preference.
Specifically, on 11/12/2018, for the preference that user a had to movie 1, it suffered
retroactive inhibition from 05/04/2018 to 11/12/2018, namely the inhibition from movie
3 rated by user a, which exists in a different preference cluster and has a higher rating.
Movie 3 subsequently affects movie 1’s contribution to the prediction of movie 4’s rating

Appl. Sci. 2021, 11, 843 3 of 20

(2.5 × 0.9 × Decay(RI)). In this way, RICF measures the evolution of user’s preferences
more interpretatively and accurately from the perspective of preference inhibition.

Table 1. The structure of sample data.

User Movie Rating Time Preference Cluster Similarity to Movie 4

a 1 2.5 05 April 2018 C1 0.9
a 3 4.0 11 May 2018 C2 0.8
b 4 3.5 05 April 2018 C3 1.0
b 1 2.0 01 June 2018 C1 0.9
c 2 2.5 10 October 2018 C4 0.7
c 3 3.0 15 October 2018 C2 0.8
a 4 ? 11 December 2018 C3 1.0

The contributions of this paper are described as follows,

1. This paper introduces the theory of retroactive inhibition into recommendation sys-
tems to more interpretably measure the decay of a user’s preference over time. Specif-
ically, we modified the application of the forgetting mechanism of brain memory to
the recommendation system by using retroactive inhibition instead of using forget-
ting over time directly, in order to calculate the change of user’s preference more
accurately.

2. The proposed RICF algorithm not only takes into account the evolution of user
preferences but also uses more powerful item embeddings by fusing user, item and
rating information to alleviate the problem of data sparsity and improve the accuracy
of rating prediction. In addition, the embeddings trained by the model (using rating-
prediction as an optimization goal) can help to reduce the number of similar neighbors
in the collaborative process.

3. Differing from previous related studies, this paper proposes to use a clustering
of embeddings to obtain a preference points model. Meanwhile, RICF combines
the Canopy and K-Means algorithms to overcome the problem that the clustering
efficiency decreases with the increasing size of the dataset, as well as the feature
dimension.

4. To show the practicability of the proposed algorithm, this paper applies real datasets
with real timestamps, which are the live movie rating dataset collected from Twit-
ter [13] and the digital music dataset collected from Amazon [14]. The experiment
results show that RICF performs better and is more interpretable than the traditional
itemCF as well as the state-of-the-art sequential algorithms that focus on the research
of preference decay.

The remainder of this paper is organized as follows. Section 2 summarizes the re-
lated work. Section 3 provides some preliminaries and describes the proposed RICF
algorithm. Section 4 presents results from experiments conducted on two evaluation
datasets. Section 5 concludes the paper.

2. Related Work
2.1. Collaborative Filtering Recommendation

Recommendation System (RS) plays an important role in today’s Internet, which
aims to filter relevant as well as important information for users from previous feedbacks.
The demand for such systems is gradually increasing along with the overload of data on
the Internet. The root of RS can be traced back to the extensive researches in cognitive
science [15], information retrieval [16], management science [17], and also in consumer
choice modeling in marketing [18]. Later on, RS developed into an independent research
field in the mid-1990s to tackle problems in the structure of explicit rating [19]. Naturally,
one of the most common processes is to turn recommendations into operations to predict
an unknown item’s rating for users based on their previous behaviors, namely, the rating-

Appl. Sci. 2021, 11, 843 4 of 20

prediction problem. Then, we can recommend the highest rated items to the user based
on the predictions. In addition, there are top-N based recommendations, but this paper
mainly focuses on the problem of rating prediction. Moreover, the approaches of RS can
be divided into three categories [19]: (1) content-based recommendation, (2) collaborative
recommendation, and (3) hybrid approaches.

CF algorithms belong to the collaborative recommendation, which makes recommen-
dations similar to user’s previous preference or from similar users. According to [20],
algorithms for collaborative recommendations can be grouped into two general classes:
memory-based(or heuristic-based) and model-based. Memory-based algorithms [20–22]
are essentially heuristics that make recommendations based on the entire dataset of user pre-
vious behaviors, which can be further divided into userCF and itemCF. Furthermore, [23,24]
present empirical evidence that itemCF can provide better computational performance as
well as better quality of recommendation than traditional userCF. On the other hand, model-
based algorithms [25–30] focus on model learning and then apply the trained model to
the recommendation. Meanwhile, there are two popular error functions for CF algorithms
to evaluate the performance, especially for the task of rating prediction: mean absolute
error (MAE) and root mean squared error (RMSE). Since the absolute value function is not
differentiable at all points, RMSE is more desirable as an objective function [31].

However, traditional CF algorithms suffer from different problems: sparsity, high
dimensionality of data [32], and disability of capturing the evolution of user preferences
over time. From now on, amounts of researches in the recommendation community have
emerged to tackle these difficulties. For example, to tackle the first problem, [33] directly
reduce the number of users/items, [34,35] extract information from clustered groups, and
more advanced, [36,37] propose to learn a latent space vector for each user/item by deep
learning algorithms. On the second problem, to the best of our knowledge, there are two
main different solutions that take user’s dynamic preferences into consideration. One way
is to directly apply time as a factor [7,8,38,39], e.g., Ebbinghaus’s forgetting curve. Another
approach is driven by the development of sequential recommendation, which treats user-
item interactions as a series of sequential events and takes the sequential dependencies
into account to capture user’s current or recent preference for more accurate recommenda-
tions [40], such as state-of-art techniques, Long Short Term Memory (LSTM) [41,42] and
Gated Recurrent Unit (GRU) [43].

In summary, the fact of reducing the influence of data sparsity as well as emphasizing
the requirement of capturing dynamic user’s preferences has gained more attention in
the recommendation field. The classic CF algorithm still faces these challenges, and these
factors should be taken into account to make recommendations not only interpretable but
more accurate. Thus, that is the direction we follow in this paper.

2.2. Retroactive Inhibition Theory

Inhibition is one of the core concepts in Cognitive Psychology [11]. The idea that
inhibition actively impairs the representation of the human mind has inspired a great
deal of research in various fields. Specifically, among the several theories of the forgetting
mechanism, the overall evidence suggests that the inhibition within similar objects are by
far the most critical factor in the forgetting process rather than the direct time factor [11,44].
In addition, inhibition theory, also known as interference theory, proposed that information
competition can refer to either proactive inhibition (PI) (interfered by previous similar
objects) or retroactive inhibition (RI) (interfered by subsequent similar objects) [45]. For
example, after you learn a vocabulary list containing the word “dairy” and the word “diary”
(the “dairy” was learned first and the “diary” was learned later), your recall of the two
similar words will be affected by mutual inhibition. Proactive inhibition is the inhibition
of newer memories with the retrieval of older memories, that is, your memory of “dairy”
will produce proactive inhibition when you recall “diary”. Retroactive inhibition is the
inhibition of older memories with the retrieval of newer memories, that is, your memory

Appl. Sci. 2021, 11, 843 5 of 20

of “diary” will produce retroactive inhibition when you recall “dairy”. Compared with
proactive inhibition, retroactive inhibition may have larger effects [46].

According to [11], algorithms should take the cognitive principles into consideration to
be more in tune with the process of forgetting. However, for Computer Science, to the best
of our knowledge, while the cognitive concept of activation propagation and the concept
of forgetting have been adopted into different types of computer science approaches more
recently, the explicit adoption of the concept of inhibition has not been investigated yet [11].

3. Proposed Model: RICF

Similar to the example of learning words in Section 2.2, a user’s recall of the older pref-
erences can be affected by the competing information in the memory of newer preferences,
which leads to a memory bias towards the older preferences. Thus, in order to explore
the bias of user’s preferences memory and improve the accuracy of rating prediction,
this paper mainly focuses on the phenomenon of memory decay caused by competition-
induced retroactive inhibition. Specifically, this paper introduces the retroactive inhibition
factor (RI) and proposes the RICF algorithm to improve the traditional CF algorithm. The
whole algorithm is divided into the following steps: (1) training embedding vectors; (2)
embedding clustering; (3) preference-retention calculation; (4) preference prediction. The
whole process is shown in the Figure 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 20

of the two similar words will be affected by mutual inhibition. Proactive inhibition is the
inhibition of newer memories with the retrieval of older memories, that is, your memory
of “dairy” will produce proactive inhibition when you recall “diary”. Retroactive inhibi-
tion is the inhibition of older memories with the retrieval of newer memories, that is, your
memory of “diary” will produce retroactive inhibition when you recall “dairy”. Com-
pared with proactive inhibition, retroactive inhibition may have larger effects [46].

According to [11], algorithms should take the cognitive principles into consideration
to be more in tune with the process of forgetting. However, for Computer Science, to the
best of our knowledge, while the cognitive concept of activation propagation and the con-
cept of forgetting have been adopted into different types of computer science approaches
more recently, the explicit adoption of the concept of inhibition has not been investigated
yet [11].

3. Proposed Model: RICF
Similar to the example of learning words in Section 2.2, a user’s recall of the older

preferences can be affected by the competing information in the memory of newer prefer-
ences, which leads to a memory bias towards the older preferences. Thus, in order to ex-
plore the bias of user’s preferences memory and improve the accuracy of rating predic-
tion, this paper mainly focuses on the phenomenon of memory decay caused by competi-
tion-induced retroactive inhibition. Specifically, this paper introduces the retroactive in-
hibition factor (RI) and proposes the RICF algorithm to improve the traditional CF algo-
rithm. The whole algorithm is divided into the following steps: (1) training embedding
vectors; (2) embedding clustering; (3) preference-retention calculation; (4) preference pre-
diction. The whole process is shown in the Figure 2.

Figure 2. Workflow of proposed algorithm retroactive inhibition of preferences (RICF). Figure 2. Workflow of proposed algorithm retroactive inhibition of preferences (RICF).

To tackle the data sparsity problem, this paper introduces a deep learning technique,
called embedding training, to convert high-dimensional sparse vectors of items into low-
dimensional dense vectors. The distance between these trained embeddings reflects the
similarity between them. Then, we clustered embeddings, and the clustered results rep-
resent the user’s preferences. After that, the evolution of the user’s preferences is shown
by calculating the inhibition intensity and preference retention for each user’s historical

Appl. Sci. 2021, 11, 843 6 of 20

preference. Finally, we calculated the user’s future preferences based on the evolution of
the user’s preferences and the similarity between item embeddings.

3.1. Preliminary

Suppose that there are a user set U = {u1, u2 · · · un} and an item set O = {o1, o2 · · · om},
we define the rating pair

(
rij, tij

)
, where rij represents the rating for user ui to item oj and

tij is the time when user ui rates item oj. The vector
→
ui represents the rating pair set of user

ui. If user ui does not rate item oj, then the corresponding rating pair is empty. Finally, the
rating matrix M is defined as follows,

M =



→
u1
→
u2
...
→
ui
...
→
un


=

 (r11, t11) · · · (r1m, t1m)
...

. . .
...

(rn1, tn1) · · · (rnm, tnm)

, (1)

Definition 1 (Retroactive Inhibition Strength) is given an item set O = {o1, o2 · · · om}
and a user set U = {u1, u2 · · · un}, then we can assign each item oj a label k to record the
cluster (we call it the preference point) k it belongs to after concluding the clustering of
items in the item set, considering the result of cluster shows the preference distribution of
users. After that, the retroactive inhibition strength for item on (belongs to the preference
point k) rated by user ui from time tin to time tim can be defined as follows,

RIin→im = ∑
k′∈Kin→im

Dist
(
k, k′

)
, (2)

RIin→im represents the total impact of retroactive inhibition on ui’s preference on the
preference point k that on belongs to, where Kin→im in the Equation (2) is a collection of
preference points to which ui’s rated items belong from time tin to time tim. Moreover,
retroactive inhibition is caused by the influence of other stronger preferences or the same
preference from time tin to time tim, we defined the Dist function to calculate preference
distance between k and k′ for user ui, as shown in Equation (3).

Dist(k, k′) =


0, r

(
k′
)
≤ r(k) and k′ 6= k

r
(
k′
)
− r(k), r

(
k′
)
> r(k) and k′ 6= k

−
(
r
(
k′
)
− r(k)

)
, k′ = k

(3)

where function r aims to measure the cumulative strength of a user’s preference for a
particular preference point within the specified time period. Specifically, r

(
k′
)

is the
function to get the average rating among the rating records which rated from time tin to
time tim with the preference point k′, and r(k) is the function to get the average rating
among the rating records that rated earlier than tin with the preference point k.

For example, assuming that user ui rated items {o1, o2, o3, o4, o5} sequentially, and
we know that items fell into preference points {k = 1, k = 3, k = 4, k = 6, k = 1},
respectively, as shown in Figure 3. Then, according to Equation (3), we can calculate the
impact of retroactive inhibition on user’s preference on o1 (which belongs to k = 1),
namely RIi1→i5 = (3.0− 1.5) + (4.5− 1.5) + 0 + (−(1.0− 1.5)) = 4.

Appl. Sci. 2021, 11, 843 7 of 20Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 20

Figure 3. The description of ݑ௜’s historical preferences.

3.2. Embedding Training
According to Section 2.1, traditional collaborative filtering techniques also have the

problem of data sparsity and insufficient expression of features of data. That is, a small
proportion of items rated by a few users, and other information such as interactions be-
tween users and items, sequential information, fail to be represented in traditional CF al-
gorithms. Therefore, inspired by the “item2vec” method [36], this paper proposes to pre-
train a model based on the feedforward deep neural network with ratings as an optimi-
zation target to get the dense numeric representations for users/items, which aims to ob-
tain more accurate representations of users/items in the rating space.

More generally, the conversion that makes the original features of an item be trans-
formed into a dense item embedding vector is called “item2vec”. Thus, we train the afore-
mentioned model which inputs users and items information into it, and makes ratings as
optimization targets. Consequently, the original features of users/items are transformed
into a dense user/item embedding vector, namely (࢏࢛)ࢉࢋࢂ = {࢝૚, ࢝૛ ⋯ {࢔࢝ and (࢏࢕)ࢉࢋࢂ = {࢝૚, ࢝૛ ⋯ .are the dimensions of the embedding vector ࢓ and ࢔ where ,{࢓࢝
The whole architecture is shown in Figure 4b. Specifically, for example, the proposed
model maps each movie in the dataset to a dense (embedded) vector in a unified Euclid-
ean space where the distance inside represents some kind of correlation between movies,
as in Figure 4a, exploring some implicit information between embeddings in vector space
by the tool Gensim [47]. It can be seen that the distance vectors from the movie Wonder
Woman (a female-themed sci-fi movie) to movie Iron Man (a male-themed sci-fi movie)
and from movie Cinderella (a female-themed fantasy movie) to movie Coco (a male-themed
fantasy movie) are almost identical, suggesting that the embedding operation in this ex-
ample can contain the rating relationship and some semantic information among rating
history.

Figure 3. The description of ui’s historical preferences.

3.2. Embedding Training

According to Section 2.1, traditional collaborative filtering techniques also have the
problem of data sparsity and insufficient expression of features of data. That is, a small
proportion of items rated by a few users, and other information such as interactions
between users and items, sequential information, fail to be represented in traditional
CF algorithms. Therefore, inspired by the “item2vec” method [36], this paper proposes
to pre-train a model based on the feedforward deep neural network with ratings as an
optimization target to get the dense numeric representations for users/items, which aims
to obtain more accurate representations of users/items in the rating space.

More generally, the conversion that makes the original features of an item be trans-
formed into a dense item embedding vector is called “item2vec”. Thus, we train the
aforementioned model which inputs users and items information into it, and makes ratings
as optimization targets. Consequently, the original features of users/items are trans-
formed into a dense user/item embedding vector, namely Vec(ui) = {w1, w2 · · ·wn} and
Vec(oi) = {w1, w2 · · ·wm}, where n and m are the dimensions of the embedding vector.
The whole architecture is shown in Figure 4b. Specifically, for example, the proposed
model maps each movie in the dataset to a dense (embedded) vector in a unified Euclidean
space where the distance inside represents some kind of correlation between movies, as in
Figure 4a, exploring some implicit information between embeddings in vector space by the
tool Gensim [47]. It can be seen that the distance vectors from the movie Wonder Woman
(a female-themed sci-fi movie) to movie Iron Man (a male-themed sci-fi movie) and from
movie Cinderella (a female-themed fantasy movie) to movie Coco (a male-themed fantasy
movie) are almost identical, suggesting that the embedding operation in this example can
contain the rating relationship and some semantic information among rating history.

Appl. Sci. 2021, 11, 843 8 of 20
Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 20

Figure 4. (a) The diagram of embedding space; (b) The overall network architecture of the embedding-training model.

We have applied the “item2vec” method to CF to overcome the sparse data problem
and take full advantage of the powerful expression of embeddings at the same time to
accurately calculate the similarity between items, so that we can achieve more accurate
preference predictions that will be discussed in the next sections.

3.3. Embedding Clustering
In addition to solving the data sparsity problem and measuring the similarity be-

tween items more precisely, we use clustering of embeddings to better explore the user’s
preference partitions, and thus obtain the set of user’s preference points, see Definition 1.
Furthermore, in contrast to the K-Means algorithm, the Canopy+K-Means algorithm is
used to solve the problem where the effect of clustering for multidimensional data is lim-
ited by the K-value and the initial cluster centers, as well as the problem of slow compu-
tation of using the K-Means algorithm.
(1) Canopy coarse clustering

Canopy is an extremely simple and fast pre-processing algorithm. It was first pro-
posed by Andrew McCallum, Kamal Nigam and Lyle Ungar in 2000 [48]. It is often used
for coarse clustering before K-Means algorithm to find appropriate K-value and initial
cluster centers [49] for K-Means algorithm. Specifically, it applies the inexpensive distance
method to rough clustering and rigorous distance method to standard clustering. In this
way, the Canopy algorithm can make large and high-dimensional data clusters efficiently
and practically [50]. Inspired by the Canopy algorithm, this paper proposes to pre-process
the embeddings using the Canopy algorithm to obtain the appropriate cluster K-value
and the initial cluster centers which will be treated as input to the K-Means algorithm in
the next step, so as to get better cluster results in less time.

As shown in Figure 5, given that the set of item embeddings ࡱ (e.g., movie embed-
dings) and the heuristic threshold ࢀ૚, ࢀ૛ for the Canopy algorithm. First, sample ࢇ is
selected randomly from ࡱ to initialize Canopy ࢉ, then the distance between ࢇ and the
remaining samples in ࡱ is calculated. Second, assign those samples of the distance within ࢀ૚ to Canopy ࢉ and remove those samples of the distance within ࢀ૛ from ࡱ. Repeat
this process until the set ࡱ is empty. Last, return the number of canopies and centroids
as the K-value as well as initial centroids of the K-Means algorithm.

Figure 4. (a) The diagram of embedding space; (b) The overall network architecture of the embedding-training model.

We have applied the “item2vec” method to CF to overcome the sparse data problem
and take full advantage of the powerful expression of embeddings at the same time to
accurately calculate the similarity between items, so that we can achieve more accurate
preference predictions that will be discussed in the next sections.

3.3. Embedding Clustering

In addition to solving the data sparsity problem and measuring the similarity be-
tween items more precisely, we use clustering of embeddings to better explore the user’s
preference partitions, and thus obtain the set of user’s preference points, see Definition
1. Furthermore, in contrast to the K-Means algorithm, the Canopy+K-Means algorithm is
used to solve the problem where the effect of clustering for multidimensional data is limited
by the K-value and the initial cluster centers, as well as the problem of slow computation
of using the K-Means algorithm.

(1) Canopy coarse clustering

Canopy is an extremely simple and fast pre-processing algorithm. It was first proposed
by Andrew McCallum, Kamal Nigam and Lyle Ungar in 2000 [48]. It is often used for
coarse clustering before K-Means algorithm to find appropriate K-value and initial cluster
centers [49] for K-Means algorithm. Specifically, it applies the inexpensive distance method
to rough clustering and rigorous distance method to standard clustering. In this way,
the Canopy algorithm can make large and high-dimensional data clusters efficiently and
practically [50]. Inspired by the Canopy algorithm, this paper proposes to pre-process the
embeddings using the Canopy algorithm to obtain the appropriate cluster K-value and the
initial cluster centers which will be treated as input to the K-Means algorithm in the next
step, so as to get better cluster results in less time.

As shown in Figure 5, given that the set of item embeddings E (e.g., movie embeddings)
and the heuristic threshold T1, T2 for the Canopy algorithm. First, sample a is selected
randomly from E to initialize Canopy c, then the distance between a and the remaining
samples in E is calculated. Second, assign those samples of the distance within T1 to
Canopy c and remove those samples of the distance within T2 from E. Repeat this process
until the set E is empty. Last, return the number of canopies and centroids as the K-value
as well as initial centroids of the K-Means algorithm.

Appl. Sci. 2021, 11, 843 9 of 20
Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 20

Figure 5. The description of the Canopy+K-Means algorithm, which contains two steps: (a) Can-
opy pre-clustering (Algorithm 1); (b) K-Means clustering.

Algorithm 1. Pseudocode for Canopy clustering algorithm for embeddings.
1: Input: the set of item embeddings ࡱ = ,૚ࢋ} ,૛ࢋ ⋯ , .{࢓ࢋ
2: Output: the K-value and initial centroids ࡿ = {࢙૚, ࢙૛, ⋯ , ࢙࢑} of cluster.
3: Initialize ࢀ૚, ૛ࢀ
4: while ࡱ ≠ ∅ do
5: Select sample ࢇ from ࡱ randomly
6: Initialize Canopy ࢉ ← ࢇ
7: Remove ࢇ from ࡱ
8: for remaining sample ࢋ ∈ do ࡱ
9: compute ࢊ
10: if ࢊ ൏ ૚ thenࢀ
11: Canopy ࢉ ← ࢋ
12: else if ࢊ ൏ ૛ thenࢀ
13: remove ࢋ from ࡱ
14: end if
15: end for
16: end while
17: return K-value, initial centroids

(2) K-Means clustering
After coarse clustering by the Canopy algorithm, the number of clusters K and cluster

centers {࢙૚, ࢙૛ ⋯ ࢙࢑} are obtained, where each cluster center ܑ࢙ is a multidimensional
vector with the same latitude as the item embedding. Then, we apply the traditional K-
Means algorithm [51,52] by the incorporation of known K-value and initial centroids to
cluster embeddings. Eventually, we get the result of the embeddings cluster, namely the
set of user preference points.

Figure 5. The description of the Canopy+K-Means algorithm, which contains two steps: (a) Canopy
pre-clustering (Algorithm 1); (b) K-Means clustering.

Algorithm 1. Pseudocode for Canopy clustering algorithm for embeddings.

1: Input: the set of item embeddings E = {e1, e2, · · · , em }.
2: Output: the K-value and initial centroids S = {s1, s2, · · · , sk } of cluster.
3: Initialize T1, T2
4: while E 6= ∅ do
5: Select sample a from E randomly
6: Initialize Canopy c← a
7: Remove a from E
8: for remaining sample e ∈ E do
9: compute d
10: if d < T1 then
11: Canopy c ← e
12: else if d < T2 then
13: remove e from E
14: end if
15: end for
16: end while
17: return K-value, initial centroids

(2) K-Means clustering

After coarse clustering by the Canopy algorithm, the number of clusters K and cluster
centers {s1, s2 · · · sk} are obtained, where each cluster center si is a multidimensional vector
with the same latitude as the item embedding. Then, we apply the traditional K-Means
algorithm [51,52] by the incorporation of known K-value and initial centroids to cluster
embeddings. Eventually, we get the result of the embeddings cluster, namely the set of
user preference points.

3.4. Preference Retention Calculation

After Canopy+K-Means clustering, RICF uses the clustering results and the theory
of retroactive inhibition to explore the evolution of user’s preferences. In addition, this is
assuming that user ui rated items {o1, o2, o3, o4, o5} sequentially, as shown in Figure 3, and
these items were partitioned in clusters {k = 1, k = 2, k = 4, k = 6, k = 1} by Canopy+K-

Appl. Sci. 2021, 11, 843 10 of 20

Means algorithm, respectively. Then, according to the definition of retroactive inhibition
strength, we can calculate the suffered RI strength of each item. Consequently, RIi1→i5 = 4,
RIi2→i5 = 1.5, RIi3→i5 = 0, RIi4→i5 = 0.5, RIi5→i5 = 0.

Next, we need to define a RI-based decay function to simulate the process of user’s
preferences decay due to memory inhibition. We name the described function as Decay(RI)
to record the proportion of user’s preference retention. In addition, inspired by the Ebbing-
haus Curve [11], we address several methods to find out the most appropriate simulation
curve, including Power function, Exponential function and Parabolic function as a control
for extreme conditions. As an instance shown in Figure 6.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 20

3.4. Preference Retention Calculation
After Canopy+K-Means clustering, RICF uses the clustering results and the theory of

retroactive inhibition to explore the evolution of user’s preferences. In addition, this is
assuming that user ࢛࢏ rated items {࢕૚, ,૛࢕ ,૜࢕ ,૝࢕ ,૞} sequentially, as shown in Figure 3࢕
and these items were partitioned in clusters {࢑ = ૚, ࢑ = ૛, ࢑ = ૝, ࢑ = ૟, ࢑ = ૚} by Can-
opy+K-Means algorithm, respectively. Then, according to the definition of retroactive in-
hibition strength, we can calculate the suffered RI strength of each item. Consequently, ࢏ࡵࡾ૚→࢏૞ = ૝, ࢏ࡵࡾ૛→࢏૞ = ૚. ૞, ࢏ࡵࡾ૜→࢏૞ = ૙, ࢏ࡵࡾ૝→࢏૞ = ૙. ૞, ࢏ࡵࡾ૞→࢏૞ = ૙.

Next, we need to define a RI-based decay function to simulate the process of user’s
preferences decay due to memory inhibition. We name the described function as (ࡵࡾ)࢟ࢇࢉࢋࡰ to record the proportion of user’s preference retention. In addition, inspired
by the Ebbinghaus Curve [11], we address several methods to find out the most appropri-
ate simulation curve, including Power function, Exponential function and Parabolic func-
tion as a control for extreme conditions. As an instance shown in Figure 6.

Figure 6. Preferences change over retroactive inhibition (RI)-strength for three different decay
functions.

So far, we can calculate the proportion of user’s preference retention on specific items
by the defined decay function and RI strength. Consequently, user’s real preference can
be measured to improve the accuracy as well as interpretation of the recommendation.

3.5. Preference Prediction
RICF improved the traditional itemCF algorithm based on the idea of retroactive in-

hibition to take user preference evolution into consideration, and it introduced baseline
rating as well as adjusted methods to calculate the similarity between items directly on
the item embeddings obtained from the previous training. The experiment results are
shown in the next section.

Definition 2 Embedding Similarity
Based on the items for which the embeddings have been trained, this paper uses the

Cosine method to calculate the similarity between the two embeddings (࢞ࡻ)ࢉࢋࢂ = {࢞૚, ࢞૛ ⋯ , ൯࢟ࡻ൫ࢉࢋࢂ and {࢔࢞ = {࢟૚, ࢟૛ ⋯ The original Cosine is used to calculate the .{࢔࢟
angle ࣂ between two vectors (࢞ࡻ)ࢉࢋࢂ and (࢟ࡻ)ࢉࢋࢂ, ranging from −1 to 1, as defined in
Equation (4). The proposed RICF uses the normalized Cosine method to measure the sim-
ilarity between two embedding vectors, as shown in Equation (5). (ࣂ) ܛܗ܋࢞࢟ = (࢞ࡻ)ࢉࢋࢂ × (࢞ࡻ)ࢉࢋࢂ|(࢟ࡻ)ࢉࢋࢂ × |(࢟ࡻ)ࢉࢋࢂ = ∑ ∑ୀ ૚ඥ ࢏࢔࢏࢟࢏࢞ ୀ ૚ ࢏࢔૛࢏࢞ × ඥ∑ ୀ ૚ ࢏࢔૛࢏࢟ , (4)

࢟࢞࢓࢏ࡿ = ૚ା(ࣂ) ܛܗ܋࢞࢟૛ , (5)

Figure 6. Preferences change over retroactive inhibition (RI)-strength for three different
decay functions.

So far, we can calculate the proportion of user’s preference retention on specific items
by the defined decay function and RI strength. Consequently, user’s real preference can be
measured to improve the accuracy as well as interpretation of the recommendation.

3.5. Preference Prediction

RICF improved the traditional itemCF algorithm based on the idea of retroactive
inhibition to take user preference evolution into consideration, and it introduced baseline
rating as well as adjusted methods to calculate the similarity between items directly on the
item embeddings obtained from the previous training. The experiment results are shown
in the next section.

Definition 2 Embedding Similarity

Based on the items for which the embeddings have been trained, this paper uses
the Cosine method to calculate the similarity between the two embeddings
Vec(Ox) = {x1, x2 · · · , xn} and Vec

(
Oy
)
= {y1, y2 · · · yn}. The original Cosine is used

to calculate the angle θ between two vectors Vec(Ox) and Vec
(
Oy
)
, ranging from −1 to

1, as defined in Equation (4). The proposed RICF uses the normalized Cosine method to
measure the similarity between two embedding vectors, as shown in Equation (5).

cos(θ)xy =
Vec(Ox)× Vec

(
Oy
)∣∣Vec(Ox)× Vec

(
Oy
)∣∣ =

∑n
i = 1 xiyi√

∑n
i = 1 xi

2 ×
√

∑n
i = 1 yi

2
, (4)

Simxy =
1 + cos(θ)xy

2
, (5)

Consequently, this paper derives the RICF algorithm as follows, to predict user ui’s
preference for item oj.

Appl. Sci. 2021, 11, 843 11 of 20

puj = ρ×
(
U + bu + bj

)
+ (1− ρ)× (

∑i∈Nk
j (u)

Simij × (rui − bui)×Decay
(
RIui→uj

)
∑i∈Nk

j (u)
Simij

+ buj) (6)

where ρ is the heuristic parameter which we chose by stochastic selection strategy.
Part 1 of this equation is the baseline rating, where U is the mean rating for all users. bu and
bj are the rating bias of user ui and item oj, as defined in Equations (7) and (8), respectively.
Moreover, in Equations (7) and (8), N(u)(N(j)) represents all rating records associated with
user u(item oj), ri(ru) represents the mean rating of item oi(user u). Part 2 of Equation (6) is
an improved itemCF algorithm that introduces embedding similarity Simij to calculate the
similarity between item oi and item oj, as shown in Definition 2, and introduces preference
decay factor Decay

(
RIui→uj

)
to calculate the decay degree of user u’s preference on older

items oi when user u is going to rate newer item oj, as seen in Section 3.4. Meanwhile,
bui (buj) is the simplified base rating prediction for item oi (oj), which equals ru + bi(ru + bj).
What is more, the KNN part in Equation (6) chooses Nk

j (u), which selects k items most
similar to item oj from the rating history of user u.

bu =
∑i∈N(u) rui − ri

|N(u)| (7)

bj =
∑j∈N(j) ruj − ru

|N(j)| (8)

4. Results and Discussion

This section shows the comparison between traditional methods and our proposed
RICF algorithm. Several state-of-the-art algorithms are also implemented as baselines to
compare with the proposed RICF algorithm.

4.1. Dataset and Experimental Setup

Specifically, to evaluate the performance of the proposed RICF algorithm, we designed
a total of seven algorithms to be used as comparisons for the experiment: (1) traditional
itemCF, (2) RICF excluding RI effects, namely Decay

(
RIui→uj

)
= 1 in Equation 6 (without-

RI), (3) RICF with Power decay function (Power-RICF), (4) RICF with Exponential decay
function (Exponential-RICF), (5) RICF with Parabolic decay function (Parabolic-RICF),
(6) sequential model LSTM (Embedding+LSTM), and (7) sequential model GRU (Embed-
ding+GRU). All algorithms are coded in python and tested on the Kaggle cloud-based
workbench.

Furthermore, in order to ensure that each rating record is rated on user’s real rating
habits and scenarios (not rated by volunteers at once such as in the Movielens dataset [53])
and thus to ensure the authenticity of user’s preference evolution, we have specially
selected three well-known datasets based on real timestamps, MovieTweetings-100k,
MovieTweetings-latest [13], and DigitalMusic [14] to conduct the experiment. MovieTweet-
ings is an up-to-date dataset that collects all tweets from Twitter having the format “*I
rated #IMDB*”. Originally, the MovieTweetings-100k contained 16,554 unique users and
10,506 unique movies that were rated from 28/02/2013 to 01/09/2013. Likewise, the
MovieTweetings-latest contains 68,332 unique users and 35,931 unique items that were
rated from 28/02/2013 to 10/07/2020. All of the movie ratings are scaled from 1 to 10,
which will be re-scaled to 1 to 5 in this paper. The DigitalMusic dataset contains reviews
and metadata from Amazon. It contains 478,235 unique users and 266,414 unique digital
music that were rated from 20/01/1998 to 23/07/2014. All of the music ratings are scaled
from 1 to 5. The description of these three datasets is as shown in Table 2.

Appl. Sci. 2021, 11, 843 12 of 20

Table 2. The description of datasets.

MovieTweetings-100k MovieTweetings-Latest DigitalMusic

Number of users 16,554 68,332 478,235
Number of items 10,506 35,931 266,414

Number of ratings 100,000 876,673 836,006
Rating range 1–10 1–10 1–5
Time range 28/02/2013 to 01/09/2013 28/02/2013 to 10/07/2020 20/01/1998 to 23/07/2014

4.2. Evaluation Metrics

Based on the common metrics of rating prediction in the recommendation system, this
paper uses the mean absolute error (MAE) and the root mean squared error (RMSE), as
metrics to evaluate how well we predict. They are defined as follows.

Assuming there are prediction values ŷ = {ŷ1, ŷ2, · · · , ŷn} and target values
y = {y1, y2, · · · , yn}. Therefore,

RMSE =

√
1
n

n

∑
i = 1

(ŷi − yi)
2, (9)

MAE =
1
n

n

∑
i = 1
|ŷi − yi|, (10)

4.3. Results
4.3.1. Recommendation Quality

First, in Section 3.2, we conducted the experiment on datasets with the training–testing
ratio 90–10% to find the appropriate dimension for embedding vectors. For the movie
dataset, as shown in Figure 7a, the lowest RMSE occurred when the dimension of em-
bedding vectors was between 50 and 100, which does not depend on the experimental
algorithm to be evaluated. Meanwhile, considering the number of dimensions of a movie’s
own attributes, such as classes, user preferences and so on, we chose 64 to be the em-
bedding’s dimension for movies. Similarly, as shown in Figure 7b, we chose 32 to be the
embedding vector’s dimension for music.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 20

Table 2. The description of datasets.

 MovieTweetings-100k MovieTweetings-Latest DigitalMusic
Number of users 16,554 68,332 478,235
Number of items 10,506 35,931 266,414

Number of ratings 100,000 876,673 836,006
Rating range 1–10 1–10 1–5
Time range 28/02/2013 to 01/09/2013 28/02/2013 to 10/07/2020 20/01/1998 to 23/07/2014

4.2. Evaluation Metrics
Based on the common metrics of rating prediction in the recommendation system,

this paper uses the mean absolute error (MAE) and the root mean squared error (RMSE),
as metrics to evaluate how well we predict. They are defined as follows.

Assuming there are prediction values ෝ࢟ = {ෝ࢟૚, ෝ࢟૛, ⋯ , ෝ࢟ܖ} and target values ࢟ = {࢟૚, ࢟૛, ⋯ , = ࡱࡿࡹࡾ ,Therefore .{࢔࢟ ට૚࢔ ∑ (ෝܑ࢟ − ୀ ૚ ࢏࢔૛(࢏࢟ , (9)

= ࡱ࡭ࡹ ૚࢔ ෍ |ෝܑ࢟ − ࢔|࢏࢟
ୀ ૚ ࢏ , (10)

4.3. Results
4.3.1. Recommendation Quality

First, in Section 3.2, we conducted the experiment on datasets with the training–test-
ing ratio 90–10% to find the appropriate dimension for embedding vectors. For the movie
dataset, as shown in Figure 7a, the lowest RMSE occurred when the dimension of embed-
ding vectors was between 50 and 100, which does not depend on the experimental algo-
rithm to be evaluated. Meanwhile, considering the number of dimensions of a movie’s
own attributes, such as classes, user preferences and so on, we chose 64 to be the embed-
ding’s dimension for movies. Similarly, as shown in Figure 7b, we chose 32 to be the em-
bedding vector’s dimension for music.

Figure 7. Root mean squared error (RMSE) of different dimensions of embeddings. (a) Experi-
mental results on MovieTweetings-latest dataset; (b) Experimental results on DigitalMusic dataset.

Moreover, the second experiment was conducted to discuss the selection of K-neigh-
bors for RICF. The effects of K-neighbors in RICF are compared with that in traditional
itemCF, and the experiment results are shown in Figure 8. We found that only a few K-
neighbors are required to achieve good results in RICF and we speculate that the reason
is related to the embedding model trained to optimize based on the rating target, because

Figure 7. Root mean squared error (RMSE) of different dimensions of embeddings. (a) Experimental results on
MovieTweetings-latest dataset; (b) Experimental results on DigitalMusic dataset.

Moreover, the second experiment was conducted to discuss the selection of K-neighbors
for RICF. The effects of K-neighbors in RICF are compared with that in traditional itemCF,
and the experiment results are shown in Figure 8. We found that only a few K-neighbors
are required to achieve good results in RICF and we speculate that the reason is related to
the embedding model trained to optimize based on the rating target, because embeddings

Appl. Sci. 2021, 11, 843 13 of 20

contain the latent information about the requirement of optimal rating-prediction, so that
the more similar the neighbor, the greater the contribution to the rating prediction. Thus,
this experiment proved that embedding trained using the rating as the optimization target
is able to reduce the number of K-neighbors and hence reduce the computation of the
collaborative part. Finally, we chose K = 10 (the minimum K value defined in this paper) as
the number of neighbors in the RICF algorithm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 20

embeddings contain the latent information about the requirement of optimal rating-pre-
diction, so that the more similar the neighbor, the greater the contribution to the rating
prediction. Thus, this experiment proved that embedding trained using the rating as the
optimization target is able to reduce the number of K-neighbors and hence reduce the
computation of the collaborative part. Finally, we chose K = 10 (the minimum K value
defined in this paper) as the number of neighbors in the RICF algorithm.

Figure 8. RMSE of K-neighbors selection on MovieTweetings-latest dataset.

Most notably, this paper investigates the effects of different decay functions in the
RICF as well as the comparisons between the traditional itemCF and the state-of-art se-
quential model that deals with temporal information. In addition, to better explore the
process of user preference decay with inhibition, we selected four different ways to model
the decay of preferences: (1) without RI effects (without-RI), (2) Power function: obviously
decay “quickly then slowly”, (3) Exponential function: no obvious “quickly then slowly”,
(4) Parabolic function: as a contrast, it is clear that decay “slowly then quickly”. Finally,
the main experiment results on the two datasets are seen in Tables 3–5.

Table 3. RMSE of different comparative experiments on the MovieTweetings-latest dataset.

 RMSE MAE
without-RI 0.6272 0.4624

Power-RICF 0.6256 0.4609
Exponential-RICF 0.6260 0.4614

Parabolic-RICF 0.6261 0.4616
ItemCF 0.6809 0.5134

Embedding+LSTM 0.8121 0.6385
Embedding+GRU 0.7870 0.6158

Table 4. RMSE of different comparative experiments on the MovieTweetings-100k dataset.

 RMSE MAE
without-RI 0.6711 0.4919

Power-RICF 0.6606 0.4850
Exponential-RICF 0.6663 0.4877

Parabolic-RICF 0.6680 0.4895
ItemCF 0.7741 0.5752

Embedding+LSTM 0.7892 0.5933
Embedding+GRU 0.7908 0.5935

Table 5. RMSE of different comparative experiments on the DigitalMusic dataset.

 RMSE MAE

Figure 8. RMSE of K-neighbors selection on MovieTweetings-latest dataset.

Most notably, this paper investigates the effects of different decay functions in the RICF
as well as the comparisons between the traditional itemCF and the state-of-art sequential
model that deals with temporal information. In addition, to better explore the process of
user preference decay with inhibition, we selected four different ways to model the decay
of preferences: (1) without RI effects (without-RI), (2) Power function: obviously decay
“quickly then slowly”, (3) Exponential function: no obvious “quickly then slowly”, (4)
Parabolic function: as a contrast, it is clear that decay “slowly then quickly”. Finally, the
main experiment results on the two datasets are seen in Tables 3–5.

Table 3. RMSE of different comparative experiments on the MovieTweetings-latest dataset.

RMSE MAE

without-RI 0.6272 0.4624
Power-RICF 0.6256 0.4609

Exponential-RICF 0.6260 0.4614
Parabolic-RICF 0.6261 0.4616

ItemCF 0.6809 0.5134
Embedding+LSTM 0.8121 0.6385
Embedding+GRU 0.7870 0.6158

Table 4. RMSE of different comparative experiments on the MovieTweetings-100k dataset.

RMSE MAE

without-RI 0.6711 0.4919
Power-RICF 0.6606 0.4850

Exponential-RICF 0.6663 0.4877
Parabolic-RICF 0.6680 0.4895

ItemCF 0.7741 0.5752
Embedding+LSTM 0.7892 0.5933
Embedding+GRU 0.7908 0.5935

Appl. Sci. 2021, 11, 843 14 of 20

Table 5. RMSE of different comparative experiments on the DigitalMusic dataset.

RMSE MAE

without-RI 0.8389 0.5971
Power-RICF 0.8201 0.5908

Exponential-RICF 0.8298 0.5923
Parabolic-RICF 0.8339 0.5949

ItemCF 0.9079 0.6277
Embedding+LSTM 0.9557 0.7126
Embedding+GRU 0.9508 0.7106

More detailed experiment results are shown in the Figures 9–11.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 20

without-RI 0.8389 0.5971
Power-RICF 0.8201 0.5908

Exponential-RICF 0.8298 0.5923
Parabolic-RICF 0.8339 0.5949

ItemCF 0.9079 0.6277
Embedding+LSTM 0.9557 0.7126
Embedding+GRU 0.9508 0.7106

More detailed experiment results are shown in the Figures 9–11.

Figure 9. The evaluations of ten algorithms for MovieTweetings-latest dataset. (a) mean absolute
error (MAE) metric; (b) RMSE metric.

Figure 10. The evaluations of ten algorithms for MovieTweetings-100k dataset. (a) MAE metric; (b)
RMSE metric.

Figure 11. The evaluations of ten algorithms for DigitalMusic dataset. (a) MAE metric; (b) RMSE
metric.

Figure 9. The evaluations of ten algorithms for MovieTweetings-latest dataset. (a) mean absolute error (MAE) metric;
(b) RMSE metric.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 20

without-RI 0.8389 0.5971
Power-RICF 0.8201 0.5908

Exponential-RICF 0.8298 0.5923
Parabolic-RICF 0.8339 0.5949

ItemCF 0.9079 0.6277
Embedding+LSTM 0.9557 0.7126
Embedding+GRU 0.9508 0.7106

More detailed experiment results are shown in the Figures 9–11.

Figure 9. The evaluations of ten algorithms for MovieTweetings-latest dataset. (a) mean absolute
error (MAE) metric; (b) RMSE metric.

Figure 10. The evaluations of ten algorithms for MovieTweetings-100k dataset. (a) MAE metric; (b)
RMSE metric.

Figure 11. The evaluations of ten algorithms for DigitalMusic dataset. (a) MAE metric; (b) RMSE
metric.

Figure 10. The evaluations of ten algorithms for MovieTweetings-100k dataset. (a) MAE metric; (b) RMSE metric.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 20

without-RI 0.8389 0.5971
Power-RICF 0.8201 0.5908

Exponential-RICF 0.8298 0.5923
Parabolic-RICF 0.8339 0.5949

ItemCF 0.9079 0.6277
Embedding+LSTM 0.9557 0.7126
Embedding+GRU 0.9508 0.7106

More detailed experiment results are shown in the Figures 9–11.

Figure 9. The evaluations of ten algorithms for MovieTweetings-latest dataset. (a) mean absolute
error (MAE) metric; (b) RMSE metric.

Figure 10. The evaluations of ten algorithms for MovieTweetings-100k dataset. (a) MAE metric; (b)
RMSE metric.

Figure 11. The evaluations of ten algorithms for DigitalMusic dataset. (a) MAE metric; (b) RMSE
metric.

Figure 11. The evaluations of ten algorithms for DigitalMusic dataset. (a) MAE metric; (b) RMSE metric.

Appl. Sci. 2021, 11, 843 15 of 20

A comprehensive comparison of the Figures 9–11 reveals: (1) The RICF algorithm
has lower MAE and RMSE than traditional itemCF algorithms, the state-of-art sequential
models LSTM and GRU on three datasets used in the experiment. (2) Power-RICF has
the lowest MAE and RMSE among the three RICF algorithms. Taking Figure 6 into
consideration, the Power function can better fit the process of forgetting in contrast to the
Exponential function and Parabolic function, and also it is in tune with the character of
preference decay that “first quickly and then slowly”.

4.3.2. Embedding Clustering Visualization

For the trained multi-dimensional embeddings, we applied t-SNE (t-Distributed
Stochastic Neighbor Embedding) to perform dimensional visualization. The t-SNE is a
technique for dimensionality reduction that is particularly well suited for the visualization
of high-dimensional datasets [54]. According to the previous experiment on the Canopy+K-
means algorithm, we clustered the embeddings, as shown in Figure 12, and each color in it
represents an embedding cluster. Different clusters represent different user preferences.
From the visualization of this figure, we can distinguish the categories of embeddings
more clearly. For example, in Figure 12a, the bar on the right shows seventeen colors,
representing seventeen different clusters. The coordinate system on the left shows the
clustering results in three dimensions. It can be seen that the similar embeddings are clearly
clustered, and the boundaries between different clusters are relatively clear.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 20

A comprehensive comparison of the Figures 9–11 reveals: (1) The RICF algorithm has
lower MAE and RMSE than traditional itemCF algorithms, the state-of-art sequential
models LSTM and GRU on three datasets used in the experiment. (2) Power-RICF has the
lowest MAE and RMSE among the three RICF algorithms. Taking Figure 6 into consider-
ation, the Power function can better fit the process of forgetting in contrast to the Expo-
nential function and Parabolic function, and also it is in tune with the character of prefer-
ence decay that “first quickly and then slowly”.

4.3.2. Embedding Clustering Visualization
For the trained multi-dimensional embeddings, we applied t-SNE (t-Distributed Sto-

chastic Neighbor Embedding) to perform dimensional visualization. The t-SNE is a tech-
nique for dimensionality reduction that is particularly well suited for the visualization of
high-dimensional datasets [54]. According to the previous experiment on the Canopy+K-
means algorithm, we clustered the embeddings, as shown in Figure 12, and each color in
it represents an embedding cluster. Different clusters represent different user preferences.
From the visualization of this figure, we can distinguish the categories of embeddings
more clearly. For example, in Figure 12a, the bar on the right shows seventeen colors,
representing seventeen different clusters. The coordinate system on the left shows the
clustering results in three dimensions. It can be seen that the similar embeddings are
clearly clustered, and the boundaries between different clusters are relatively clear.

(a) (b)

(c)

Figure 12. Visualization of embeddings cluster. (a) Cluster of embeddings in MovieTweetings-
latest dataset; (b) cluster of embeddings in MovieTweetings-100k dataset; (c) cluster of embed-
dings in DigitalMusic dataset.

4.3.3. The stability of RICF
Furthermore, to verify the stability of the RICF algorithm, we separately experi-

mented on three datasets and at the same time, varied the ratio of the training-testing
portions from 50% to 90% to observe the results. As can be seen in the Figures 13–15,
Power-RICF has consistently better performance compared to other experimental algo-
rithms.

Figure 12. Visualization of embeddings cluster. (a) Cluster of embeddings in MovieTweetings-latest
dataset; (b) cluster of embeddings in MovieTweetings-100k dataset; (c) cluster of embeddings in
DigitalMusic dataset.

4.3.3. The stability of RICF

Furthermore, to verify the stability of the RICF algorithm, we separately experimented
on three datasets and at the same time, varied the ratio of the training-testing portions from
50% to 90% to observe the results. As can be seen in the Figures 13–15, Power-RICF has
consistently better performance compared to other experimental algorithms.

Appl. Sci. 2021, 11, 843 16 of 20
Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 20

Figure 13. RMSE of seven algorithms on the MovieTweetings-latest dataset.

Figure 14. RMSE of seven algorithms on the MovieTweetings-100k dataset.

Figure 15. RMSE of seven algorithms on the DigitalMusic dataset.

As is shown in Figure 13, the x-axis represents different ratios of trainset-testset for
MovieTweetings-latest dataset; the y-axis represents the root mean squared error (RMSE)
of different algorithms. The left plot shows how the RMSE of the seven different algo-
rithms varies with the ratio of trainset-testset. The plot on the right is a partial enlargement
of the plot on the left. As can be seen from Figure 13, the RMSEs of the three RICF algo-
rithms are lower than other algorithms and Power-RICF’s is the lowest. Moreover, for
different ratios of trainset-testset, the RMSEs of the RICF algorithms are stable around
0.63, which are the most stable among the seven algorithms.

Figures 14 and 15 show the RMSE of MovieTweetings-100k dataset and DigitalMusic
dataset, respectively. Conclusions obtained from Figures 13 and 14 are similar to those
from Figure 12. Therefore, for different datasets, the RICF algorithm has better stability
and performance than other algorithms, especially Power-RICF.

4.4. Discussion

Figure 13. RMSE of seven algorithms on the MovieTweetings-latest dataset.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 20

Figure 13. RMSE of seven algorithms on the MovieTweetings-latest dataset.

Figure 14. RMSE of seven algorithms on the MovieTweetings-100k dataset.

Figure 15. RMSE of seven algorithms on the DigitalMusic dataset.

As is shown in Figure 13, the x-axis represents different ratios of trainset-testset for
MovieTweetings-latest dataset; the y-axis represents the root mean squared error (RMSE)
of different algorithms. The left plot shows how the RMSE of the seven different algo-
rithms varies with the ratio of trainset-testset. The plot on the right is a partial enlargement
of the plot on the left. As can be seen from Figure 13, the RMSEs of the three RICF algo-
rithms are lower than other algorithms and Power-RICF’s is the lowest. Moreover, for
different ratios of trainset-testset, the RMSEs of the RICF algorithms are stable around
0.63, which are the most stable among the seven algorithms.

Figures 14 and 15 show the RMSE of MovieTweetings-100k dataset and DigitalMusic
dataset, respectively. Conclusions obtained from Figures 13 and 14 are similar to those
from Figure 12. Therefore, for different datasets, the RICF algorithm has better stability
and performance than other algorithms, especially Power-RICF.

4.4. Discussion

Figure 14. RMSE of seven algorithms on the MovieTweetings-100k dataset.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 20

Figure 13. RMSE of seven algorithms on the MovieTweetings-latest dataset.

Figure 14. RMSE of seven algorithms on the MovieTweetings-100k dataset.

Figure 15. RMSE of seven algorithms on the DigitalMusic dataset.

As is shown in Figure 13, the x-axis represents different ratios of trainset-testset for
MovieTweetings-latest dataset; the y-axis represents the root mean squared error (RMSE)
of different algorithms. The left plot shows how the RMSE of the seven different algo-
rithms varies with the ratio of trainset-testset. The plot on the right is a partial enlargement
of the plot on the left. As can be seen from Figure 13, the RMSEs of the three RICF algo-
rithms are lower than other algorithms and Power-RICF’s is the lowest. Moreover, for
different ratios of trainset-testset, the RMSEs of the RICF algorithms are stable around
0.63, which are the most stable among the seven algorithms.

Figures 14 and 15 show the RMSE of MovieTweetings-100k dataset and DigitalMusic
dataset, respectively. Conclusions obtained from Figures 13 and 14 are similar to those
from Figure 12. Therefore, for different datasets, the RICF algorithm has better stability
and performance than other algorithms, especially Power-RICF.

4.4. Discussion

Figure 15. RMSE of seven algorithms on the DigitalMusic dataset.

As is shown in Figure 13, the x-axis represents different ratios of trainset-testset for
MovieTweetings-latest dataset; the y-axis represents the root mean squared error (RMSE) of
different algorithms. The left plot shows how the RMSE of the seven different algorithms
varies with the ratio of trainset-testset. The plot on the right is a partial enlargement of the
plot on the left. As can be seen from Figure 13, the RMSEs of the three RICF algorithms are
lower than other algorithms and Power-RICF’s is the lowest. Moreover, for different ratios
of trainset-testset, the RMSEs of the RICF algorithms are stable around 0.63, which are the
most stable among the seven algorithms.

Figures 14 and 15 show the RMSE of MovieTweetings-100k dataset and DigitalMusic
dataset, respectively. Conclusions obtained from Figures 13 and 14 are similar to those
from Figure 12. Therefore, for different datasets, the RICF algorithm has better stability
and performance than other algorithms, especially Power-RICF.

Appl. Sci. 2021, 11, 843 17 of 20

4.4. Discussion

Currently, there are few studies applying the theory of memory inhibition to Com-
puter Science [11], and studies on Cognitive Psychology have mainly focused on activation
propagation, and evolution of preferences from the temporal perspective only, ignoring the
competition and inhibition within memories. Thus, in order to fill this gap, we firstly con-
ducted the classical rating-prediction experiment on the traditional itemCF algorithm, and
introduced the theory of memory inhibition to explore the evolution of users’ preferences.
Secondly, to better take into account the multi-semantic information, we introduced the
embedding pre-training technique on the traditional itemCF and used the more efficient
Canopy+K-Means algorithm to cluster the multidimensional embeddings to construct the
user preference points model, so as to simulate the process of user preference decay and
build recommendation models more comprehensively and accurately.

The experiment results show that the memory decay based on retroactive inhibi-
tion is consistent with existing memory decay processes (decay first quickly and then
slowly) [10,55], and the incorporation of a strong representation of embedding makes the
recommendation mechanism more interpretable and has higher prediction accuracy in com-
parison to traditional itemCF and sequential models. What is more, only fewer neighbors
yielded good results when using embeddings to compute similarity and select K neighbors
accordingly, unlike traditional CF algorithms that are more reliant on K neighbor selection.
Here, the embeddings are trained from a model with rating as an optimization target.
We speculate that is because the trained embedding implicitly contains rating-optimized
information, which is worthy of further research.

Here, we focused on the problem of rating prediction accuracy of the recommendation
algorithm based on retroactive inhibition. We found that in terms of rating prediction
accuracy, deep learning-based baseline algorithms perform worse than other baseline
algorithms. Similar to most other modern recommendation algorithms, sequence algo-
rithms are not designed for the rating prediction problem, but rather serve to perform
the recommendation prediction task better. Therefore, as a future work, we plan to use
the proposed algorithm to verify the performance of other recommendation tasks such as
prediction ranking.

5. Conclusions

This paper proposed a novel approach called RICF to explore the evolution of user
preference based on the theory of retroactive inhibition in cognitive psychology. In RICF,
to tackle the problem of data sparsity, each item is represented as a dense numerical
vector by training a feedforward deep neural network to predict user preferences for items.
Moreover, the Canopy+K-Means clustering algorithm was used to more efficiently cluster
multidimensional embedding vectors, and the results of cluster were used to construct
a model of users’ points of preference. Evaluation experiments were conducted using
three datasets which reflect user’s real rating timestamp (rather than volunteers’ pooled
ratings), and the results indicate that the proposed algorithm is better at exploring the
evolution of user preference with better accuracy and interpretability. Furthermore, the
proposed approach has produced better performance than state-of-the-art techniques on
both accuracy and novelty.

Further work consists of three directions. The first direction is to use more sequential
datasets to further validate the RICF algorithm. The second direction is to incorporate
more diverse information and even the Knowledge Graph technique to train more accurate
embedding vectors. The third direction is to explore deeper into the mechanisms of memory
inhibition to provide inspiration for sequential modeling algorithms in the field of Deep
Learning as well as for the study of other recommendation tasks such as prediction ranking.

Author Contributions: The conceptualization of the original idea, formal analysis, and the perfor-
mance of the experiment, as well as the original draft preparation, were completed by N.Y. Review

Appl. Sci. 2021, 11, 843 18 of 20

and editing were completed by L.C. and Y.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 91118002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ma, X.; Lu, H.; Gan, Z.; Zeng, J. An Explicit Trust and Distrust Clustering Based Collaborative Filtering Recommendation

Approach. Electron. Commer. Res. Appl. 2017, 25, 29–39. [CrossRef]
2. Wang, J.; de Vries, A.P.; Reinders, M.J.T. Unifying User-Based and Item-Based Collaborative Filtering Approaches by Similarity

Fusion. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval—SIGIR’06, Seattle, WA, USA, 6–11 August 2006; ACM Press: Seattle, WA, USA, 2006; p. 501.

3. Masicampo, E.J.; Ambady, N. Predicting Fluctuations in Widespread Interest: Memory Decay and Goal-Related Memory
Accessibility in Internet Search Trends. J. Exp. Psychol. Gener. 2014, 143, 205. [CrossRef] [PubMed]

4. Yin, F.; Su, P.; Li, S.; Ye, L. Step-Enhancement of Memory Retention for User Interest Prediction. IEEE Access 2020, 8, 110203–110213.
[CrossRef]

5. Jia, D.; Qu, Z.; Wang, X.; Li, F.; Zhang, L.; Yang, K. Interest Mining Model of Micro-Blog Users by Using Multi-Modal Semantics
and Interest Decay Model. In Proceedings of the International Conference on Artificial Intelligence and Security, Hohhot, China,
17–20 July 2020; Springer: Singapore, 2020; pp. 478–489.

6. Lalwani, A.; Agrawal, S. What Does Time Tell? Tracing the Forgetting Curve Using Deep Knowledge Tracing. In Proceedings
of the International Conference on Artificial Intelligence in Education, Chicago, IL, USA, 25–29 June 2019; Springer: Cham,
Switzerland, 2019; pp. 158–162.

7. Chen, J.; Wang, C.; Wang, J. Modeling the Interest-Forgetting Curve for Music Recommendation. In Proceedings of the ACM
International Conference on Multimedia—MM’14, Orlando, FL, USA, 3–7 November 2014; ACM Press: Orlando, FL, USA, 2014;
pp. 921–924.

8. Li, T.; Jin, L.; Wu, Z.; Chen, Y. Combined Recommendation Algorithm Based on Improved Similarity and Forgetting Curve.
Information 2019, 10, 130. [CrossRef]

9. Yu, H.; Li, Z. A Collaborative Filtering Method Based on the Forgetting Curve. In Proceedings of the 2010 International Conference
on Web Information Systems and Mining, Sanya, China, 23–24 October 2010; IEEE: Sanya, China, 2010; pp. 183–187.

10. Walker, M.P.; Brakefield, T.; Hobson, J.A.; Stickgold, R. Dissociable Stages of Human Memory Consolidation and Reconsolidation.
Nature 2003, 425, 616–620. [CrossRef]

11. Tempel, T.; Niederée, C.; Jilek, C.; Ceroni, A.; Maus, H.; Runge, Y.; Frings, C. Temporarily Unavailable: Memory Inhibition in
Cognitive and Computer Science. Interact. Comput. 2019, 31, 231–249. [CrossRef]

12. Raaijmakers, J.G.W. Inhibition in Memory. In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience; Wixted, J.T.,
Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 1–34. ISBN 978-1-119-17016-7.

13. Dooms, S.; De Pessemier, T.; Martens, L. Movietweetings: A Movie Rating Dataset Collected from Twitter. In Proceedings of the
Workshop on Crowdsourcing and Human Computation for Recommender Systems, Hong Kong, China, 12–16 October 2013;
Volume 2013, p. 43.

14. McAuley, J.; Targett, C.; Shi, Q.; van den Hengel, A. Image-Based Recommendations on Styles and Substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval—SIGIR’15, Santiago,
Chile, 9–13 August 2015; ACM Press: Santiago, Chile, 2015; pp. 43–52.

15. Rich, E. User Modeling via Stereotypes. Cognit. Sci. 1979, 3, 329–354. [CrossRef]
16. Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Reading; Addison-Wesley: Boston, MA, USA,

1989; Volume 169.
17. Murthi, B.P.S.; Sarkar, S. The Role of the Management Sciences in Research on Personalization. Manag. Sci. 2003, 49, 1344–1362.

[CrossRef]
18. Lilien, G.L.; Kotler, P.; Moorthy, K.S. Marketing Models; Prentice Hall: Upper Saddle River, NJ, USA, 1995.
19. Adomavicius, G.; Tuzhilin, A. Toward the next Generation of Recommender Systems: A Survey of the State-of-the-Art and

Possible Extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]
20. Breese, J.S.; Heckerman, D.; Kadie, C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. arXiv 2013,

arXiv:1301.7363.

http://doi.org/10.1016/j.elerap.2017.06.005
http://doi.org/10.1037/a0030731
http://www.ncbi.nlm.nih.gov/pubmed/23127417
http://doi.org/10.1109/ACCESS.2020.3002225
http://doi.org/10.3390/info10040130
http://doi.org/10.1038/nature01930
http://doi.org/10.1093/iwc/iwz013
http://doi.org/10.1207/s15516709cog0304_3
http://doi.org/10.1287/mnsc.49.10.1344.17313
http://doi.org/10.1109/TKDE.2005.99

Appl. Sci. 2021, 11, 843 19 of 20

21. Tay, Y.; Anh Tuan, L.; Hui, S.C. Latent Relational Metric Learning via Memory-Based Attention for Collaborative Ranking.
In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 729–739.

22. Yu, K.; Schwaighofer, A.; Tresp, V.; Xu, X.; Kriegel, H.-P. Probabilistic Memory-Based Collaborative Filtering.
IEEE Trans. Knowl. Data Eng. 2004, 16, 56–69.

23. Deshpande, M.; Karypis, G. Item-Based Top-n Recommendation Algorithms. ACM Trans. Inf. Syst. (TOIS) 2004, 22, 143–177.
[CrossRef]

24. Sarwar, B.; Karypis, G.; Konstan, J.; Reidl, J. Item-Based Collaborative Filtering Recommendation Algorithms. In Proceedings of
the Tenth International Conference on World Wide Web—WWW’01, Hong Kong, China, 1–5 May 2001; ACM Press: Hong Kong,
China, 2001; pp. 285–295.

25. Aggarwal, C.C. Model-based collaborative filtering. In Recommender Systems; Springer: Cham, Switzerland, 2016; pp. 71–138.
26. Shi, Y.; Larson, M.; Hanjalic, A. List-Wise Learning to Rank with Matrix Factorization for Collaborative Filtering. In Proceedings

of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 269–272.
27. Lian, J.; Zhang, F.; Xie, X.; Sun, G. CCCFNet: A Content-Boosted Collaborative Filtering Neural Network for Cross Domain

Recommender Systems. In Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Australia,
3–7 April 2017; pp. 817–818.

28. Shi, C.; Hu, B.; Zhao, W.X.; Philip, S.Y. Heterogeneous Information Network Embedding for Recommendation.
IEEE Trans. Knowl. Data Eng. 2018, 31, 357–370. [CrossRef]

29. Cai, X.; Han, J.; Yang, L. Generative Adversarial Network Based Heterogeneous Bibliographic Network Representation for
Personalized Citation Recommendation. In Proceedings of the AAAI, New Orleans, LA, USA, 2–7 February 2018.

30. Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T.-S. Kgat: Knowledge Graph Attention Network for Recommendation. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 3–7 August
2019; pp. 950–958.

31. Khoshneshin, M.; Street, W.N. Collaborative Filtering via Euclidean Embedding. In Proceedings of the Fourth ACM Conference
on Recommender Systems—RecSys’10, Barcelona, Spain, 26–30 September 2010; ACM Press: Barcelona, Spain, 2010; p. 87.

32. Aggarwal, C.C. Recommender Systems; Springer: Cham, Switzerland, 2016; Volume 1.
33. Da Costa, A.F.; Manzato, M.G.; Campello, R.J. Group-Based Collaborative Filtering Supported by Multiple Users’ Feedback to

Improve Personalized Ranking. In Proceedings of the 22nd Brazilian Symposium on Multimedia and the Web, Teresina, Brazil,
8–11 November 2016; pp. 279–286.

34. Najafabadi, M.K.; Mahrin, M.N.; Chuprat, S.; Sarkan, H.M. Improving the Accuracy of Collaborative Filtering Recommendations
Using Clustering and Association Rules Mining on Implicit Data. Comput. Hum. Behav. 2017, 67, 113–128. [CrossRef]

35. Li, Q.; Kim, B.M. Clustering Approach for Hybrid Recommender System. In Proceedings of the IEEE/WIC International
Conference on Web Intelligence (WI 2003), Halifax, NS, Canada, 13–17 October 2003; pp. 33–38.

36. Zhang, W.; Du, Y.; Yoshida, T.; Yang, Y. DeepRec: A Deep Neural Network Approach to Recommendation with Item Embedding
and Weighted Loss Function. Inf. Sci. 2019, 470, 121–140. [CrossRef]

37. Barkan, O.; Koenigstein, N. ITEM2VEC: Neural Item Embedding for Collaborative Filtering. In Proceedings of the 2016 IEEE 26th
International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Italy, 13–16 September 2016; IEEE:
Vietri sul Mare, Italy, 2016; pp. 1–6.

38. Chen, Y.-C.; Hui, L.; Thaipisutikul, T. A Collaborative Filtering Recommendation System with Dynamic Time Decay.
J. Supercomput. 2020. [CrossRef]

39. Gui, Y.; Tian, X. A Personalized Recommendation Algorithm Considering Recent Changes in Users’ Interests. In Proceedings of
the 2nd International Conference on Big Data Research—ICBDR 2018, Weihai, China, 27–29 October 2018; ACM Press: Weihai,
China, 2018; pp. 127–132.

40. Wang, S.; Hu, L.; Wang, Y.; Cao, L.; Sheng, Q.Z.; Orgun, M. Sequential Recommender Systems: Challenges, Progress and
Prospects. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 10–16
August 2019; International Joint Conferences on Artificial Intelligence Organization: Macao, China, 2019; pp. 6332–6338.

41. Xingjian, S.H.I.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W. Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal,
QC, Canada, 7–12 December 2015; pp. 802–810.

42. Wu, C.-Y.; Ahmed, A.; Beutel, A.; Smola, A.J.; Jing, H. Recurrent Recommender Networks. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; pp. 495–503.

43. Zhang, Z.; Robinson, D.; Tepper, J. Detecting Hate Speech on Twitter Using a Convolution-Gru Based Deep Neural Network. In
Proceedings of the European Semantic Web Conference, Anissaras, Greece, 3–7 June 2018; Springer: Anissaras, Greece, 2018;
pp. 745–760.

44. Underwood, B.J. Interference and Forgetting. Psychol. Rev. 1957, 64, 49. [CrossRef]
45. Alves, M.V.C.; Bueno, O.F.A. Retroactive Interference: Forgetting as an Interruption of Memory Consolidation. Temas Psicol. 2017,

25, 1055–1067. [CrossRef]
46. Melton, A.W.; von Lackum, W.J. Retroactive and Proactive Inhibition in Retention: Evidence for a Two-Factor Theory of

Retroactive Inhibition. Am. J. Psychol. 1941, 54, 157. [CrossRef]

http://doi.org/10.1145/963770.963776
http://doi.org/10.1109/TKDE.2018.2833443
http://doi.org/10.1016/j.chb.2016.11.010
http://doi.org/10.1016/j.ins.2018.08.039
http://doi.org/10.1007/s11227-020-03266-2
http://doi.org/10.1037/h0044616
http://doi.org/10.9788/TP2017.3-07En
http://doi.org/10.2307/1416789

Appl. Sci. 2021, 11, 843 20 of 20

47. Řehuuřek, R.; Sojka, P. Gensim—Statistical Semantics in Python. 2011. Available online: https://radimrehurek.com/gensim/
(accessed on 19 June 2020).

48. McCallum, A.; Nigam, K.; Ungar, L.H. Efficient Clustering of High-Dimensional Data Sets with Application to Reference
Matching. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Boston, MA, USA, 20–23 August 2000; pp. 169–178.

49. Zhang, G.; Zhang, C.; Zhang, H. Improved K-Means Algorithm Based on Density Canopy. Knowl. Based Syst. 2018, 145, 289–297.
[CrossRef]

50. Kumar, A.; Ingle, Y.S.; Pande, A. Canopy Clustering: A Review on Pre-Clustering Approach to K-Means Clustering.
Int. J. Innov. Adv. Comput. Sci. 2014, 3, 22–29.

51. Jain, A.K. Data Clustering: 50 Years beyond K-Means. Pattern Recognit. Lett. 2010, 31, 651–666. [CrossRef]
52. Alsabti, K.; Ranka, S.; Singh, V. An Efficient K-Means Clustering Algorithm. Electr. Eng. Comput. Sci. 1997, 43, 1–7.
53. Harper, F.M.; Konstan, J.A. The Movielens Datasets: History and Context. ACM Trans. Interac. Intell. Syst. 2015, 5, 1–19. [CrossRef]
54. van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
55. Candia, C.; Jara-Figueroa, C.; Rodriguez-Sickert, C.; Barabási, A.-L.; Hidalgo, C.A. The Universal Decay of Collective Memory

and Attention. Nat. Hum. Behav. 2019, 3, 82–91. [CrossRef]

https://radimrehurek.com/gensim/
http://doi.org/10.1016/j.knosys.2018.01.031
http://doi.org/10.1016/j.patrec.2009.09.011
http://doi.org/10.1145/2827872
http://doi.org/10.1038/s41562-018-0474-5

	Introduction
	Related Work
	Collaborative Filtering Recommendation
	Retroactive Inhibition Theory

	Proposed Model: RICF
	Preliminary
	Embedding Training
	Embedding Clustering
	Preference Retention Calculation
	Preference Prediction

	Results and Discussion
	Dataset and Experimental Setup
	Evaluation Metrics
	Results
	Recommendation Quality
	Embedding Clustering Visualization
	The stability of RICF

	Discussion

	Conclusions
	References

