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In this article, we study the axialvector-diquark-axialvector-antidiquark type scalar, axialvector, tensor, and vector ss�s�s tetraquark
states with the QCD sum rules. The predicted mass mX = 2:08 ± 0:12GeV for the axialvector tetraquark state is in excellent
agreement with the experimental value ð2062:8 ± 13:1 ± 4:2ÞMeV from the BESIII collaboration and supports assigning the
new X state to be a ss�s�s tetraquark state with JPC = 1+−. The predicted mass mX = 3:08 ± 0:11GeV disfavors assigning ϕð2170Þ
or Yð2175Þ to be the vector partner of the new X state. As a byproduct, we obtain the masses of the corresponding qq�q�q
tetraquark states. The light tetraquark states lie in the region about 2GeV rather than 1GeV.

1. Introduction

Recently, the BESIII collaboration studied the process
J/ψ⟶ ϕηη′ and observed a structure X in the ϕη′ mass
spectrum [1]. The fitted mass and width are mX = ð2002:1 ±
27:5 ± 15:0ÞMeV and ΓX = ð129 ± 17 ± 7ÞMeV, respectively,
with assumption of the spin-parity JP = 1−, the corresponding
significance is 5:3σ, while the fitted mass and width are
mX = ð2062:8 ± 13:1 ± 4:2ÞMeV and ΓX = ð177 ± 36 ± 20Þ
MeV, respectively, with assumption of the spin-parity JP =
1+, the corresponding significance is 4:9σ. The X state was
observed in the ϕη′ decay model rather than in the ϕη decay
model; they may contain a large ss�s�s component; in other
words, it may have a large tetraquark component. In Ref.
[2], Wang et al. assign the X state to be the second radial
excitation of h1ð1380Þ. In Ref. [3], Cui et al. assign X to
be the partner of the tetraquark state Yð2175Þ with the
JPC = 1+−.

We usually assign the lowest scalar nonet mesons f f0
ð500Þ, a0ð980Þ, κ0ð800Þ, f0ð980Þg to be tetraquark states and
assign the higher scalar nonet mesons f f0ð1370Þ, a0ð1450Þ,
K∗

0 ð1430Þ, f0ð1500Þg to be the conventional 3P0 quark-

antiquark states [4–6]. In Ref. [7], we take the nonet scalar
mesons below 1GeV as the two-quark-tetraquarkmixed states
and study their masses and pole residues with the QCD sum
rules in detail and observe that the dominant Fock components
of the nonet scalar mesons below 1GeV are conventional two-
quark states. The light tetraquark states may lie in the region
about 2GeV rather than lie in the region about 1GeV.

In this article, we take the axialvector diquark operators
as the basic constituents to construct the tetraquark current
operators to study the scalar (S), axialvector (A), tensor (T),
and vector (V) tetraquark states with the QCD sum rules
and explore the possible assignments of the new X state.
We take the axialvector diquark operators as the basic con-
stituents because the favored configurations from the QCD
sum rules are the scalar and axialvector diquark states [8–
10]; the current operators or quark structures chosen in the
present work differ from that in Ref. [3] completely.

The article is arranged as follows: we derive the QCD
sum rules for the masses and pole residues of the ss�s�s tetra-
quark states in Section 2; in Section 3, we present the
numerical results and discussions; Section 4 is reserved for
our conclusion.
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2. QCD Sum Rules for the ss�s�s Tetraquark States

We write down the two-point correlation functionsΠμναβðpÞ
and ΠðpÞ firstly

Πμναβ pð Þ = i
ð
d4xeip·x 0 ∣ T Jμν xð ÞJ†αβ 0ð Þ

n o
∣ 0

D E
,

Π pð Þ = i
ð
d4xeip·x 0 ∣ T J0 xð ÞJ†0 0ð Þ� �

∣ 0
� �

,
ð1Þ

where JμνðxÞ = J2,μνðxÞ, J1,μνðxÞ,

J2,μν xð Þ = εijkεimnffiffiffi
2

p sT j xð ÞCγμsk xð Þ�sm xð ÞγνC�sTn xð Þ
n

+ sT j xð ÞCγνsk xð Þ�sm xð ÞγμC�sTn xð Þ
o
,

J1,μν xð Þ = εijkεimnffiffiffi
2

p sT j xð ÞCγμsk xð Þ�sm xð ÞγνC�sTn xð Þ
n

− sT j xð ÞCγνsk xð Þ�sm xð ÞγμC�sTn xð Þ
o
,

J0 xð Þ = εijkεimnsT j xð ÞCγμsk xð Þ�sm xð ÞγμC�sTn xð Þ,
ð2Þ

where i, j, k, m, and n are color indexes and C is the charge
conjugation matrix. Under charge conjugation transform Ĉ,
the currents JμνðxÞ and J0ðxÞ have the properties

Ĉ J2,μν xð Þ Ĉ−1 = +J2,μν xð Þ,

Ĉ J1,μν xð Þ Ĉ−1 = −J1,μν xð Þ,

Ĉ J0 xð Þ Ĉ−1 = +J0 xð Þ:

ð3Þ

The doubly strange diquark operators

sT jCΓsk = 1
2 sT jCΓsk − sTkCΓsj
� �

= 1
2 ε

ijksT jCΓsk ð4Þ

with Γ = γμ, σμν in color antitriplet �3c and

sT jCΓsk = 1
2 sT jCΓsk + sTkCΓsj
� �

ð5Þ

with Γ = 1, γ5, γμγ5 in color sextet 6c satisfy Fermi-Dirac
statistics. On the other hand, the scattering amplitude for
one-gluon exchange is proportional to

λa

2

	 

ij

λa

2

	 

kl

= −
1
3 δijδkl − δilδkj
� �

+ 1
6 δijδkl + δilδkj
� �

,

ð6Þ

where

εmikεmjl = δijδkl − δilδkj: ð7Þ

λa is the Gell-Mann matrix. The negative sign in front of
the antisymmetric antitriplet �3c indicates that the interac-
tion is attractive, which favors formation of the diquarks
in color antitriplet. The positive sign in front of the sym-
metric sextet 6c indicates that the interaction is repulsive,
which disfavors formation of the diquarks in color sextet.
The diquark states which couple potentially to the sT jCsk,
sT jCγ5s

k, and sT jCγμγ5s
k operators in color sextet 6c are

expected to have larger masses than the diquark states
which couple potentially to the sT jCγμs

k and sT jCσμνs
k

operators in color antitriplet �3c. We prefer the diquark
operators in color antitriplet �3c to the diquark operators
in color sextet 6c in constructing the tetraquark current
operators. Up to now, the scalar and axialvector diquark
states in color antitriplet �3c have been studied with the
QCD sum rules [8–10]. In our previous studies, we
observed that the pseudoscalar and vector diquark states
in color antitriplet �3c are not favored configurations and
cannot lead to stable QCD sum rules, which are not
included in Ref. [8]. The tensor diquark states, which have
both JP = 1+ and 1− components, have not been studied
with the QCD sum rules yet. We can draw the conclusion
tentatively that the most favored quark configuration is the
axialvector diquark operator εijksT jCγμs

k. In Ref. [3], Cui

et al. choose the pseudoscalar diquark operator in color
sextet 6c and vector antidiquark operator in color antisex-
tet �6c and axialvector diquark operator in color antitriplet
�3c and tensor antidiquark operator in color triplet 3c to
construct the axialvector currents to study the axialvector
tetraquark states. In Ref. [11], we choose the color octet-
octet type vector four-quark current to study Yð2175Þ;
Fierz rearrangement of this current cannot lead to a
diquark-antidiquark type tensor component. In the present
work, we choose the axialvector diquark (antidiquark)
operators in color antitriplet �3c (triplet 3c) to construct
the tensor current, which is expected to couple potentially
to the lowest tetraquark states, to study both the axialvec-
tor and vector tetraquark states. The quark configuration
in the present work differs completely from that in Ref.
[3] and Ref. [11]; it is interesting to study the new quark
configuration. Furthermore, the conclusion of the present
work differs completely from that of Ref. [3].

At the hadronic side, we can insert a complete set of
intermediate hadronic states with the same quantum num-
bers as the current operators JμνðxÞ and J0ðxÞ into the
correlation functions ΠμναβðpÞ and ΠðpÞ to obtain the
hadronic representation [11–14]. After isolating the
ground state contributions of the scalar, axialvector, vec-
tor, and tensor tetraquark states, we get the results

Π2,μναβ pð Þ = λ2XT

m2
XT

− p2
~gμα~gνβ + ~gμβ~gνα

2 −
~gμν~gαβ

3

	 


+⋯ =Π2+ pð Þ
~gμα~gνβ + ~gμβ~gνα

2 −
~gμν~gαβ

3

	 

+⋯,
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Π1,μναβ pð Þ =
~λ
2
XA

m2
XA

− p2
p2gμαgνβ − p2gμβgνα − gμαpνpβ

�

− gνβpμpα + gμβpνpα + gναpμpβ
�

+
~λ
2
XV

m2
XV

− p2
−gμαpνpβ − gνβpμpα + gμβpνpα

�

+ gναpμpβ
�
+⋯ =Π1+ p2

� �
p2gμαgνβ − p2gμβgνα

�

− gμαpνpβ − gνβpμpα + gμβpνpα + gναpμpβ
�

+Π1− p2
� �

−gμαpνpβ − gνβpμpα + gμβpνpα
�

+ gναpμpβ
�
,

Π pð Þ =Π0+ p2
� �

=
λ2XS

m2
XS

− p2
+⋯,

ð8Þ
where ~gμν = gμν − ðpμpν/p2Þ; the subscripts 2+, 1+, 1−, and
0+ denote the spin-parity JP of the corresponding tetra-
quark states. The pole residues λX and ~λX are defined by

0 ∣ J2,μν 0ð Þ ∣ XT pð Þ� �
= λXT

εμν,

0 ∣ J1,μν 0ð Þ ∣ XA pð Þ� �
= ~λXA

εμναβ ε
αpβ,

0 ∣ J1,μν 0ð Þ ∣ XV pð Þ� �
= ~λXV

εμpν − ενpμ
� �

,

0 ∣ J0 0ð Þ ∣ XS pð Þh i = λXS
,

ð9Þ

where εμν and εμ are the polarization vectors of the tetra-
quark states.

Now we contract s quarks in the correlation func-
tions with the Wick theorem; there are four s-quark
propagators; if two s-quark lines emit a gluon by itself
and the other two s-quark lines contribute a quark pair
by itself, we obtain operator GG�ss�ss, which is of order
Oðαks Þ with k = 1 and of dimension 10. In this article,
we take into account that the vacuum condensates up
to dimension 10 and k ≤ 1 in a consistent way. For the
technical details, one can consult Refs. [7, 15]. Once
the analytical expressions of the QCD spectral densities
are obtained, we take the quark-hadron duality below
the continuum thresholds s0 and perform Borel trans-
form with respect to the variable P2 = −p2 to obtain the
QCD sum rules:

λ2X exp −
m2

X

T2

	 

=
ðs0
0
ds ρ sð Þ exp −

s

T2

	 

, ð10Þ

where ρðsÞ = ρSðsÞ, ρAðsÞ, ρVðsÞ, and ρTðsÞ.

ρS sð Þ = s4

3840π6 −
13sms �sgsσGsh i

384π4 + 2s �ssh i2
3π2 −

17 �ssh i �sgsσGsh i
48π2

+ s2

192π4
αsGG
π


 �
+ 19ms �ssh i

96π2
αsGG
π


 �
−
16ms �ssh i3

3 δ sð Þ

+ �sgsσGsh i2
192π2 δ sð Þ − �ssh i2

24
αsGG
π


 �
δ sð Þ,

ð11Þ

ρA sð Þ = s4

11520π6 −
s2 ms �ssh i
12π4 + s ms �sgsσGsh i

9π4 + 4s �ssh i2
9π2

−
5 �ssh i �sgsσGsh i

18π2 −
s2

2304π4
αsGG
π


 �

+ 3ms �ssh i
64π2

αsGG
π


 �
−
32ms �ssh i3

9 δ sð Þ

−
2 �ssh i2
27

αsGG
π


 �
δ sð Þ,

ð12Þ

ρV sð Þ = s4

11520π6 + s2 ms �ssh i
12π4 −

7sms �sgsσGsh i
72π4 −

2s �ssh i2
9π2

+ 5 �ssh i �sgsσGsh i
18π2 + s2

768π4
αsGG
π


 �

−
79ms �ssh i
1728π2

αsGG
π


 �
+ 16ms �ssh i3

9 δ sð Þ

−
2 �ssh i2
81

αsGG
π


 �
δ sð Þ − �sgsσGsh i2

18π2 δ sð Þ,

ð13Þ

ρT sð Þ = s4

5376π6 −
3s2 ms �ssh i
20π4 + 29s ms �sgsσGsh i

96π4 + 8s �ssh i2
9π2

−
37 �ssh i �sgsσGsh i

48π2 −
11s2

1920π4
αsGG
π


 �

+ 43ms �ssh i
864π2

αsGG
π


 �
−
64ms �ssh i3

9 δ sð Þ

−
4 �ssh i2
27

αsGG
π


 �
δ sð Þ,

ð14Þ
and λXA/V

=mXA/V
~λXA/V

.

We derive equation (10) with respect to τ = 1/T2, then
obtain the QCD sum rules for the masses of the tetraquark
states through a fraction

m2
X = −

Ð s0
0 ds d/dτð Þρ sð Þ exp −τsð ÞÐ s0

0 dsρ sð Þ exp −τsð Þ : ð15Þ

3. Numerical Results and Discussions

We take the standard values of the vacuum condensates
h�qqi = −ð0:24 ± 0:01GeVÞ3, h�qgsσGqi =m2

0h�qqi, m2
0 = ð0:8

± 0:1ÞGeV2, h�ssi = ð0:8 ± 0:1Þh�qqi, h�sgsσGsi =m2
0h�ssi, and
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hαsGG/πi = ð0:012 ± 0:004ÞGeV4 at the energy scale μ = 1
GeV [12–14, 16] and choose the �MS mass msðμ = 2GeVÞ =
0:095 ± 0:005GeV from the Particle Data Group [17] and
evolve the s-quark mass to the energy scale μ = 1GeV with
the renormalization group equation; furthermore, we neglect
the small u and d quark masses.

We choose suitable Borel parameters and continuum
threshold parameters to warrant the pole contributions
(PC) are larger than 40%, i.e.,

PC =
Ð s0
0 ds ρ sð Þ exp −s/T2� �

Ð∞
0 ds ρ sð Þ exp −s/T2� � ≥ 40%, ð16Þ

and convergence of the operator product expansion. The
contributions of the vacuum condensates DðnÞ in the opera-
tor product expansion are defined by

D nð Þ =
Ð s0
0 ds ρn sð Þ exp −s/T2� �
Ð s0
0 ds ρ sð Þ exp −s/T2� � , ð17Þ

where the subscript n in the QCD spectral density ρnðsÞ
denotes the dimension of the vacuum condensates. We
choose the values ∣Dð10Þ∣ ~ 1% to warrant the convergence
of the operator product expansion. In Table 1, we present
the ideal Borel parameters, continuum threshold parameters,
pole contributions, and contributions of the vacuum conden-
sates of dimension 10. In Figure 1, we plot the absolute con-
tributions of the vacuum condensates of dimension n for the
central values of the input parameters in the operator prod-
uct expansion. Although in some cases the contributions of
the perturbative terms Dð0Þ are not the dominant contribu-
tions, the contributions of the vacuum condensates of dimen-
sions 6 and 8 are very large; the hierarchy ∣Dð6Þ∣ ≫ ∣Dð8Þ∣
warrants the good convergent behavior of the operator prod-
uct expansion; furthermore, the contributions Dð7Þ, Dð9Þ,
and Dð10Þ are very small. From Table 1 and Figure 1, we
can see that the pole dominance is well satisfied and the oper-
ator product expansion is well converged; we expect to make
reliable predictions.

We take into account all uncertainties of the input
parameters and obtain the values of the masses and pole

Table 1: The Borel parameters, continuum threshold parameters, pole contributions, contributions of the vacuum condensates of dimension
10, masses, and pole residues of the tetraquark states, where the subscripts S, A, T , and V denote the scalar, axialvector, tensor, and vector
tetraquark states, respectively.

T2 GeV2� � ffiffiffiffi
s0

p GeVð Þ Pole ∣D 10ð Þ∣ mX GeVð Þ λX 10−2GeV5� �
ss�s�sS 1:4 − 1:8 2:65 ± 0:10 40 − 73ð Þ% ≪1% 2:08 ± 0:13 2:73 ± 0:56
ss�s�sA 1:5 − 1:9 2:65 ± 0:10 41 − 72ð Þ% <1% 2:08 ± 0:12 1:87 ± 0:34
ss�s�sT 1:5 − 1:9 2:75 ± 0:10 41 − 72ð Þ% <1% 2:22 ± 0:11 3:02 ± 0:53
ss�s�sV 2:1 − 2:7 3:60 ± 0:10 42 − 73ð Þ% ≤1% 3:08 ± 0:11 6:47 ± 1:07
qq�q�qS 1:2 − 1:6 2:40 ± 0:10 40 − 76ð Þ% ≪1% 1:86 ± 0:11 1:95 ± 0:38
qq�q�qA 1:3 − 1:7 2:40 ± 0:10 40 − 73ð Þ% ≤1% 1:87 ± 0:10 1:30 ± 0:22
qq�q�qT 1:4 − 1:8 2:65 ± 0:10 42 − 74ð Þ% ≤1% 2:13 ± 0:10 2:58 ± 0:42
qq�q�qV 1:9 − 2:5 3:40 ± 0:10 41 − 74ð Þ% ≤2% 2:86 ± 0:11 4:94 ± 0:93
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Figure 1: The absolute contributions of the vacuum condensates of dimension n for the central values of the input parameters in the operator
product expansion, where the S, A, T , andV denote the scalar, axialvector, tensor, and vector tetraquark states, respectively, (a) and (b) denote
the ss�s�s and qq�q�q quark constituents, respectively.
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residues of the ss�s�s tetraquark states, which are shown explic-
itly in Figure 2 and Table 1. In this article, we have assumed
that the energy gaps between the ground state and the first
radial state are about 0:6GeV [18–20]. In Figure 2, we plot
the masses of the scalar, axialvector, tensor, and vector ss�s�s
tetraquark states with variations of the Borel parameters at
larger regions than the Borel windows shown in Table 1.
From the figure, we can see that there appear platforms in
the Borel windows.

From Table 1, we can see that the uncertainties of the
masses δMX are small, while the uncertainties of the pole res-
idues δλX are large, for example, δMX/MX = 6% and δλX/
λX = 21% for the scalar ss�s�s tetraquark state. We obtain the
tetraquark masses from a fraction, see equation (14); the
uncertainties originating from the input parameters in the
numerator and denominator are almost canceled out with
each other, so the net uncertainties of the tetraquark masses
are very small. In this article, we have neglected the perturba-
tive OðαsÞ corrections. For the traditional two-quark light
mesons, the perturbative OðαsÞ corrections amount to multi-
plying the perturbative terms with a factor 1 + ð11/3Þðαs/πÞ
for the JPC = 0+−, 0++ mesons, 1 + ðαs/πÞ for the JPC = 1−−,
1++, 1+− mesons, and 1 − ðαs/πÞ for the JPC = 2++ mesons

[14]. Now we estimate the possible uncertainties due to
neglecting the perturbative OðαsÞ corrections by multiplying
the perturbative terms with a factor 1 + ð−1 ~ 4Þðαs/πÞ. The
additional uncertainties δMX and δλX are shown in Table 2.
From the table, we can see again that the uncertainties of the
mass δMX are small, while the uncertainties of the pole res-
idues δλX are large, for example, δMX/MX= +2%

−1% and δλX/
λX= +23%

−7% for the scalar ss�s�s tetraquark state. In the QCD
sum rules for the X, Y , Z states, which are excellent candi-
dates for the compact tetraquark states or loosely bound
molecular states, the uncertainties of the masses are less
than or about 6% [21]. Ref. [21] is the most recent review.

The predicted mass mX = 2:08 ± 0:12GeV for the axial-
vector tetraquark state is in excellent agreement with the
experimental value ð2062:8 ± 13:1 ± 4:2ÞMeV from the
BESIII collaboration [1], which supports assigning the new
X state to be an axialvector-diquark-axialvector-antidiquark
type ss�s�s tetraquark state. The predicted mass mX = 3:08 ±
0:11GeV for the vector tetraquark state lies above the exper-
imental value of the mass of ϕð2170Þ or Yð2175Þ, mϕ =
2188 ± 10MeV, from the Particle Data Group, and disfavors
assigning ϕð2170Þ or Yð2175Þ to be the vector partner of the
new X state. If ϕð2170Þ have a tetraquark component, it may
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Figure 2: The masses with variations of the Borel parameters T2, where (a), (b), (c), and (d) denote the scalar, axialvector, tensor, and vector
tetraquark states, respectively.
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have color octet-octet component [11]. As a byproduct, we
obtain the masses and pole residues of the corresponding q
q�q�q tetraquark states, which are shown in Table 1. The pres-
ent predictions can be confronted to the experimental data in
the future.

Now we perform Fierz rearrangement to the currents
both in the color and Dirac-spinor spaces

J0 = 2�ss�ss + 2�siγ5s�siγ5s +�sγαs�sγαs −�sγαγ5s�sγαγ5s,

J1,μν =
ffiffiffi
2

p
i�ss�sσμνs −�sσμνγ5s�siγ5s + iεμναβ�sγ

αγ5s�sγ
βs

n o
,

J2,μν =
1ffiffiffi
2

p 2�sγμγ5s�sγνγ5s − 2�sγμs�sγνs + 2gαβ�sσμαs�sσνβs
�

+ gμν �ss�ss +�siγ5s�siγ5s +�sγαs�sγαs −�sγαγ5s�sγαγ5sð

−
1
2�sσαβs�sσ

αβsÞ
�
:

ð18Þ

The diquark-antidiquark type currents can be rearranged
into currents as special superpositions of color singlet-singlet
type currents, which couple potentially to the meson-meson
pairs or molecular states; the diquark-antidiquark type tetra-
quark states can be taken as special superpositions of meson-
meson pairs and embody the net effects. The decays to their
components are Okubo-Zweig-Iizuka supper-allowed; we
can search for those tetraquark states in the decays

XS ⟶ η′η′, f0 980ð Þf0 980ð Þ, ϕ 1020ð Þϕ 1020ð Þ,
XA/V ⟶ f0 980ð Þh1 1380ð Þ, ϕ 1020ð Þη′, ϕ 1020ð Þϕ 1020ð Þ,
XT ⟶ η′η′, f0 980ð Þf0 980ð Þ, ϕ 1020ð Þϕ 1020ð Þ:

ð19Þ

4. Conclusion

In this article, we construct the axialvector-diquark-axialvec-
tor-antidiquark type currents to interpolate the scalar, axial-
vector, tensor, and vector ss�s�s tetraquark states, then calculate

the contributions of the vacuum condensates up to dimen-
sion 10 in the operator product expansion and obtain the
QCD sum rules for the masses and pole residues of those tet-
raquark states. The predicted mass mX = 2:08 ± 0:12GeV for
the axialvector tetraquark state is in excellent agreement with
the experimental value, mX = ð2062:8 ± 13:1 ± 4:2ÞMeV,
from the BESIII collaboration and supports assigning the
new X state to be an axialvector-diquark-axialvector-antidi-
quark type ss�s�s tetraquark state. The predicted mass mX =
3:08 ± 0:11GeV for the vector tetraquark state lies above
the experimental value of the mass of ϕð2170Þ, mϕ = 2188 ±
10MeV, from the Particle Data Group and disfavors assign-
ing ϕð2170Þ to be the vector partner of the new X state. As
a byproduct, we also obtain the masses and pole residues
of the corresponding qq�q�q tetraquark states. The present
predictions can be confronted to the experimental data
in the future.
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