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We study the strongly interacting matter phase diagram on the T − μ plane through the two flavor Polyakov extended NJL model.
We compare the phase diagrams obtained from three different effective potentials, focusing on the behavior of the width of the
crossover region and the critical end point for each case. We describe various susceptibilities to obtain the chiral crossover and
the color deconfinement crossover.

1. Introduction

Quantum chromodynamics (QCD) is the theory that
describes the phenomena of strongly interacting matter
[1, 2]; this can be applied to the study of the phase dia-
gram in the T − μ plane, where each point in this plane rep-
resents a different thermodynamic state. Under normal
conditions of temperature and chemical potential, decon-
fined quarks are not observed, but bound colorless states
are observed instead.

One of the main goals for researchers is to locate the
points in the T − μ plane where the high-temperature
quark-gluon plasma (QGP) region and the phase transitions
for hadronic matter at low temperature [3, 4] are located.
There is a phase transition related to the chiral symmetry
restoration and another for color deconfinement with
increasing temperature (considering fixed quark chemical
potential). These symmetries become exact in the chiral
(zero-quark mass) and quenched (infinite quark mass)
limits, respectively [5].

Unlike other quantum field theories, the running con-
stant of QCD is larger than one in the low-energy regime;
hence, QCD is a nonrenormalizable theory. Lattice QCD is
the most fundamental technique that can be used in order
to study the nonperturbative regime of strong interactions

[6], and it is widely used to analyze quark matter at high tem-
perature and low chemical potential. However, lattice QCD
runs into difficulties in the description of quark matter at
finite chemical potential because of the sign problem [7, 8].
Therefore, effective field theories can serve as important tools
in the description of strongly interacting matter at high
chemical potentials.

One of the most widely used effective theories is the
Nambu and Jona-Lasinio model (NJL) [9–12] because of its
ability of describing the chiral symmetry-related phenomena
of strongly interacting matter, but it does not account for the
influence of gluons [13]. In order to solve this inaccuracy, a
Polyakov loop is introduced, in which the gluon interaction
takes the form of a Hartree background field in the thermo-
dynamic potential [14].

In the NJL model, the order parameter related to the
presence or absence of chiral symmetry is the chiral conden-
sate [15]. Taking into account that, in the absence of dynam-
ical quarks, the Polyakov loop acts as an order parameter for
deconfinement [16, 17], indicating the color confinement
phase transition by the restoration of the Zð3Þ center symme-
try, the Polyakov-Nambu-Jona-Lasinio (PNJL) model exten-
sion tries to mimic these color confinement effects [18] by
introducing the Polyakov loop associated with a background
gluon field. It is assumed that the background field is coupled
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to the quarks via the covariant derivative of QCD [19]
and this feature gives rise to the interaction between the
chiral condensate and the Polyakov loop. When this
background field is exactly zero, the color Zð3Þ symmetry
of QCD is restored.

For nonzero chemical potentials, there are other QCD-
inspired effective models like the Polyakov-quark-meson
(PQM) model [20–22] where the coupling with the pure
glue sector is realized in a similar fashion as PNJL and
the quark-meson matter sector is described by the fermi-
onic determinant. Other extensions of the PNJL model
[23, 24] for two degenerate flavors include the isospin
chemical potential which allows to study the effects of fla-
vor mixing with the calculus of the isospin number sus-
ceptibility. To obtain the phase diagram with another
point of view, [25, 26] imposed the constraint of color
charge neutrality, and as a result, they obtained a coexis-
tence of the chiral symmetry breaking and superconduct-
ing phases.

Lattice QCD simulations report that a crossover, rather
than a phase transition, is present at the zero chemical poten-
tial line [27–29], and the use of effective theories consistently
agrees with these reports [20, 30, 31]. At higher chemical
potential values, most, but not all, effective theories report
the presence of one or several critical end points (CEP) on
the phase diagram [32–34]. The region of the QCD phase
diagram at low temperature and high chemical potential is
useful to understand some astrophysical phenomena, in
particular, the structure of the core of neutron stars [35,
36]. Some works also indicate that a color superconduct-
ing phase appears in this zone of the diagram under cer-
tain conditions [37, 38].

Phase transitions will be defined according to M.E.
Fisher’s terminology as defined by [39]: transitions will
be distinguished as either continuous or discontinuous
by analyzing the first derivative of the thermodynamic
potential with respect to the order parameters. First-
order phase transitions are always found where any order
parameter is discontinuous. Second-order phase transi-
tions occur when any of the second derivatives of the
thermodynamic potential are divergent, but the order
parameters themselves are continuous. If no divergences
are found at any of the derivatives, we classify it as a
crossover, rather than a phase transition. Technically,
crossovers in the PNJL model occupy all the area of the
phase diagram before reaching the critical end point
because neither the chiral symmetry is fully restored nor
the Zð3Þ symmetry is spontaneously broken. However, it
is useful to regard an approximate chiral symmetry resto-
ration or Zð3Þ symmetry breaking by utilizing approxi-
mate order parameters. By applying certain criteria, it is
possible to highlight a zone where both crossovers show
the maximum influence over the order parameters. In
the PNJL model, nothing forbids both of these maximum
influence zones to show up one after the other or even
simultaneously, as these events are heavily influenced by
the chosen parameter sets [40, 41].

In this work, we study the behavior of the QCD phase
diagram in the framework of the PNJL model, focusing on

the behavior of the crossover zone. We use three different
forms for the Polyakov loop effective potential, and also,
we introduce several criteria to determine its extent, based
on the influence of the given order parameter on the par-
ticle system.

2. Two Flavor PNJL Model

The color confinement phenomena are described by the
Polyakov loop, with which the gluon dynamics (included
through the incorporation of a temporal background gluon
field) are represented by means of an effective potential.
The extended Polyakov-Nambu-Jona-Lasinio Lagrangian
[42] for three colors (Nc = 3) and two flavors (Nf = 2)
reads

LPNJL = �q iγμD
μ − m̂0

� �
q + �qbμγ0q + G

2
�qqð Þ2 + �qiγ5τqð Þ2� �

−U Φ A½ �, �Φ A½ �, T� �
,

ð1Þ

where m̂0 = diag ðmu,mdÞ represents the current quark
masses in the flavor space, bμ = diag ðμu, μdÞ is the

quark chemical potential, q = ðqu, qdÞT is the quark field,
and τ are the Pauli matrices in SU f ð2Þ. In this work,
we assume isospin symmetry and set mu =md =m0
and μu = μd = μ. The coupling between the effective
gluon field and quarks is accomplished through the
covariant derivative Dμ = ∂μ − iAμ. A is the gluonic gauge
field which absorbs the strong coupling constant g, Aμ = g
Aa
μλa/2 and λa are the Gell-Mann matrices in the color

space. The gluon contribution is described by U in terms
of the dynamics of the traced Polyakov loop and its con-
jugate:

Φ =
1
Nc

Trc L xð Þh i,

�Φ =
1
Nc

Trc L† xð Þ� 	
,

ð2Þ

where LðxÞ is a Nc ×Nc color matrix defined in terms
of A4:

L xð Þ =P exp i
ðβ
0
dτA4 x, τð Þ


 �
,

L† xð Þ =P exp i
ðβ
0
dτA∗

4 x, τð Þ

 �

,
ð3Þ

with β = 1/T and P is a path ordering operator. The
Polyakov loop (3) is introduced by taking a stationary
gluonic field:

Aμ = δ
μ
0A

0, A4 = iA0: ð4Þ

By using the Polyakov gauge (4), it is ensured that Φ and
�Φ are real, and at μ = 0, when there are no present quarks,
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Φ = �Φ. These fields are used as an order parameter of the
phase transition for color confinement and color deconfine-
ment; also, Φ is related to the Zð3Þ symmetry breaking of
QCD [43]. When T ⟶ 0, then Φ, �Φ⟶ 0 and we have a
confined phase. On the other hand, for T ⟶∞, then Φ,
�Φ⟶ 1 and there is a deconfined phase [40].

To investigate the thermodynamic properties of the
system, we evaluate the partition function for the PNJL
lagrangian [44]:

Z =
ð
D�qDq exp i

ð
d4xLPNJL


 �
: ð5Þ

To perform this calculation, we work on the bosoniza-
tion of the lagrangian. With the Hubbard-Stratonovich
transformation, we replace the four-quark interaction of
the model with a Yukawa-type coupling of quarks intro-
ducing auxiliary fields [45]: the scalar σ and the pseudos-
calar meson fields π.

From (1), we have

LEff = �q iγμ∂μ −m0 + γ0 μ − igA4ð Þ�

+ σ + iγ5τ · π�q −
σ2 + π2

2G
−U,

ð6Þ

in the mean field approximation, the auxiliary fields are
assumed to be constant numbers ðσðxÞ, πðxÞÞ⟶ ðσ, 0Þ,
σ =Gh�qqi, the pseudoscalar interaction iγ5τ · π is taken
as zero, and the current quark mass is absorbed into the
σ field: σ⟶ σ −m0 [45]. The scalar field σ has a nonzero
expectation value, so the shifting in its value results in
massive constituent quarks with a mass M [46] deter-
mined by the gap equation:

M =m0 − σ =m0 − G �qqh i: ð7Þ

Computing the integral over the Grassman variable q in
(5), we obtain

LEff = −iTrlnS−1 −
σ2

2G
−U, ð8Þ

where S−1 = iγμ∂μ + σ + γ0ðμ − igA4Þ, and the trace in the pre-
vious equation runs over Dirac and spinor indices. Now, the
partition function is rewritten as Z =

Ð
Dσ exp ½i Ð d4xLEff �,

and to obtain results at finite temperature and chemical poten-
tial, the integral for the time-like component is replaced by the
discrete summation:

i
ð d4p

2πð Þ4 f p0, pð Þ⟶ −T 〠
∞

n=−∞

ð d3p
2πð Þ3 f iωn + μ, pð Þ, ð9Þ

where the quark propagator is defined at discrete imaginary
energies iωn + μ and ωn = ð2n + 1ÞπT are the Matsubara
frequencies for fermions. The phase structure of the PNJL
model is described by the thermodynamic potential per
unit volume ΩðT , μÞ = −ðT/VÞ log ZðT , μÞ [47]. From the

partition function, we obtain

ΩPNJL =U T ,Φ, �Φ
� �

+
σ2

2G
− 2NcN f

ð d3p
2πð Þ3

× Ep + T ln 1 + e−β Ep−μð Þe−igA4β
h in

+ T ln 1 + e−β Ep+μð ÞeigA4β
h io

,

ð10Þ

where Ep =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 +M2

p
is the quasiquark energy. The quark

field supposes fixed quarks, i.e., qðx, tÞ = qðtÞ and igA4 is
proportional to the energy needed to add an infinite mass
to the quark, effectively fixing it. Then, we are able to sub-
stitute the matrix for L (3) in the previous expression (10):

ΩPNJL =U T ,Φ, �Φ
� �

+
σ2

2G
− 2NcN f

ð d3p
2πð Þ3

× Ep +
T
Nc

Trc ln Z+
Φ Ep
� �� �


+
T
Nc

Trc ln Z−
Φ Ep
� �� ��

,

ð11Þ

while L represents the gluon dynamics, so it still depends
on the space-like coordinates. The partition function for
fermions are redefined as

Z+
Φ Ep
� �

= 1 + L†e−β Ep−μð Þ,

Z−
Φ Ep
� �

= 1 + Le−β Ep+μð Þ,
ð12Þ

performing the color trace, we obtain the final potential:

ΩPNJL =U T ,Φ, �Φ
� �

+
σ2

2G
− 2NcN f

ð d3p
2πð Þ3

× Ep +
T
Nc

ln 1 + 3Φe−β Ep−μð Þ + 3�Φe−2β Ep−μð Þh


+ e−3β Ep−μð Þi + T
Nc

ln 1 + 3�Φe−β Ep+μð Þ + 3Φe−2β Ep+μð Þh

+ e−3β Ep+μð Þi�:

ð13Þ

The set of coupled equations which minimizes (13)
with respect to each mean field is

∂Ω
∂σ

= 0jσ= σh i,

∂Ω
∂Φ

= 0jΦ= Φh i,

∂Ω
∂�Φ

= 0j�Φ= �Φh i ;

ð14Þ

this system is solved self-consistently in the T − μ plane;
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the solutions are the chiral hσi and Polyakov loop hΦi, h�Φi
expectation values.

2.1. Effective Potentials. To observe the influence of the Poly-
akov loop in the crossover zone, we use three different
reported expressions for the Polyakov loop effective poten-
tial. The first one labeled as “polynomial (pol)” proposed by
Ratti et al. [48] reads

U T ,Φ, �Φ
� �

T4 =
−b2 Tð Þ

2
Φ�Φ −

b3
6

Φ3 + �Φ
3

� �
+
b4
4

Φ�Φ
� �2,

ð15Þ

where

b2 Tð Þ = a0 + a1
T0
T


 �
+ a2

T0
T


 �2
+ a3

T0
T


 �3
; ð16Þ

the parameters are a0 = 6:75, a1 = −1:95, a2 = 2:625, a3 = −
7:44, b3 = 0:75, b4 = 7:5, and T0 = 270MeV. The second
effective potential “logarithmic (log),” written by Rößner
et al. [49], replaces the higher-order polynomial terms by a
logarithmic term which limits the Polyakov loop to be always
smaller than 1; its form is given by

U T ,Φ, �Φ
� �

T4 = −
a Tð Þ
2

Φ�Φ + b Tð Þ ln ½1 − 6Φ�Φ

+ 4 Φ3 + �Φ
3

� �
− 3 Φ�Φ

� �2i,
ð17Þ

with

a Tð Þ = a0 + a1
T0
T


 �
+ a2

T0
T


 �2
,

b Tð Þ = b3
T0
T


 �3
;

ð18Þ

the values for the coefficients are a0 = 3:51, a1 = −2:47,
a2 = 15:2, b3 = −1:75, and T0 = 270MeV. T0 is the critical
temperature for deconfinement in the two previous
potentials.

The polynomial and logarithmic potentials are fixed in
such a way that they reproduce pure-gauge lattice QCD data.
However, its range of applicability is around T ≤ ð2 − 3ÞTc;
this is because transverse gluons contribute at high tempera-
ture (for T > 2:5Tc) and these degrees of freedom are ignored
in the PNJL model.

A third potential “exponential (exp)” is reported by
Fukushima [5]:

U T ,Φ, �Φ
� �

= −bT 54e−a/TΦ�Φ + ln 1 − 6Φ�Φ − 3 Φ�Φ
� �2hn

+ 4 Φ3 + �Φ
3

� �io
,

ð19Þ

where a = 664MeV and b = 0:03Λ. The parameter a con-

trols the deconfinement phase transition; it is fixed to take
place at T = 200MeV in the pure gauge sector, while b
relates to the chiral symmetry restoration and the color
deconfinement transition. For small b, the chiral phase
transition contribution is higher than the deconfinement one
and vice versa. In this parametrization, the effective degrees
of freedom slowly decrease as the temperature increases, fitting
the PNJL features.

There are other forms reported for the Polyakov loop;
Bhattacharyya et al. [50] introduced the Vondermonde term
to the polynomial effective potential to constrain Φ within 1.
An alternative polynomial potential is proposed by Schaefer
et al. [21] where they used a polynomial expansion in Φ, �Φ
up to quartic terms. The “usual” effective potential is fixed
to reproduce lattice data of the pure Yang-Mills system at
μ = 0, and as a consequence, the coupling of the matter sector
to the gauge sector is lost coupling. Haas et al. [3] improved
the logarithmic potential adding the glue potential of full
QCD through the functional renormalization group. We
restrict our work to the first three widely used potentials.

3. Model Parameters

The set of parameters is obtained by imposing the condition
that they reproduce the values in vacuum of some well-
known observable, like the pion decay constant f π and its
mass mπ as well as the quark condensate h�qqi. The current
quark massm0 is fixed from the Gell-Mann, Oakes, and Ren-
ner relation f 2πm

2
π = −m0h�qqi. At T = μ = 0, the Polyakov

loop does not have any effect in the system, so the parameters
employed in the PNJL model are the same as the ones fixed in
the NJL model. We use the parameter set obtained by Ratti
et al. [48], where the ultraviolet divergence is controlled by
a 3-momentum cut-off scheme, Λ = 651MeV, the coupling
strength G = 10:08 × 10−6 MeV−2, and the “bare” quark mass
m0 = 5:5MeV. These parameters fit f π = 92:3MeV, mπ =
139:3MeV, and jh�qqij1/3 = 251MeV.

4. Results

4.1. Order Parameters. The PNJL model has two order
parameters [51]: the quark condensate for chiral transition
and the Polyakov loopΦ for color deconfinement. Both pres-
ent a similar limitation: the effective potential UðΦ, �Φ, TÞ is
invariant under the Zð3Þ symmetry, but in the presence of
dynamical quarks, the symmetry is explicitly broken. Also,
the chiral symmetry is not actually fully restored when a
nonzero current quark mass scheme is used. As a conse-
quence, neither the quark condensate [9] nor Φ [42] are
exact order parameters.

Generally, in the PNJL model, it is not expected that
chiral phase transitions coincide with confinement phase
transitions, but the theory does not prohibit these two
kinds of transitions to overlap. Furthermore, if these tran-
sitions do overlap, it implies that both order parameters
present a jump on the same set of ðT , μÞ coordinates,
and the thermodynamic potential, being itself a function
of the order parameters, also presents a jump on these
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coordinates. In this jump, a change of any of the order
parameters (that is contained between the bounds of the
jump) would indicate a corresponding change of the ther-
modynamic potential and the other order parameters
(again, inside the limits of their respective jumps).

Both order parameters are shown in Figure 1, where
the chemical potential is equal to zero, and Figure 2,
where μ > μCEP. For every different effective potential,
a crossover appears for low chemical potentials, which
is represented by a smooth rate of change of the order
parameter for every temperature value. For chemical
potentials higher than the one corresponding to the
CEP, the order parameter shows a jump at the temper-
ature value where the phase transition is taking place.
It is worthy of note that a phase transition does not
necessarily have to be temperature-induced, as the ther-
modynamic system can follow any continuous curve on
the T − μ plane, and when this curve intersects the
phase transition curve, it means that a phase transition
occurred.

4.2. Susceptibilities. A simple way to establish if a phase
transition is occurring is by calculating the susceptibility
of the order parameter. Susceptibilities determine the rate
of change of the thermodynamic potential with respect to
an order parameter and abrupt changes like the ones that
occur in a phase transition corresponding to singularities
on the susceptibility in the given T , μ point. This can be
observed in Figure 3, where a singularity in the form of a
vertical asymptote appears in the chemical potential
values where the phase transition occurs. Susceptibilities
always converge during a crossover, most often showing
a bell-like behavior (Figure 4); hence, it could be argued

that the extent of the crossover is the whole T − μ plane
up until the CEP, if it shows up, and the entire plane if
it does not.

However, it is useful to examine the behavior of the
susceptibilities in the crossover zone in order to determine
its extent. The crossover zone can be interpreted as a set
of temperature and chemical potential values where two
different phases coexist [32] (not in a mixed phase sense,
but in the sense that in this regime the behavior is inter-
mediate between those of the two phases) instead of
undergoing a simple phase transition, so the most natural
way to relate the crossover zone with the susceptibility is
by taking the local maxima in the T − μ plane.

In the PNJL model, we have one crossover related to
each order parameter [40]. The Polyakov loops act as an
order parameter for the Zð3Þ symmetry breaking. It is
important to note that both mean fields are different at
finite chemical potential, so central tendency measure-
ments will be used to represent the confinement-related
phenomena. Given that the (approximate) chiral symme-
try and Zð3Þ symmetry restoration are directly dependent
on the constituent quark mass [51] and the Polyakov
loops, a matrix is obtained with all the second derivatives
of the thermodynamic potential with respect to the con-
stituent quark mass and the Polyakov loops; following
closely [42], it is expressed as

Ĉ =

CMM CMΦ CM �Φ

CMΦ CΦΦ CΦ�Φ

CM �Φ CΦ�Φ C �Φ�Φ

2
664

3
775, ð20Þ

0
0.0

5.0×106

1.0×107

1.5×107

2.0×107

<q
q

>

2.5×107

3.0×107

3.5×107

50

pol

100 150 200
T (MeV)

250 300 350

log
exp

(a) Chiral condensate

0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50
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100 150 200
T (MeV)

250 300 350

log
exp

Ф

(b) Polyakov loop

Figure 1: Order parameter as a function of temperature at μ = 0.
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where each component is defined as

CMM =
1
TΛ

∂2Ω
∂M2 ,

CΦΦ =
1

TΛ3
∂2Ω
∂Φ2 ,

C �Φ�Φ =
1

TΛ3
∂2Ω
∂�Φ2 ,

CΦ�Φ = C �ΦΦ

1
TΛ3

∂2Ω
∂Φ�Φ

,

CMΦ = CΦM =
1

TΛ2
∂2Ω

∂M∂Φ
,

CM �Φ = C �ΦM =
1

TΛ2
∂2Ω
∂M �Φ

:

ð21Þ

Then, we obtain the susceptibilities by taking the ele-
ments of the inverse matrix of (20): χij = ½C∧−1�ij, i, j =
fM,Φ, �Φg:

bχ =

χMM χMΦ χM �Φ

χMΦ χΦΦ χΦ�Φ

χM �Φ χΦ�Φ χ�Φ�Φ

2
664

3
775: ð22Þ

The former matrix is symmetric because the derivative
operators are commutative, so χij = χji∀i, j ∈ fM,Φ, �Φg. We
take the arithmetic mean of all the confinement-related sus-
ceptibilities in order to get the (average) Polyakov loop sus-
ceptibility:

0 50

pol

100 150 200
T (MeV)

250 300 350

log
exp

0.0

5.0×106

1.0×107

1.5×107

2.0×107
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q

>
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(c) Polyakov loop conjugate

Figure 2: Order parameter as a function of temperature at μ = 340MeV.
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�χΦΦ =
1
4

χΦΦ + χ�Φ�Φ + 2χΦ�Φð Þ: ð23Þ

As for the chiral susceptibility, the matrix element χMM
determines the rate of change of the thermodynamic poten-
tial with respect to the constituent quark mass, so it repre-
sents the (partial) chiral symmetry restoration.

In every case, lower temperatures than TCEP show a sim-
ilar asymptote (although it appears in higher chemical poten-
tial values than the CEP one). Higher temperatures yield a

bell-like curve where the local maximum becomes sharper
as the temperature goes down, until the local maximum turns
into a vertical asymptote at T = TCEP.

4.3. Phase Diagrams. Phase diagrams are obtained by follow-
ing two different criteria, one of which is based on the abso-
lute value of the order parameter and the other is based on
the relevant susceptibility. Both criteria always agree on the
location of the first-order phase transition curve and the loca-
tion of the CEP but disagree on the zone where the extent of
the crossover is more significant. Both criteria are available to
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Figure 3: Susceptibilities as a function of chemical potential at CEP temperature.
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use for either the chiral phase diagram or the deconfinement
phase diagram.

The global criterion takes the value of the order
parameter at the CEP as a threshold for the definition of
the two phases. In the chiral case, ðT , μÞ points where
the chiral condensate is higher than the threshold value
representing the chirally broken phase and the chirally
restored phase appears when the condensate is lower than
the threshold value. Similarly, the points where the value
of Φ is higher than the one found at the CEP represent
the broken Zð3Þ symmetry phase, which corresponds to
the color deconfined phase. In the opposite case, the Zð3Þ
symmetry is restored and the confined color phase is found
there. This criterion has the disadvantage that a CEP must
exist in order to apply it, but each diagram obtained in this
work presents a CEP.

The local criterion takes the relative maximum of the
order parameter susceptibility, and its location serves as
the point where the two phases are distinguished from
each other. If the susceptibility presents a vertical asymp-
tote (like the one in Figure 3), then the location of this
asymptote represents the first- (or second-) order phase
transition. If it does not (like in Figure 4), the ðT , μÞ
coordinate where the local maximum is located separates
both phases.

With the usage of both criteria, we obtain the phase
diagrams shown in Figures 5 and 6. Invariably in all
effective potentials, deconfinement occurs before chiral
symmetry restoration as the temperature rises; hence, the
deconfinement critical temperature is always lower than
the chiral restoration critical temperature. This leads to a
small zone of the diagram where deconfined matter exists
while the chiral symmetry is not yet restored. Each effec-
tive potential yields a different ðT , μÞ coordinate for the
CEP, but the chiral CEP always coincides with the decon-
finement CEP. After that, the first-order transition curve is
the same for chiral symmetry and deconfinement for each
effective potential. All of these are summarized in Table 1.

4.4. Comparison with Lattice QCD. The first-order phase
transition takes place in the pure gauge sector at T0 = 270
MeV [5, 48, 49, 52]. Following the discussion presented in
[13, 21, 48], we rescaled T0 from 270 to 190MeV in order
to compare our results with lattice ones. At μ = 0, the
numerical simulations state that the chiral phase transition
and deconfinement occur at the same time; however, there
is no reason why the two transitions should coincide
exactly [2, 43, 53]. Indeed, Sakai et al. [31] reports an
entanglement between deconfinement and chiral symmetry
restoration through the explicit dependence of the cou-
pling G with Φ and �Φ. The Polyakov loop contribution
shifts the deconfinement critical temperature to higher
values when the value T0 is raised, but this contribution
suppresses the fermionic contribution of the thermody-
namic potential, which means that the chiral critical tem-
perature is also shifted to higher values [13]. The effect of
T0 in the critical temperatures is shown in Table 2.

We obtained lower values at T0 = 190MeV for both cri-
teria and both crossovers than the corresponding ones for
T0 = 270MeV. The average Tc is the average temperature of
the two transition temperatures; these results are in good
agreement with Cheng et al. [54]; they obtained a Tc ≈ 196
where the most rapid change in the parameters for the chiral
transition coincides with the region where the Polyakov loop
changes most rapidly. Bazavov et al. [55] found that decon-
finement and chiral symmetry restoration happen in the same
temperature interval T ∈ ½180MeV, 200MeV�; our results
with global criterion for chiral symmetry restoration and
deconfinement for exponential potential fit this interval,
although we do not recover this simultaneous interval for both
crossovers. A comparison between our chiral crossovers and
the ones found by [55] can be seen in Figure 7. Borsányi et al.
[56] obtained Tc = 157MeV, and Bazavov et al. [57] reported
Tc = 163MeV; these values are very close to our temperatures
for deconfinement with both criteria for polynomial and
logarithmic potential. All Tc for chiral symmetry restoration
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Figure 5: Phase diagram superposition for global criterion.
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are higher than the lattice ones, out of the calculated range; this
is due to the effect of the Polyakov loop as described before.

4.5. Crossover Zone. As explained back in Section 4.1, neither
chiral symmetry is completely restored at any point nor Zð3Þ
symmetry is explicitly broken, because the current quark
mass must be zero for the first to happen and needs to be infi-
nite for the latter. However, the order parameter does present
jumps (Figure 2), which unequivocally means that a first-
order phase transition is taking place, and the critical end
point is interpreted as the end of the crossover region.
Because of this, even in strict mathematical terms, the cross-
over width is not the entire T − μ plane.

Before the CEP though, the limit of the extent of the
crossover zone is arbitrary up to some point. However, there
are zones in the T − μ plane where the order parameter
changes its value more rapidly or more slowly (Figure 1).
The influence of the crossover on the phase diagram is
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Figure 6: Phase diagram superposition for local criterion.

Table 1: Phase diagram results (MeV) obtained for each effective
potential (T0 = 270MeV); the critical temperatures are at μ = 0.

U μ, Tð ÞCEP
Tc local Tc global

�qqh i Φ �qqh i Φ

pol 331, 84 269 235 246 191

log 330, 98 266 234 244 202

exp 329, 83 253 216 232 193

Table 2: Critical temperatures (MeV) at μ = 0 for T0 = 190MeV.

U
Average Tc Tc local Tc global

Local Global �qqh i Φ �qqh i Φ

pol 197.5 173.5 230 165 193 154

log 200.5 183 237 164 205 161

exp 234.5 212.5 253 216 232 193
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interpreted to be more significant on the regions where
the order parameter changes more rapidly or, alternatively,
where the susceptibilities are close to reaching their maxi-
mum values. By taking an interval of values of the order
parameter and comparing them with its susceptibility,
one should not expect each interval to yield the same
regions on the T − μ plane, so an extension of each crite-
rion defined in Section 4.3 can be used. These extended
criteria are expected to contain the transition curves
shown in Figures 5 and 6.

The extension of the global criterion takes the first jump
of the order parameter that occurs at higher chemical poten-
tials than the CEP; for a constant value of μ, the order param-
eter jumps to a lower value when the temperature goes above
the phase transition line, and for lower chemical potentials,
the order parameter changes smoothly. The crossover is
taken to be where the value of the order parameter is any-
where between the two values of the first jump after the
CEP (at the chosen resolution, which is 1MeV in this work).
This has the advantage that it is mathematically ensured that
the crossover zone ends at the CEP. However, a CEP must
exist in order to be able to apply this criterion. Also, this
method is resolution-dependent, which is another disadvan-
tage. In the temperature-chemical potential plane, the order
parameters are calculated on certain points on a grid with a
desired resolution, and Δμ becomes shorter as the resolution
becomes higher, which leads to a decreasing crossover width
with respect to an increasing resolution (and decreasing Δμ).

The extension of the local criterion takes the vicinity of
the local maximum of the susceptibility up to the inflection
points. It is worth mentioning that the complete set of inflec-
tion points on the susceptibility surface forms a curve on the
χ − T − μ space, and both of these curves (one for each direc-
tion away from the local maximum) serve as the boundaries
for the crossover zone, which are obtained by projecting
these curves in the T − μ plane.

The phase diagrams obtained with the usage of both
extended criteria are shown in Figures 8 and 9 and are also
further compared between each other in Figure 10. In every
case, it is observed that the extended criteria indeed contain
the curves shown in Figures 5 and 6; however, their widths
are highly variable between each criterion and each effective
potential. Also, the position of the critical and threshold
values can vary from the center of the crossover width to
one of the boundaries.

5. Discussion

On all the obtained phase diagrams, the deconfinement
crossover occurs at invariably lower temperatures than
the chiral crossover, with or without some degree of over-
lap (Figures 8 and 9). The behavior of the chiral and Poly-
akov loop susceptibilities also supports this. The overlap
between the two crossover regions can be interpreted as
both order parameters smoothly changing their values at
their highest extent simultaneously. For higher tempera-
tures than the CEP, the chiral susceptibility peaks at
higher chemical potentials than the Polyakov loop suscep-
tibility (Figure 4), and at the CEP temperature, both
susceptibilities peak at the same chemical potential. Gener-
ally, but not always (Figure 9(a)), the chiral crossover is wider
than the deconfinement one. By analyzing the behavior of the
order parameters, one observes that the logarithmic effective
potential leads to a more rapid crossover than the other two.
This can be observed in Figure 1, and it is especially clear in
Figure 1(b), where the order parameter value decrease starts
later and ends earlier than the other two effective potentials.
This leads to a rather narrow deconfinement crossover for
the logarithmic potential in both the locally and globally
based criteria (Figure 10(d)).

By comparing criteria one against the other, the globally
based criteria present consistently lower values for the critical
temperature and the crossover width than the locally based
criteria, but these differences present some degree of overlap
for the chiral phase transition (Figures 10(a), 10(c), and
10(e)). On the other hand, this overlap is completely absent
in the deconfinement phase transition (Figures 10(b), 10(d),
and 10(f)). It is worth mentioning that both criteria are based
on the behavior of the order parameters around the CEP in
some way or another, so both criteria yield a first-order phase
transition on any of the order parameter jumps (if there are
any). This is not of much relevance on the case of the chiral
symmetry, where the position of the jump is pretty much
unambiguous (Figure 2(a)), but it is really important on the
case of the Polyakov loop (Figures 2(b) and 2(c)), where an
order parameter jump is also present, albeit in a way that is
less obvious. In this case, the jump always occurs at the same
coordinates for both the condensate and the Polyakov loop
(both Figures 2(b) and 2(c) present a jump at the same coor-
dinate compared with Figure 2(a)) which means we can
locate the first-order phase transition by looking for a jump
of whichever of these three order parameters (or even the
arithmetic mean of the Polyakov loops). This is due to the
fact that the jump of the chiral condensate influences the
jump of the Polyakov loops, being both order parameters in
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the same system of self-consisting equation (14), but we
could not recover this same influence for the width of the
crossover zone (Figure 1).

On these three effective potentials on the PNJL model, by
taking the chiral condensate and the Polyakov loops as
(approximate) order parameters, deconfinement occurs at
lower (pseudo)critical temperatures than the chiral symme-
try restoration in both the order parameter value itself and
its respective susceptibility. Whether this should or should
not happen is largely unresolved at this point. The lattice
QCD data we used as a point of comparison recovers a simul-
taneousness for both crossovers, and the chiral crossovers we
recovered from the polynomial and logarithmic potentials
with a low T0 happen invariably at higher temperatures than
the lattice ones (Figure 7). By applying central tendency mea-

sures between both of our crossovers, it is likely that the
resulting crossover fits better to the lattice data.

The T , μ locations of the CEP and the first-order phase
transition depend on the effective potential, while both the
chiral and deconfinement crossovers always converge to the
same CEP, independently of the criterion used. There are
other factors that unavoidably move the coordinates of the
CEP and the first-order phase transition that are not covered
in this paper, like the regularization method and the selection
of the model parameters G and Λ [10]. Also, the parameter
set of the effective potentials is based on gluon lattice data,
which has shown somewhat conflicting results on the pure
gauge sector [48, 49, 58, 59]. It is of great interest to nar-
row down the possibilities of parameter sets for lattice
QCD with novel experimental results; that way, the
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predictive properties of effective theories that reach an
agreement with lattice QCD on this zone, like the PNJL
model, will be greater.

6. Conclusion

In this work, strongly interacting matter was studied on the
framework of the SUð2Þ PNJL model. We obtained several
phase diagrams with three different effective potentials and
two different phase transition criteria. We found out that
the criteria used strongly affect the crossover width but does
not affect the location of the CEP or the first-order transition,
while the effective potential affects all of these factors.

Determining the width of the crossover region on a
light quark mass scheme is always problematic: mathemat-
ically, neither crossover is finished until the Zð3Þ symme-
try is explicitly broken nor the chiral symmetry is
completely restored. However, it is useful to look at the
overall behavior of the crossover, where the susceptibility
reaches its maximum or where the absolute value of the
order parameters reaches the ones at the CEP. In this
way, we will be able to locate a zone on the T − μ plane
where certain chiral symmetry or deconfinement-related
phenomena are more likely to happen.
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