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Abstract: In this paper, a diffusive predator–prey system with a functional response that increases in
both predator and prey densities is considered. By analyzing the characteristic roots of the partial
differential equation system, the Turing instability and Hopf bifurcation are studied. In order to
consider the dynamics of the model where the Turing bifurcation curve and the Hopf bifurcation
curve intersect, we chose the diffusion coefficients d1 and β as bifurcating parameters. In particular,
the normal form of Turing–Hopf bifurcation was calculated so that we could obtain the phase diagram.
For parameters in each region of the phase diagram, there are different types of solutions, and their
dynamic properties are extremely rich. In this study, we have used some numerical simulations in
order to confirm these ideas.

Keywords: predator–prey model; Turing–Hopf bifurcation; Hopf bifurcation; Turing instability

1. Introduction

The relationship between prey and predator plays an important role in various ecosys-
tems [1–5]. Many researchers have established differential equation-type models with
functional response functions to describe this interaction [6–9]. One set of types of classical
functional response is the Holling I–III types [10–12]. While this type of functional response
only depends on the prey density, it is not sufficient to describe the relationship for some
species. For example, when tuna encounter a school of prey, the population always forages
in a line and aggregates together [13]. This phenomenon shows that the behavior of the
tuna could lead to an effective increase in the encounter rate [14]. Based on this result, the
following functional response function is proposed by Cosner et al. [14]:

g(m, n) =
Ce0mn

1 + hCe0mn
, (1)

where the positive constant e0 is the total encounter coefficient between prey and predator,
and h > 0 is the handling time per prey. Moreover, C is a positive constant which represents
the amount consumed by each predator per encounter [14]. In principle, when the predator
population becomes large, they can hunt prey more efficiently. This functional response
could make the predator–prey model more interesting and exhibit more complex dynamics.

Therefore, Ryu et al. [15] considered the predator–prey model (2) with the functional
response (1): {

dx
dt = rx

(
1− x

K
)
− Ce0xy

1+hCe0xy y, x(0) > 0,
dy
dt = εCe0xy

1+hCe0xy y− µy, y(0) > 0,
(2)
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where ε is the conversion rate, and µ is the death rate of the predator. Using the following
equations

rt = t̃,
x
K

= x̃, hCe0Ky = ỹ,
1

Ce0r(hK)2 = α,
ε

rh
= β,

µ

r
= γ,

and dropping the upper bars, the model (2) becomes: dx
dt = x(1− x)− αxy2

1+xy , x(0) > 0,
dy
dt = βxy2

1+xy − γy, y(0) > 0.
(3)

Ryu et al. [15] analyzed the bifurcations of the model (3), such as the saddle–node
bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation. They showed that the
model with the functional response (1) had more complex dynamics.

In the real world, prey and predators do not remain stationary and often spread. This
situation leads to diffusion. Many researchers have added diffusive terms to predator–prey
models and shown complex bifurcating phenomena [16–20]. Singh et al. studied a modified
Leslie–Gower predator–prey model with a double Allee effect [19]. They mainly considered
the local bifurcations. Using the first Lyapunov coefficient, they found the local existence
of the limit cycle emerging.

Motivated by the studies mentioned above, we considered the intervention of diffusion
and functional response function (1) for a predator–prey model. Using theoretical analysis
and numerical simulation, we aim to address the following questions. Firstly, compared
with the classical Holling I–III types’ functional responses, can the functional response (1)
induce different dynamics phenomena? Secondly, what are the dynamic effects of diffusion
on the model (3)? Finally , whether the codimension-2 bifurcation (Turing–Hopf bifurcation)
occurs in the new model?

This paper is organized into sections. In Section 2, we formulate the model and discuss
the existence of positive equilibrium. In Section 3, a lot of work has been conducted in
analyzing branches. In Section 4, the normal form of Turing–Hopf bifurcation is discussed.
In Section 5, in order to verify our statements, some numerical simulations are carried out.

2. Model Formulation

Based on the model (3), we conclude that δ= γ
β ; this study examines the following

model with this diffusion term:
∂u(x,t)

∂t = d1∆u + u
(

1− u− αv2

1+uv ,
)

x ∈ Ω, t > 0,
∂v(x,t)

∂t = d2∆v + βv
(
−δ + uv

1+uv
)
, x ∈ Ω, t > 0,

ux(x, t) = vx(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω̄,

(4)

where u(x, t) is regarded as prey ,and v(x, t) stands for predator, the densities of which
were measured at location x and time t. The diffusion coefficients of prey, d1, and diffusion
coefficients of predator, d2, are displayed. β, α, and δ are all positive parameters. The
boundary condition is of the Neumann type. For convenience, we chose one-dimensional
space Ω = (0, lπ), where l > 0.

In this section, we analyze the existence of a positive equilibrium. By the nature of the
positive equilibrium, we consider the corresponding ODE system of (4) without diffusion
terms. {

u(1− u)− αuv2

1+uv = 0,

β
(
−δv + uv2

1+uv

)
= 0.

(5)

From (5), it is easy to verify that (0, 0) and (1, 0) are two boundary equilibria of model
(4). From the second equation of system (5), we can easily calculate that u = δ

v(1−δ)
. If
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δ > 1, then u = δ
v(1−δ)

< 0. Therefore, system (5) has no positive equilibrium. We will use
E∗(u∗, v∗) as the positive equilibrium of model (4) in the rest of this paper, supposing that
δ < 1 holds.

Substituting u = δ
v(1−δ)

into the first equation of (5), we have:

h(v) = δ(−1 + δ)2αv3 + δ(−1 + δ)v + δ2 = 0. (6)

Obviously, dh(v)
dv = 3α(−1 + δ)2δv2 + (−1 + δ)δ = 0 has two roots:

v± = ±
√

1− δ√
3
√

α− 2αδ + αδ2
. (7)

In addition, h(0) = δ2 > 0. Therefore, h(v) = 0 has two positive roots if h(v+) < 0,
one positive root if h(v+) = 0, and no positive root if h(v+) > 0.

Due to the above analysis, we have the following lemma:

Lemma 1. For the model (4), the following statements about the coexistence equilibrium are true:

1. There is no coexistence equilibrium if δ > min{ 2
1+
√

1+27α
, 1}.

2. There is a unique coexistence equilibrium (u+, v+) if δ = 2
1+
√

1+27α
< 1,

where u+ = δ
v+(1−δ)

.

3. There are two coexistence equilibria (u1, v1) and (u2, v2) if 0 < δ < min{ 2
1+
√

1+27α
, 1},

where v1,2 are the two positive roots of (6) and u1,2 = δ
v1,2(1−δ)

.

For the final statement , we always regard (u∗, v∗) as a coexistence equilibrium of the
system (4).

3. Bifurcation Analysis

Sobolev space is used to study the theory of partial differential equations. In this
section, we define

X :=
{
(u, v)T : u, v ∈ H2(0, lπ), (ux, vx)|x=0,lπ = 0

}
,

as a real-valued Sobolev space and

XC := X⊕ iX = {x1 + ix2| x1, x2 ∈ X}.

as the complexification of X. The linearization of (4) at (u∗, v∗) is

U̇(t) =
(

d1 0
0 d2

)
∆U(t) +

(
a1 −a2

βb1 βb2

)
U(t), (8)

where

a1 = −u∗ +
u∗v3∗α

(1 + u∗v∗)
2 , a2 =

αu∗v∗(2 + u∗v∗)

(1 + u∗v∗)
2 > 0,

b1 =
v2∗

(1 + u∗v∗)
2 > 0, b2 =

u∗v∗
(1 + u∗v∗)

2 > 0.
(9)

It is well known that the operator u 7→ 4u, with ∂νu = 0 at 0 and lπ, has eigenvalues
−zn with corresponding eigenfunctions cos nx

l , where zn = n2/l2, n ∈ N0 := {0, 1, 2, 3...}.
Thus, we can obtain the following characteristic equation of (8):

λ2 − Tnλ + Dn = 0, n ∈ N0 , N∪ {0}, (10)



Mathematics 2022, 10, 17 4 of 15

where
Tn := −(d1 + d2)zn + a1 + b2β (11)

is the trace of (10) and

Dn := d1d2z2
n − (b2d1β + a1d2)zn + β(a2b1 + a1b2) (12)

is the determinant of (10).
Thus, we calculate that the eigenvalues of (10) are

λ
(n)
1,2 (r) :=

Tn ±
√

T2
n − 4Dn

2
. (13)

To simplify our work, we make the assumptions (H1) and (H2):

(H1) : a1 + b2β < 0,

(H2) : a1b2 + a2b1 > 0.
(14)

If (H1) and (H2) hold,for n = 0, and T0 < 0 and D0 > 0 are satisfied, the roots of (5)
have negative real parts. Thus, we have the following theorem:

Theorem 1. Assume (H1) and (H2) hold. For ordinary differential equation systems, the equilib-
rium E∗(u∗, v∗) is locally asymptotically stable.

3.1. Turing Instability

Using the above assumptions (H1) and (H2), we can obtain the following:

− a2
b1

b2
< a1 < −b2β. (15)

This implies that a1 < 0. For n ∈ N0, we obtain Tn < T0 < 0, if (H1) holds. For
Dn(β) = d1d2z2

n − (b2d1β + a1d2)zn + β(a1b2 + a2b1), we chose β as the bifurcation param-
eter and mainly consider the following conditions:

I : β ≤ − a1d2

b2d1

II : β > − a1d2

b2d1
, and ∆ < 0

III : β > − a1d2

b2d1
, and ∆ > 0,

(16)

where ∆ := (b2d1β + a1d2)
2 − 4d1d2β(a1b2 + a2b1).

Obviously, Tn < 0 for n ∈ N0 under the assumption (H1). When condition I holds, the
roots of (4) have negative real parts if Dn > 0 (n ∈ N0). As for the case in which condition
II holds, we follow a similar principle, so that E∗(u∗, v∗) is locally asymptotically stable.
If a k ∈ N0 exists such that Dk < 0 in condition III, then the roots of (4) have a positive
real part λ

(k)
1 , which means that the stability of the equilibrium E∗(u∗, v∗) has changed for

system (4). Based on the above analysis, we obtain Theorem 2:

Theorem 2. Here, we suppose (H1) and (H2) always hold. For a reaction–diffusion system (4),
the equilibrium E∗(u∗, v∗) is locally asymptotically stable in (I). As for (II), if no k ∈ N0 exists
such that Dk < 0, then the stability of E∗(u∗, v∗) does not change. Otherwise, a k ∈ N0 exists such
that Dk < 0; therefore Turing instability could take place at E∗(u∗, v∗) in (III).

Remark 1. Turing instability cannot occur when the functional response is replaced by classical
Holling I–III types in the model (4).
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Proof. If we choose the functional response of the Holling I–III types in the model (4), we
can obtain a2 > 0, b1 > 0, and b2 ≡ 0, where the symbol of a1 is unknown for (14). In this
case, the trace of characteristic Equation (10) is:

Tn := −d1zn + a1,

where the determinant of (10) is

Dn := d1d2zn
2 − a1d2zn + a2b1.

We make assumptions (H1)
′ and (H2)′ which are similar to (14):

(H1)
′ : a1 < 0,

(H2)
′ : a2b1 > 0.

(17)

If (H1)
′ and (H2)′ hold, it is easy to find that Dn > 0 for all values of d1 and d2, which

are assumed to be positive. In that case, the eigenvalues λ
(n)
1,2 (r) will always have negative

parts. This means that the equilibrium E∗(u∗, v∗) is locally asymptotically stable for the
reaction–diffusion system (4). Therefore, Turing instability will never happen for system (4)
with the Holling I–III functional response. The proof is finished.

3.2. Hopf Bifurcation

For Hopf bifurcation, Equation (10) must have a pair of purely imaginary roots.
Therefore, we obtain:

β = βn :=
(d1 + d2)(1 + u∗v∗)

2zn

u∗v∗
+

(1 + u∗v∗)
2

v∗
− v2
∗α, (18)

where zn = n2

l2 .
For n = 0, D0 = β(a1b2 + a2b1) > 0 when (H2) holds. Thus:

n∗ = max{k ∈ N0|Dn > 0 and βn > 0 for n = 0, 1, · · · , k− 1}, (19)

and
Λ1 = {0, ..., n∗ − 1}, Λ2 = {1, ..., n∗ − 1}.

We can summarize the results as follows:

Theorem 3. Suppose assumption (H2) is satisfied. For a reaction–diffusion system (4), Hopf
bifurcation can take place at equilibrium E∗(u∗, v∗), when n ∈ Λ1, and has a spatially homogeneous
bifurcating periodic solution when β = β0. In addition, a spatially non-homogeneous bifurcating
periodic solution exists when β = βn for n ∈ Λ2.

Proof. Let
λn(βn) = αn(βn)± iηn(βn), n ∈ Λ1

be the roots of Equation(10). When β = βn, we can obtain Tn(β) = 0 and Dn(β) > 0 for
0 ≤ n ≤ n∗ − 1, and the characteristic Equation (10) will have a pair of purely imaginary
roots λn(βn) = ±i

√
Dn(βn).

When the value of β nears βn, the eigenvalues of Equation (10) are

αn(β)± iηn(β) =
Tn(β)±

√
T2

n(β)− 4Dn(β)

2
,

and the transversal condition is :

dαn(β)

dβ
=

b2

2
> 0, n ∈ Λ1.
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This proof is over.

3.3. Turing–Hopf Bifurcation

Suppose assumption (H2) always holds in this section. From Theorem 3, we know

that system (4) undergoes Hopf bifurcation when β = β0 = (1+u∗v∗)2

v∗ − v2∗α.
In accordance with this, we chose d1 as the bifurcation parameter and obtained a series

of Turing bifurcation curves:

dk
1 :=

a1d2zk − βk(a1b2 + a2b1)

zk(d2zk − b2βk)
, S :=

{
k ∈ N0|dk

1 > 0
}

. (20)

When β = β∗, we can obtain the Hopf bifurcation curve:

β∗ :=
(1 + u∗v∗)

2

v∗
− v2
∗α, (21)

where a k∗ ∈ N exists, such that

dk∗
1 :=

a1d2zk∗ − β∗(a1b2 + a2b1)

zk∗(d2zk∗ − b2β∗)
= min

k∈S
a1d2zk − β∗(a1b2 + a2b1)

zk(d2zk − b2β∗)
.

Thus, we gain the Theorem 4 about the Turing–Hopf bifurcation.

Theorem 4. For system (4), assumption (H2) always holds. Then,

(i) If set S = ∅, no Turing–Hopf bifurcation exists for system (4);

(ii) If set S 6= ∅, we choose (β, d1) =
(

β∗, dk∗
1

)
as the Turing–Hopf bifurcation point, so that

system (4) can undergo Turing–Hopf bifurcation at
(

β∗, dk∗
1

)
. In addition, E∗(u∗, v∗) is

locally asymptotically stable when (β, d1) ∈ Q,

where Q :=
{
(β, d1)|β > β∗, 0 < d1 <

a1d2zk∗−β(a1b2+a2b1)

zk∗(d2zk∗−b2β)

}
.

Proof. In the d1 − β plane, the Hopf bifurcation curve is denoted by

H0 : β := β∗.

The Turing bifurcation curves are

Lk : dk
1 :=

a1d2zk − β(a1b2 + a2b1)

zk(d2zk − b2β)
, k ∈ S.

1. If S = ∅ in the first quadrant, the bifurcation curves Lk andH0 have no intersection
with each other, so a Turing–Hopf bifurcation does not exist for the reaction–diffusion
system (4).

2. If S 6= ∅, Lk∗ intersects withH0 at the Turing–Hopf bifurcation point
(

β∗, dk∗
1

)
, it

is easy to demonstrate that Tn < 0 and Dn > 0 for n ∈ N when (β, d1) ∈ Q. This leads
to E∗(u∗, v∗) being locally asymptotically stable and real parts of all other eigenvalues of
Equation (10) (n 6= 0, k∗) being negative.

In order to verify the transversality conditions, we make the following assumption:
(H3) : For zn = n2/l2, no n ∈ N0 exists so that −b2d1zn + a2b1 + a1b2 = 0.
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Thus, under assumption (H3), we suppose λ1(β) = α1(β) + iη1(β) with α1(β∗) = 0,
η1(β∗) = ω > 0, and λ2(β) = α2(β) + iη2(β) with α2(β∗) = 0, η2(β∗) = 0, and we can
obtain:

dRe(λ1(β))

dβ
|
β=− a1

b2
,H0

=
b2

2
> 0,

dRe(λ2(β))

dβ
|
β=− a1

b2
,Lk∗

=
−b2d1zk∗ + a2b1 + a1b2

Tn
6= 0.

This can be demonstrated.

4. Normal Forms for Turing–Hopf Bifurcation

We can see that β = β∗ + µ2 and d1 = dk∗
1 + µ1, where perturbation parameters are µ1

and µ2. From Theorem 4, for a reaction–diffusion system (4), the theorem is satisfies that
when µ1 = 0, µ2 = 0, Turing–Hopf bifurcation could take place at E∗(u∗, v∗). Thus, when
we translate the equilibrium to the origin (u = ū + u∗, v = v̄ + v∗) and drop the bars, the
reaction–diffusion system (4) becomes

∂u(x,t)
∂t =

(
dk∗

1 + µ1

)
∆u + (u + u∗)

(
1− (u + u∗)− α(v+v∗)2

1+(u+u∗)(v+v∗)

)
,

∂v(x,t)
∂t = d2∆v + (v + v∗)(β∗ + µ2)

(
−δ + (u+u∗)(v+v∗)

1+(u+u∗)(v+v∗)

)
.

(22)

Thus, according to [21], we gain

D(µ1) =

(
dk∗

1 0
0 d2

)
+

(
2µ1 0

0 0

)
= D(0) + D1(µ1),

L(µ2) =

(
a1 −a2

β∗b1 β∗b2

)
+

(
0 0

2µ2b1 2µ2b2

)
= L(0) + L1(µ2),

F(φk, µk) =

 (φ1 + u∗)
(

1− (φ1 + u∗)− α(φ2+v∗)2

1+(φ1+u∗)(φ2+v∗)

)
− a1φ1 + a2φ2

(β∗ + µ2)

(
(φ1+u∗)(φ2+v∗)2

1+(φ1+u∗)(φ2+v∗)
− (b1φ1 + φ2(b2 + δ) + δv∗)

)
,

Q(φ, ψ) =

(
α11φ1ψ1 + α12(φ1ψ2 + ψ1φ2) + α13φ2ψ2
α21φ1ψ1 + α22(φ1ψ2 + ψ1φ2) + α23φ2ψ2

)
,

C(φ, ψ, υ) =

(
β11φ1ψ1υ1 + β12(φ1ψ1υ2 + φ1ψ2υ1 + φ2ψ1υ1) + β13(φ1ψ2υ2 + φ2ψ1υ2 + φ2ψ2υ1) + β14φ2ψ2υ2
β21φ1ψ1υ1 + β22(φ1ψ1υ2 + φ1ψ2υ1 + φ2ψ1υ1) + β23(φ1ψ2υ2 + φ2ψ1υ2 + φ2ψ2υ1) + β24φ2ψ2υ2

)
,

with

α11 = 2

(
−1 +

αv3∗
(1 + u∗v∗)3

)
, α12 = − 2αv∗

(1 + u∗v∗)3 , α13 = − 2αu∗
(1 + u∗v∗)3 ,

α21 = − 2v3∗β∗

(1 + u∗v∗)3 , α22 =
2v∗β∗

(1 + u∗v∗)3 , α23 =
2u∗β∗

(1 + u∗v∗)3 , β11 = − 6αv4∗
(1 + u∗v∗)4 ,

β12 =
6αv2∗

(1 + u∗v∗)4 , β13 =
2(−1 + 2u∗v∗)α

(1 + u∗v∗)4 , β14 =
6αu2∗

(1 + u∗v∗)4 , β21 =
6v4∗β∗

(1 + u∗v∗)4 ,

β22 = − 6v2∗β∗

(1 + u∗v∗)4 , β23 =
2(1− 2u∗v∗)β∗

(1 + u∗v∗)4 , β24 = − 6u2∗β∗

(1 + u∗v∗)4 .

and φ = (φ1, φ2)
T , ψ = (ψ1, ψ2)

T , v = (v1, v2)
T ∈ X.

The corresponding characteristic matrices are

Λk(λ) =

(
λ + dk∗

1 zk − a1 a2
−β∗b1 λ + d2zk − β∗b2

)
.
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Thus, we can find the eigenvalues of Λ0(λ) to be λ = ±iω, with ω =
√

β∗(a1b2 + a2b1).
According to Theorem 4, Λk∗ (λ) has a simple eigenvalue of λ = 0, and the real parts of the other
eigenvalues are less than zero. From [21], we can see that

φ1 =

(
1

b1 β∗

d2zk∗−b2 β∗

)
, ψ1 =


d2zk∗−b2 β∗

−a1+dk∗
1 zk∗+d2zk∗−b2 β∗

(a1−dk∗
1 zk∗ )(d2zk∗−b2 β∗)

b1 β∗(a1−dk∗
1 zk∗−d2zk∗+b2 β∗)


T

,

φ2 =

(
1

a1−iω
a2

)
, ψ2 =

 a2b1 β∗

−a2
1+a2b1 β∗+2ia1ω+ω2

a2(iω−a1)
−a2

1+a2b1 β∗+2ia1ω+ω2

T

.

Moreover, Φ = (φ1, φ2, φ̄2) and Ψ = (ψ1, ψ2, ψ̄2)
T , satisfying ΦΨ = I3, where I3 is 3-order

identity matrix. From [21], we can see that

a1(µ) =
1
2

ψ1
(

L1(µ)φ1 − µk∗D1(µ)φ1
)
,

a200 =a011 = b110 = 0,

b2(µ) =
1
2

ψ2(L1(µ)φ2 − 0D1(µ)φ2),

a300 =
1
4

ψ1Cφ1φ1φ1 +
1
ω

ψ1Re[iQφ1φ2 ψ2]Qφ1φ1 + ψ1Q
φ1(h0

200+
1√
2

h2k∗
200 )

,

a111 =ψ1Cφ1φ2φ̄2
+

2
ω

ψ1Re[iQφ1φ2 ψ2]Qφ2φ̄2
+ ψ1(Qφ1(h0

011+
1√
2

h2k∗
011 )

+ Q
φ2hk∗

101
+ Q

φ̄2hk∗
110
),

b210 =
1
2

ψ2Cφ1φ1φ2 +
1

2iω
ψ2(2Qφ1φ1 ψ1Qφ1φ2 + (−Qφ2φ2 ψ2 + Qφ2φ̄2

ψ̄2)Qφ1φ1 )

+ ψ2(Qφ1hk∗
110

+ Qφ2h0
200
),

b021 =
1
2

ψ2Cφ2φ2φ̄2
+

1
4iω

ψ2

(
2
3

Qφ̄2φ̄2
ψ̄2Qφ2φ2 + (−2Qφ2φ2 ψ2 + 4Qφ2φ̄2

ψ̄2)Qφ2φ̄2

)
+ ψ2(Qφ2h0

011
+ Qφ̄2h0

020
),

where

h0
200 =− 1

2
L−1(0)Qφ1φ1 +

1
2ωi

(φ2ψ2 − φ̄2ψ̄2)Qφ1φ1 ,

h2k∗
200 =− 1

2
√

2

[
L(0) + diag(−4µk∗ ,−4dk∗µk∗ )

]−1Qφ1φ1 ,

h0
011 =− L−1(0)Qφ2φ̄2

+
1

ωi
(φ2ψ2 − φ̄2ψ̄2)Qφ2φ̄2

,

h0
020 =

1
2
[2iωI − L(0)]−1Qφ2φ2 −

1
2ωi

(
φ2ψ2 +

1
3

φ̄2ψ̄2

)
Qφ2φ2 ,

hk∗
110 =

[
iωI − (L(0)− diag(−µk∗ ,−dk∗µk∗ ))

]−1Qφ1φ2 −
1

ωi
φ1ψ1Qφ1φ2 ,

h0
002 =h0

020, hk∗
101 = hk∗

110, h2k∗
011 = 0.

From [21], for a reaction–diffusion system (4), the normal form of a Turing–Hopf bifurcation is
ż1 = a1(µ)z1 + a200z2

1 + a011z2 z̄2 + a300z3
1 + a111z1z2 z̄2 + h.o.t.,

ż2 = iωz2 + b2(µ)z2 + b110z1z2 + b210z2
1z2 + b021z2

2 z̄2 + h.o.t.,

˙̄z2 = −iωz̄2 + b̄2(µ)z̄2 + b̄110z1 z̄2 + b̄210z2
1 z̄2 + b̄021z2 z̄2

2 + h.o.t.

(23)

Using cylinder coordinate transformation z1 = r, z2 = ρcosθ − iρsinθ, Equation (23) becomes:{
ṙ = a1(µ)r + a300r3 + a111rρ2,

ρ̇ = Re(b2(µ))ρ + Re(b210)ρr2 + Re(b021)ρ
3.

(24)
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5. Numerical Simulations
Some numerical simulations are presented to show more dynamics phenomena for the reaction–

diffusion system (4). If we choose l = 4, system (4) becomes:
∂u(x,t)

∂t = d1∆u + u
(

1− u− 1.5v2

1+uv

)
,

∂v(x,t)
∂t = 0.2∆v + βv

(
−0.25 + uv

1+uv

)
.

(25)

From our calculations, we obtain two positive equilibrium points (u1, v1) ≈ (0.8090, 0.4120)
and (u2, v2) ≈ (0.5000, 0.6667). We obtain D0 < 0 when (u1, v1) ≈ (0.8090, 0.4120), which shows
that this equilibrium is unstable. Therefore, we choose (u∗, v∗) = (u2, v2), we obtain a1 ≈ −0.3750,
a2 ≈ 0.6563, b1 ≈ 0.2500, b2 ≈ 0.1875, and assumption (H2) holds.

The Hopf bifurcation curve in the β− d1 plane is

H0 : β = β∗ ≈ 2.000.

The Turing bifurcation curves are

Lk : dk
1 =

a1d2zk − βk(a1b2 + a2b1)

zk(d2zk − b2βk)
, k ∈ S = {1, 2, 3, 4, 5}.

So, we created these curves using MATLAB in order to find the first intersection point for the
Turing bifurcation curves and the Hopf bifurcation curve.

Figure 1 (Left) shows the Turing bifurcation curve Lk, k = 1, 2, 3, 4, 5 and the Hopf bifurcation
curveH0; they have many intersection points. We chose the first intersection point when k∗ = 4.000
and dk∗

1 ≈ 1.500 as the Turing–Hopf bifurcation point (β, d1) of system (25). The stable region for
(u∗, v∗) is located on the right-hand side of the Hopf bifurcation curve H0 and below the Turing
bifurcation curve L4. The Turing unstable region for (u∗, v∗) is shown on the right-hand side of the
Hopf bifurcation curve H0 and above the Turing bifurcation curve L1.
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Figure 1. Left: some regions of (u∗, v∗) and some curves in the d1 − β plane. Right: the phase
diagram, which is described more in Proposition 1.

Using (23), the normal form for system (25) at the Turing–Hopf bifurcation point can be
calculated:

ż1 = 0.1029(1.0000µ1 + 1.0714µ2)z1 − 2.1102z3
1 + 2.2109z1z2 z̄2,

ż2 = 0.4330iz2 + (0.0938 + 0.1083i)µ1z2 + (−8.1018 + 2.2894i)z2
1z2 − (2.0714 + 8.2719i)z2

2 z̄2,

˙̄z2 = −0.4330iz̄2 + (0.0938− 0.1083i)µ1 z̄2 + (−8.1018− 2.2894i)z2
1 z̄2 − (2.0714− 8.2719i)z2 z̄2

2.

Using the same tranformation as (24), we obtain{
ṙ = 0.1029(1.0000µ1 + 1.0714µ2)r− 2.1102r3 + 2.2109rρ2,

ρ̇ = 0.0938µ1ρ− 8.1018ρr2 − 2.0714ρ3.
(26)
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From [21], considering ρ > 0, system (26) has the following equilibria:

(1) The coexistence equilibrium: A0 = (0, 0).
(2) The spatially inhomogeneous steady states:

A±1 = (±0.0590
√

14.0µ1 + 15.0µ2, 0), for 14.0µ1 + 15.0µ2 > 0.

(3) The spatially homogeneous periodic solution:

A2 = (0, 0.2123
√

µ2), for µ2 > 0.

(4) The spatially inhomogeneous periodic solutions:

A±3 =

(
±
√

0.0096(1.0µ1 + 2.0434µ2),
√
−0.034(1.0µ1 + 0.8342µ2)

)
,

for 1.0µ1 + 2.0434µ2 > 0 and 1.0µ1 + 0.8342µ2 < 0.

Through analysis of the existence of these equilibria for system (26), the following critical
bifurcation curves are obtained:

H0 : µ2 = 0, T : µ2 = −0.9333µ1,

T1 : µ2 = −1.1987µ1, µ1 ≤ 0, T2 : µ2 = −0.4894µ1, µ1 ≤ 0.
(27)

These bifurcation curves, T , T1, and T2, divide the parameter plane (µ1, µ2) into six regions, see
Figure 1 (Right). From each area, we gain Proposition 1:

Proposition 1. The Figure 1 (Right) shows more different dynamic phenomena by analyzing the stability of the
equilibria of system (26). For each parameter region, we obtain some interesting results. When (µ1, µ2) ∈ D1,
a coexistence equilibrium A0, exists which is asymptotically stable (Figure 2). However, A0 becomes unstable
if (µ1, µ2) /∈ D1. When (µ1, µ2) ∈ D2, a pair of spatially inhomogeneous steady states A±1 exist, along with
an unstable coexistence equilibrium A0, which is attracted by stable A±1 (Figure 3). When (µ1, µ2) ∈ D3,
a pair of spatially inhomogeneous steady states A±1 remain stable, while a spatially homogeneous periodic
solution A2 becomes unstable (see Figure 4) . When (µ1, µ2) ∈ D4, a pair of spatially inhomogeneous
steady states A±1 and a spatially homogeneous periodic solution A2 become unstable; however a pair of stable
spatially inhomogeneous periodic solutions A±3 appears (see Figure 5). When (µ1, µ2) ∈ D5, a pair of spatially
inhomogeneous steady states A±1 disappear, the stability of a pair of spatially inhomogeneous periodic solutions
A±3 has not changed, and an unstable spatially homogeneous periodic solution A2 tends toward stable A±3
(Figure 6). When (µ1, µ2) ∈ D6, there only a stable spatially homogeneous periodic solution A2 exists, which
means that the system (26) indicates temporal patterns (Figure 7).

Figure 2. For (µ1, µ2) = (−0.1,−0.01) ∈ D1. Where A0 is the coexistence equilibrium, which is
asymptotically stable.
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Figure 4. For (µ1, µ2) = (0.1, 1.0) ∈ D3, A±
1 (a pair of spatially inhomogeneous steady states) keep
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solution A2.

Figure 3. For (µ1, µ2) = (0.1,−0.01) ∈ D2, a pair of spatially inhomogeneous steady states A±1 exists,
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Figure 4. For (µ1, µ2) = (0.1, 1.0) ∈ D3, A±1 (a pair of spatially inhomogeneous steady states) remains
stable, but a track which connects with an unstable spatially homogeneous periodic solution A2

exists.
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[The initial values choose u(x, 0) ≈ 0.50 + 0.1cos(4x), v(x, 0) ≈ 0.67 − 0.1cos(4x).]
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Figure 5. When (µ1, µ2) = (−0.01, 0.01) ∈ D4, there are three different types of solutions, a pair of
spatially inhomogeneous periodic solutions A±

3 are stable, A±
1 become unstable, and A2 keeps

unstable in this region. A track is connected with each other.

Figure 5. When (µ1, µ2) = (−0.01, 0.01) ∈ D4, there are three different types of solutions, a pair of
spatially inhomogeneous periodic solutions A±3 remains stable, A±1 become unstable, and A2 remains
unstable in this region. A track connects them with each other.
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[The initial values are u(x, 0) ≈ 0.50 + 0.2cos(4x), v(x, 0) ≈ 0.67 − 0.2cos(4x).]

[The initial values are u(x, 0) ≈ 0.50 − 0.2cos(4x), v(x, 0) ≈ 0.67 + 0.2cos(4x).]

Figure 6. For (µ1, µ2) = (−0.05, 0.03) ∈ D5, A±
3 (a pair of spatially inhomogeneous periodic

solutions) keep stable, while A2 becomes unstable which tends toward A±
3 .

Figure 6. For (µ1, µ2) = (−0.05, 0.03) ∈ D5, A±3 (a pair of spatially inhomogeneous periodic solu-
tions) remains stable, while A2 becomes unstable and tends toward A±3 .
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Figure 7. The initial values are u(x, 0) ≈ 0.50 + 0.01andv(x, 0) ≈ 0.67− 0.01. When (µ1, µ2) =

(−0.4, 0.1) ∈ D6, only a stable spatially homogeneous periodic solution A2 exists.

6. Conclusions
Ryu et al. [15] have conducted much fantastic work to analyze model (3). From [22], we know

that Turing instability may take place if diffusion terms are added to an ordinary differential equation
system. In particular, we find that the system (4) with classical Holling I–III types can not occur
during Turing instability (see Remark 1) . Therefore, based on model (3), a diffusive predator–prey
model with functional response (1) is considered in this article. From Theorem 2, we find that
Turing instability could take place when Case 3 holds. Theorem 3 shows the conditions necessary
for the existence of Hopf bifurcation. We used the central manifold and normal forms from [21]
to explore whether Turing–Hopf bifurcation occurs. This is also the source of both the difficulty
and novelty of our article. We chose β, d1 as bifurcation parameters and divided the bifurcation
diagram into six regions. The model produced different states for each region. In D1, it shows
that the positive equilibrium of system (4) is asymptotically stable, which means two populations
(predator and prey) will survive together and keep stable. In D2, due to a pair of stable spatially
inhomogeneous steady states (which means that the two populations (predator and prey) finally
tend to being stable), the spatial distributions of populations are inhomogeneous. In D3, a pair of
spatially inhomogeneous steady states (which are stable) and a spatially homogeneous periodic
solution (which is unstable) appear. This means that the two populations (predator and prey) will
exhibit periodic oscillation and tend to be stable in the end. In D4, there are three different types
of solutions, a pair of spatially inhomogeneous periodic solutions (A±3 ) which are stable, and A±1
and A2 which are unstable in this region. This means that the state of the two populations has been
chaotic since the beginning, ultimately periodic phenomena may appear, which tend to stability.
In D5, a pair of spatially inhomogeneous steady states, A±1 , became non-existent. This means that
predator and prey will coexist and exhibit oscillatory behavior. In D6, the system (4) only has a stable
spatially homogeneous periodic solution. This also means that predator and prey will coexist and
exhibit oscillatory behavior. Finally, the results of numerical simulations to support the above work
which indicate the model (4) have more complex dynamic properties (see Figures 2–7).
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