
Research Article
Gravitational Collapse and Singularity Removal in Rastall Theory

Ehsan Dorrani

Department of Physics, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran

Correspondence should be addressed to Ehsan Dorrani; ehsandorrani@gmail.com

Received 10 October 2020; Revised 22 November 2020; Accepted 12 February 2021; Published 28 February 2021

Academic Editor: Hooman Moradpour

Copyright © 2021 Ehsan Dorrani. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The
publication of this article was funded by SCOAP3.

In the present work, we study spherically symmetric gravitational collapse of a homogeneous fluid in the framework of Rastall
gravity. Considering a nonlinear equation of state (EoS) for the fluid profiles, we search for a class of nonsingular collapse
solutions and the possibility of singularity removal. We find that depending on the model parameters, the collapse scenario halts
at a minimum value of the scale factor at which a bounce occurs. The collapse process then enters an expanding phase in the
postbounce regime, and consequently the formation of a spacetime singularity is prevented. We also find that, in comparison to
the singular case where the apparent horizon forms to cover the singularity, the formation of apparent horizon can be delayed
allowing thus the bounce to be causally connected to the external universe. The nonsingular solutions we obtain satisfy the weak
energy condition (WEC) which is crucial for physical validity of the model.

1. Introduction

The process of gravitational collapse of a massive object and
its final outcome is one of the central questions in relativistic
astrophysics and gravitation theory. In the framework of gen-
eral relativity (GR), the Hawking and Penrose singularity
theorems predict that under physically reasonable condi-
tions, a continual collapse process leads to the formation of
a spacetime singularity, that is, a spacetime event where den-
sities and spacetime curvatures grow limitlessly and diverge
[1]. During the last years, much attempts have been directed
towards exploring different aspects of the gravitational col-
lapse process and the studies along this line of research indi-
cate that the spacetime singularity that forms as the collapse
end product could be dressed by a spacetime event horizon
(black hole formation) or visible by the observers in the uni-
verse (naked singularity formation) [2]. Usually, formation
of a naked singularity as the collapse outcome is considered
the violation of the cosmic censorship conjecture [3–5]. This
conjecture states that singularities that form as the collapse
final state will always be hidden by the event horizon of a
black hole and cannot be visible to the observers in the uni-
verse [6] (see [7] for a recent review on this conjecture).
However, during the past decades, many examples of naked

singularity formation as possible counterexamples to the cos-
mic censorship conjecture have been reported in the literature,
among which we can quote gravitational collapse of dust, per-
fect fluids, and radiation shells [8, 9]. Such a study has been
extended to gravitational collapse in the presence of a cosmo-
logical constant term [10], higher dimensional collapsemodels
[11–14], higher-order gravity theories [15], scalar field collapse
[16–20], and self-similar collapse [21–23] (see also [2] for a
recent review). Also, in the context of modified gravity theo-
ries, it is shown that naked singularities could form depending
on different aspects of the theory (see, e.g., [24–30]).

Despite the fact that the formation of naked singularities
may provide us a useful observational testbed for detecting
high energy phenomena, these objects seem unpleasant as
classical GR breaks down at the spacetime singularity. How-
ever, it is generally believed that such a singularity that forms
in a classical regime can be avoided once quantum gravity
corrections are taken into account. In this regard, a great
amount of work has been devoted to investigate nonsingular
collapse models, for example, corrections that may arise in
the strong field regime, as obtained in the framework of
some Loop Quantum Gravity (LQG) models [31–36]. Work
along this line has been also extended to modified gravity
models, e.g., singularity avoidance in Eddington-inspired
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Born-Infeld theory [37], modified Gauss-Bonnet gravity [38,
39], Horava-Lifshitz gravity [40], nonminimal coupling of
classical gravity with fermions [41], and other modified
gravity theories [42].

In the light of the above considerations, one may be moti-
vated to study modified gravity theories in the context of
which the collapse scenario leads to a nontrivial outcome,
different to singular collapse settings that have been studied
in GR [9]. In this regard, one can generalize the standard
GR to include a nonminimal coupling between geometry
and matter fields. As we know, in most of the modified grav-
ity theories, the energy-momentum source is characterized
by a divergence-free tensor field which couples to the geom-
etry in a minimal way [43, 44]. However, such a property of
the energy-momentum tensor (EMT) which leads to the
energy-momentum conservation law is not obeyed by the
particle production process [45–48]. Hence, it seems reason-
able to assume a nonvanishing divergence for EMT and seek
for a modified gravitational theory whose geometrical
degrees of freedom (not present in GR) may affect the final
fate of the collapse. In this regard, one may relax the condi-
tion on EMT conservation law; i.e., mathematically the rela-
tion ∇μT

μ
 ν = 0 is not valid anymore [49–55]. This idea was

firstly put forward by Peter Rastall [54] who proposed a grav-
itational model in which the divergence of Tμ

 ν is propor-
tional to the gradient of the Ricci scalar, i.e., ∇μT

μ
 ν ∝∇νR,

so that the usual conservation law is recovered in the flat
spacetime. This kind of modified gravity model has attracted
a great deal of attention recently and is in good agreement
with various observational data and theoretical expectations
[56]. In the present article, we are motivated to investigate a
simple model for gravitational collapse of an isotropic and
homogeneous matter distribution with nonlinear EoS in
Rastall gravity. We therefore proceed with considering the
field equations in Rastall gravity in Section 2 and search for
nonsingular collapse solutions in Section 3. Our conclusions
are drawn in Section 4.

2. Field Equations of Rastall Gravity

According to the original idea of Rastall [54], the vanishing of
covariant divergence of the matter energy-momentum tensor
is no longer valid and this vector field is proportional to the
covariant derivative of the Ricci curvature scalar as

∇aT
a
b = λ∇bR, ð1Þ

where λ is the Rastall parameter. The Rastall field equations
are then given by [54, 57]

Gab + γgabR = κTab, ð2Þ

where γ = κλ is the Rastall dimensionless parameter and κ is
the Rastall gravitational coupling constant. The above equa-
tion can be rewritten in an equivalent form as

Gab = κTeff
ab , ð3Þ

where

Teff
ab = Tab −

γT
4γ − 1gab ð4Þ

is the effective energy-momentum tensor whose components
are given by [58, 59]

Teff0
0 ≡ −ρeff = −

3γ − 1ð Þρ + γ pr + 2ptð Þ
4γ − 1 , ð5Þ

Teff1
1 ≡ peffr = 3γ − 1ð Þpr + γ ρ − 2ptð Þ

4γ − 1 , ð6Þ

Teff2
2 = Teff3

3 ≡ pefft = 2γ − 1ð Þpt + γ ρ − prð Þ
4γ − 1 : ð7Þ

It is noteworthy that in the limit of λ→ 0, the standard
GR is recovered. Moreover, for an electromagnetic field
source, we get Teff

ab = Tab leading to Gab = κTab. Therefore,
the GR solutions for T = 0, or equivalently R = 0, are also
valid (the Rastall gravity) [57, 60].

3. Solutions to the Field Equations

In the framework of classical GR, the continual gravitational
collapse of a massive body under its own weight was inves-
tigated for the first time by Oppenheimer, Snyder, and Datt
(OSD) [61, 62]. They considered the evolution of a spheri-
cally symmetric homogeneous dust cloud which starts from
rest. The interior spacetime of such a collapse setting can
be described by the Friedman-Robertson-Walker metric
given by

ds2 = −dt2 + a2 tð Þ
1 − kr2

dr2 + R2 t, rð ÞdΩ2, ð8Þ

where k determines the spatial curvature, Rðt, rÞ = raðtÞ is
the physical radius of the collapsing object, with aðtÞ being
the scale factor, and dΩ2 is the standard line element on
the unit 2-sphere. The EMT of a pressureless matter is sim-
ply given by Ta

b = diag ð−ρ, 0, 0, 0Þ, from which one can
find the Einstein field equations as

3k
a2

+ 3 _a2

a2
= 2κGρ, ð9Þ

k
a2

+ _a2

a2
+ 2 €a

a
= 0, ð10Þ

where κG = 4πG. Also, the conservation of EMT (∇αT
α
β = 0)

gives ρ = C/a3, where C is a constant. Substituting them for
energy density into equation (9) along with defining the
conformal time dη = dt/a, we arrive at the following solu-
tion for the scale factor:

a ηð Þ = ai
2 1 + cos ηð Þð Þ, t ηð Þ = ai

2 η + sin ηð Þð Þ, ð11Þ
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where 0 ≤ η ≤ π. The above solution describes the collapse
process of a homogeneous dust fluid for which the scale
factor starts from the finite value ai at ðτ, ηÞ = ð0, 0Þ and
becomes zero at ðτ, ηÞ = ðπai/2, πÞ. The vanishing of the
scale factor at a finite time signals the formation of a space-
time singularity, i.e., a spacetime event at which the energy
density and curvature get arbitrary large values and diverge.
It can be shown that the singularity in the OSD model is
necessarily hidden by an event horizon and thus a black
hole is formed as the end state of a homogeneous dust col-
lapse (see, e.g., [63] for a review on the OSD model).

In the present section, we seek for a class of homogeneous
collapse solutions for which the formation of spacetime sin-
gularity is avoided. We shall see that this is possible in case
we generalize the OSD model from GR to Rastall gravity
along with assuming a nonlinear EoS for the fluid pressure.
To this aim, we begin with a homogeneous and isotropic
interior line element representing a spatially nonflat FLRW
geometry. The field equations for an isotropic source
(Ta

b = diag ð−ρ, p, p, pÞ) then read

3 _a2

a2
+ 3k

a2
= κρeff =

2κG
6γ − 1 3γ − 1ð Þρ + 3γp½ �, ð12Þ

2 €a
a
+ _a2

a2
+ k
a2

= −κpeff =
2κG
6γ − 1 1 − γð Þp − γρ½ �: ð13Þ

Applying the Bianchi identity on equation (3) leaves us
with the following continuity equation in Rastall gravity as

3γ − 1
4γ − 1

� �
_ρ + 3γ

4γ − 1

� �
_p + 3H ρ + pð Þ = 0: ð14Þ

Next, we proceed to build and study collapse scenarios
assuming a polytropic EoS p = αρβ, where α and β are con-
stants. Equation (14) can be solved for this EoS, and the
solution reads

ln að Þ + ln ρβ a1+a2ð Þ/3 β−1ð Þ ρ + αρβ
� �− a1+βa2ð Þ/3 β−1ð Þ� �

+ C0 = 0,

ð15Þ

where C0 is an integration constant and

a1 =
1 − 3γ
1 − 4γ , a2 =

3γ
1 − 4γ , β ≠ 1: ð16Þ

In order to find an explicit expression for energy density,
we set a1 = −βa2 within equation (15). This gives

ρ að Þ = ρi
a
ai

� �3 4γ−1ð Þ/ 3γ−1ð Þ
, ð17Þ

where ρi = ρðtiÞ and ai = aðtiÞ are the initial values of energy
density and scale factor, respectively, and t = ti is the initial
time at which the collapse begins. Equations (12) and (13)
can then be rewritten as (we set the units so that 2κG = 1)

3 _a2

a2
+ 3k
a2

= 6αγρ 3γ−1ð Þ/3γ
i

6γ − 1
ai
a

� � 4γ−1ð Þ/γ
+ ρi

ai
a

� �3 4γ−1ð Þ/ 3γ−1ð Þ
,

ð18Þ

2 €a
a
+ _a2

a2
+ k
a2

= 2 1 − γð Þ
6γ − 1 ρ

3γ−1ð Þ/3γ
i

ai
a

� � 4γ−1ð Þ/γ

−
2γ

6γ − 1 ρi
ai
a

� �3 4γ−1ð Þ/ 3γ−1ð Þ
:

ð19Þ

Next, we proceed to study the collapse dynamics using
numerical methods in order to solve equation (19). We fur-
ther employ equation (18) to find the initial condition on
the speed of collapse which is given by

_a tið Þ = −
3ka2i 1 − 6γð Þ + 2ρia4i 3γ 1 + αρ

−1/3γ
i

� �
− 1

� �
3a2i 6γ − 1ð Þ

2
4

3
5
1/2

:

ð20Þ

Figure 1(a) shows the numerical solution to equation (19)
for a closed geometry (k = 1) and different values of the Ras-
tall parameter. As we observe, the collapse starts its evolution
by a finite velocity, i.e., _ai < 0 and continues through a con-
tracting regime until the bounce time t = tb is reached. At this
time, the collapse process halts at a nonzero minimum value
of the scale factor so that we have amin = aðtbÞ and _aðtbÞ = 0
(see also Figure 1(b)). This minimum value of the scale factor
can be obtained through equation (18) as

2ρi
6γ − 1

ai
amin

� �4 ai
amin

� �1/ 3γ−1ð Þ
3γ − 1ð Þ + 3 ai

amin

� �−1/γ
αγρ

−1/3γ
i

" #
− 3a−2min = 0:

ð21Þ

From Figure 1(a), we also note that the Rastall parameter
could change the minimum value of the scale factor and the
bounce time in such a way that the larger the values of the
γ parameter, the greater the value of amin and the sooner
the bounce occurs. For t > tb, the contracting regime switches
to an expanding regime and the collapsing body disperses as
the time passes. We also observe that the case of γ = 0 corre-
sponds to the GR limit of the theory where the gravitational
collapse process leads to singularity formation (see the
dashed curve). Figure 1(c) shows the behavior of collapse
acceleration. We therefore observe that the collapse experi-
ences four phases during its dynamical evolution. (i) During
the time interval at which _a < 0 and €a < 0, the collapse
undergoes an accelerated contracting regime. (ii) As time
goes by, the collapse enters a decelerated contracting regime
where _a < 0 and €a > 0. (iii) After the bounce time, the collapse
turns into an accelerated expanding phase for which _a > 0
and €a > 0. (iv) Finally, at later times, the collapse enters a
decelerated expanding regime where _a > 0 and €a < 0.

For the sake of physical reasonability, we require that the
weak energy condition (WEC) be satisfied. According to this
condition, the energy density as measured by any local
observer must be positive. Hence, for the energy-
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momentum tensor of ordinary matter and the effective fluid,
the conditions

ρ ≥ 0, ρ + p ≥ 0, ð22Þ

ρeff ≥ 0, ρeff + peff ≥ 0 ð23Þ
must be satisfied along any nonspacelike vector field. In
Figure 2(a), we have plotted for energy density the WEC

for ordinary EMT and the WEC for effective EMT. We also
observe that in the limit where γ→ 0, the energy density
diverges signaling the occurrence of a spacetime singularity
(see the red curve). Another quantity that the divergence of
which implies singularity formation is the Kretschmann
scalar defined as

K =RαβδεR
αβδε = _H

2 + 2H4 + 2H2 _H

= 4ℓ 1 − 3γ +wð Þð Þ2
81 1 +wð Þ4 1 − 4γð Þ4 t − tsð Þ4 :

ð24Þ

In Figure 2(a), we have plotted for the behavior of this
quantity where we observe that the Kretschmann scalar
behaves regularly and is finite throughout the collapse pro-
cess (black solid curve), while, for γ = 0 (red curve), this
quantity grows unboundedly and diverges at the singularity.
We also note that for β = 0 the results of [64] will be
recovered.

An important issue that needs to be examined in each
collapse setting is the study of dynamics of apparent horizon
and causal structure of spacetime during the evolution of the
collapse process. The apparent horizon is the outermost
boundary of the trapped region, and the condition for its
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Figure 1: (a) The behavior of the scale factor over time for ai = 1:2,
ρi = 2:0, and α = 4:24. (b) The behavior of speed of collapse for the
same values of the parameters as chosen above. (c) The behavior
of acceleration of collapse for the same values of the parameters as
chosen above.
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Figure 2: (a) The behavior of energy density over time for ai = 1:2,
ρi = 2:0, α = 4:24, and γ = 0:14. The red curve stands for the case
with γ = 0. (b) The behavior of the Kretschmann scalar for the
same values of the parameters as chosen above.

4 Advances in High Energy Physics



formation is provided by the requirement that the surface
with Rðt, rÞ = Constant is lightlike or in other words gμν∂μR

∂νR = 0 [9]. This condition for our model reduces to _R
2 + r2

= 1 from which we can find the radius of the apparent
horizon as

rah =
1ffiffiffiffiffiffiffiffiffiffiffiffi
_a2 + 1

p : ð25Þ

In Figure 3, we have plotted for the radius of the apparent
horizon and compared the cases with γ = 0:14 and γ = 0. In
the former (black solid curve), we observe that during the
collapse process, the apparent horizon radius decreases to
the minimum value r = rmin and then reaches a maximum
value at the bounce time. It then converges to the same min-
imum radius in the postbounce regime. The apparent hori-
zon curve will never vanish; i.e., it will never hit the
singularity at R = 0, in contrast to the case with γ = 0 where
the apparent horizon covers the singularity at a finite amount
of time, leading to black hole formation (see the red curve).

4. Concluding Remarks

In this work, we studied the process of gravitational collapse
of an isotropic homogeneous fluid which obeys a nonlinear
EoS, i.e., p = αρβ, between energy density and pressure pro-
file. We found that, depending on the model parameters,
nonsingular collapse solutions can be obtained in such a
way that the collapse starts from regular initial data, proceeds
for a while, and halts at a bounce time at which the scale fac-
tor reaches its minimum value. Then, after the bounce time is
passed, the collapse scenario turns into an expanding phase.
We further observed that the energy density and Kretsch-
mann scalar behave regularly and are finite throughout the
contracting and expanding regimes. In this regard, the space-
time singularity which is present in the OSD collapse model
is avoided. Also, for the singular model, the apparent horizon
necessarily forms to cover the singularity whereas in the
model described herein, the initial radius of the collapsing
matter (Rðti, rÞ = r) can be chosen as r < rmin. In this case,
the horizon formation is prevented, and thus, the bounce
can be visible to faraway observers in the universe. As the

Rastall parameter is a measure of ability of matter and curva-
ture to interact with each other, we therefore conclude that
such an ability can provide a setting in which the formation
of spacetime singularities is avoided in a gravitational col-
lapse process.

As the final remarks, it is noteworthy that the present col-
lapse scenario can be compared to other collapse settings
such as gravitational collapse of a homogeneousWeyssenhoff
fluid in the framework of Einstein-Cartan gravity [65]. The
Weyssenhoff fluid is a generalization of a perfect fluid in
GR to include the intrinsic angular momentum (spin) of
the fermionic matter field. Comparing equations (18) and
(19) with the corresponding equations given in [65], we
observe that for γ = −1/2, the collapse dynamics presented
in this work mimics that of a Weyssenhoff fluid with EoS w
= 1/5. Although a more detailed and in-depth analysis is
needed in order to understand the correspondence between
the two theories, one may intuitively imagine a possible rela-
tion between matter-curvature coupling in Rastall theory and
spacetime torsion in Einstein-Cartan gravity. It is also worth
mentioning that the exterior spacetime of the collapsing body
can be obtained by matching the interior spacetime through a
timelike hypersurface to an exterior Vaidya spacetime [66–
68], using Israel-Darmois junction conditions [69]. By doing
so, one can show that in the framework of the present study,
the exterior region of the collapsing object is a Schwarzschild
spacetime with dynamical boundary [64, 65].
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