

Journal of Energy Research and Reviews

11(4): 48-54, 2022; Article no.JENRR.88798 ISSN: 2581-8368

Kariya Pod-husks: A Novel Biocatalyst in Biodiesel Production

O. E. Ogundahunsi ^{a,b*}, B. S. Ogunsina ^a and E. F. Aransiola ^c

^a Department of Agricultural Engineering, First Technical University, Ibadan, Nigeria. ^b Department of Agricultural & Environmental Engineering, Obafemi Awolowo University, Ile Ife, Nigeria. ^c Department of Chemical Engineering, Obafemi Awolowo University, Ile Ife, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JENRR/2022/v11i430286

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/88798

Original Research Article

Received 17 April 2022 Accepted 28 June 2022 Published 01 July 2022

ABSTRACT

Diverse challenges faced with the use of homogeneous catalysts in biodiesel production coupled with the interest in converting waste resources to useful products in solving occurring climatic and environmental challenges around the world have triggered research into the use of various heterogeneous catalysts. In this study, the catalytic properties of kariya pod-husks were investigated to examine their suitability in biodiesel production. Kariya pod-husks were ash and calcined at 600°C for 4 h. In the morphological structure examination, the scanning electron image of calcined kariya pod-husks shows that it has a more compact microstructure with a cluster of big crystals but irregular pores which is an attribute of high catalytic potentials. The elemental composition of the calcined kariya pod-husks reveals that it contains a higher percentage weight of calcium (42%) and potassium (31%) which makes it a more suitable catalyst for biodiesel production. The developed catalyst was further used in the production of kariya pod-husks could catalyze biodiesel production. It also helps in proving suitable biocatalyst to solve the challenges associated with the separation of catalyst from the product stream which consequently aids in the creation of continuous chemical processes.

*Corresponding author: E-mail: femi.ogundahunsi@tech-u.edu.ng, ogundahunsioluwafemi@gmail.com;

Keywords: Heterogeneous catalyst; product stream separation; transesterification; kariya.

1. INTRODUCTION

Catalyst hastens chemical reaction via the reduction of activation energy whereby the catalyst itself is not consumed during the reaction. The most industrial process relies on the use of solid catalysts such as in petrochemistry and fine chemicals. 85% of all chemical processes have used catalysts, for at least one step during their preparation [1]. In

biodiesel production, the use of homogeneous catalysts has posed serious challenges in its separation from the product stream. Though, utilization of heterogeneous catalysts has been investigated by some researchers and it was found to be more tolerant of extreme operating conditions than homogeneous catalysts yet there is little information on the use of waste biomaterials as heterogeneous catalysts in producing biodiesel.

S/N	Heterogeneous catalyst	Catalyst preparation
1	Calcium-Oxide solid base [5]	Preparation of Calcium-Oxide was carried out through the
		decomposition of pulverized Calcium-carbonate at 960° C
		for 31/2h.
2	$Ca_2Fe_2O_5[7]$	Preparation of Dicalcium-diiron pentaoxide (Ca2Fe2O5)
		was carried out by milling and calcining the mixture of 1:2
		molar ratio of Iron (V) oxide and calcium carbonate to
		900°C at 2°C min ⁻¹ and thereafter at 1050°C for 4h.
3	Al ₂ O ₃ /KI solid base [8]	The preparation of this catalyst was carried out by
		impregnating potassium-iodide solution, during and activating it at 120°C and 500°C for 3 h respectively.
4	Al_2O_3/PO_4^3 solid acid [8]	$Al(NO_3)_3$ was dissolved in 9 mol of water and 85% H ₃ PO ₄
-		acid was added. The Ph value was adjusted at 7 using
		ammonia solution. After the filtration of the precipitation, it
		was washed and oven-dried at the temperature of 383K for
		12h and later calcined at 400°C for 3h.
5	Mg/AI hydrotalcites [9]	The preparation of this catalyst was carried out by co-
		precipitating the super saturated mixture. The two solution
		were stirred together at 40°C. The first solution contains a
		200ml saturated solutions of Mg and Al metal nitrates while
		the second solution contains a dissolved 14g NaOH and
		15.9g Na_2CO_3 in a 200ml deionized water. After the first and the second solutions have reacted together for 2h, it
		was allowed to precipitate in thermostatic bath of 65° C. It
		was then filtered and washed properly using deionized
		water till NaOH is not noticed in the filtrate. This was then
		dried at 90°C for 24h.
6	La ₂ O ₃ mixed with ZnO and	This was prepared by wetness impregnation, oven-drying
	catalyzed by alumina (La ₂ O ₃ /	and then by calcination. A mixture of 10g of Lanthanum(III)
	Al ₂ O ₃) [5]	nitrate hexahydrate solution and 7.5g of Zinc oxide was
		stirred and oven dried at 150°C for 3h. The catalyst
		calcination was carried out at 470°C for 3h. A 5g of
		Lanthanum(III) nitrate hexahydrate solution and 20.3g of
		Aluminium oxide stirred and dried at 150°C for 3h and then calcined at 600°C for 3h.
7	ZnO/Ba solid base [8]	This catalyst was prepared by impregnation using $Ba(NO_3)_2$
,		as a precursor to Zinc oxide. This was dried and then
		calcined at 600° C for 5h.
8.	ZnO/KF solid base [8]	This catalyst was prepared by impregnation with Potassium
		fluoride solution. Then it was dried at 393K and calcined at
		600°C for 5 h.

Table 1. Heterogeneous catalysts preparations

Ogundahunsi et al.; JENRR, 11(4): 48-54, 2022; Article no.JENRR.88798

In contrary to homogeneous catalyst, the heterogeneous catalyst phase varies from the products phase, reactants or eliminates expensive and timewasting water purification and neutralization process in separating and recovering used catalyst [2]. Also, the purified alycerol by-product produced with heterogeneous catalyst (98%) is higher than that homogenous catalyst (80%) [3] of and heterogenous catalyst is cheap and easy to adjust to accommodate required properties for preventing FFA or water from negatively affecting the reaction process during biodiesel production [4,5].

Heterogeneous catalyst is usually prepared by pretreating and ashing (calcination) the catalyst materials in muffle furnace at high temperature to eliminate the carbon content of

the materials. According to Aransiola [6], catalvst properties after calcination. the X-ray diffraction (XRD) determination: the analysis, the Scanning electronand microscope test are usually examined. Table 1 some catalysts shows heterogeneous preparations.

In its fruiting season after flowering, a kariya tree bears abundant reddish-gold-one seeded pods containing a nut inside which a kariya kernel is encased as shown in Plate 1c-e. But often, these pods end up in the garbage; whereas it has been discovered that the seed contains a high quantity of oil with good physicochemical properties and fuel properties which can be explored for biodiesel production [10,11]. In this study, kariya pod-husks will be explored as a biocatalyst in kariya oil biodiesel production.

(A)

(B)

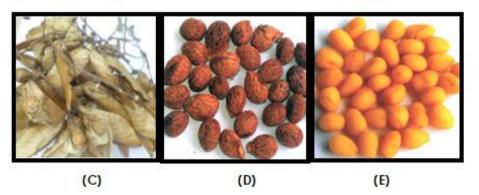


Plate 1. (A) *Kariya* tree during rainy season (B) *Kariya* ornamental tree during the dry season (C) Matured dried *kariya* pod-husks (D) *Kariya* seeds (E) *Kariya* kernels

2. METHODOLOGY

Kariya seed oil and kariya pods were obtained Agricultural and from the Environmental Engineering Department and campus environs of Obafemi Awolowo University, Ile-Ife, Nigeria respectively. The biodiesel production process was performed using ethanol as alcohol and calcined kariya pod-husks as a catalyst. Scanning Electron-Microscope (SEM) and 1.7 MV tandem electrostatic ion accelerator (Model 5 SDH Pelletron) were employed for the determination of the morphological structure and the elemental composition of calcined kariya pod-husks.

2.1 Catalyst Preparation

Kariya pod husks were sorted to remove foreign materials, after which it was dried in an oven for 4 h at 105° C. The dried sample of the kariya pod husks was then burnt in the open-air and was sieved into a fine particle of 75 µm. After which, the sample was calcined in a muffle furnace at 600° C for 4 h to eliminate the carbon content and make the catalytic properties of the sample to be more active. The calcined sample was used in the production of biodiesel as a heterogeneous catalyst.

2.2 Determination of Catalyst Morphological Structure

The calcined sample was examined using scanning electron microscopy (SEM, Model: ASPEX 3020, PSEM 2). 50 g of the calcined samples were placed in the SEM and the surface micrograph was obtained by examining the longitudinal view of the sample at a displayed magnification of 250 and acceleration voltage of 16.0 kV.

2.3 Determination of Catalyst Elemental Composition

1.7 MV tandem electrostatic ion accelerator (Model 5 SDH Pelletron) was used to determine the elemental compositions of the calcined kariya pod-husks. Hydrogen and Nitrogen gas was used as ion source and accelerator stripper respectively.

The characteristic x-ray generated was captured with PIXE-detector. The spectral displayed was observed and examined, and the elements present were obtained.

2.4 Biodiesel Production using Calcined Kariya Pod-husks

A pretreated kariya seed oil, ethanol, and calcined kariya pod-husks were poured into a three-necked flask and placed on a magnetic stirrer. The solution was properly stirred at 400 rpm and heated at temperatures of 75°C for 3 h using 10:1 ethanol/oil molar ratio. The solution was then allowed to settle for 24 h under gravity in a separating funnel. Then the upper biodiesel layer was separated from the lower glycerol layer. According to ASTM [12], the biodiesel sample was mixed with water at 30°C temperature to remove residual glycerol. This process was repeated until colorless water was obtained to provide purified biodiesel. After which it was separated from the water and dried over anhydrous calcium chloride to remove the residual water in the biodiesel. Biodiesel yield was determined and recorded using equation (1).

 $\frac{Biodiesel Yield \%(w/w) =}{\frac{Weight of Biodiesel Produced}{Weight of Kariya oil Used} \times 100\% \dots (1)$ [13]

3. RESULT AND DISCUSSION

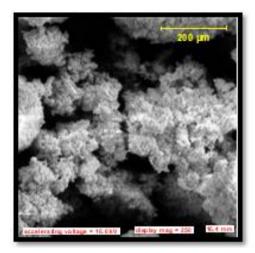

3.1 Catalyst Morphological Structure

Plate 2 shows the scanning electron image of calcined kariya pod-husks. The image shows that calcined kariva pod-husks have a compact microstructure with a cluster of big crystals of irregular pores. This can be attributed to the heterogeneous distribution in the mechanical properties of the calcined kariya pod-husks, which indicate high catalytic activity of the catalyst [14,15]. The big pores in kariya podhusks allow better diffusion of reactant and product molecules in the production of biodiesel Tshizanga [16]. The characteristics heterogeneous morphological structure of CaO from kariva pod-husks is similar to that of eggshell investigated by Tshizanga [16], Navajas et al. [17], and Niju et al. [18].

3.2 Catalyst Elemental Composition

The result of the elemental composition of calcined kariya pod-husks shown in Table 2 reveals that the catalyst contains a high percentage weight of calcium and potassium of 42.349 % and 31.136 % respectively which is a suitable base catalyst in biodiesel production having a high basic strength, minor toxicity and better reaction with water [19].

Ogundahunsi et al.; JENRR, 11(4): 48-54, 2022; Article no.JENRR.88798

Plate 2. Scanning Electron images of calcined kariya pod-husks

Atomic Number	Symbol	%Composition	% Weight
	-	KP	KP
6	С	0.071 ± 0.014	0.102
11	Na	0.550 ± 0.020	0.791
12	Mg	5.385 ± 0.016	7.743
13	Aľ	0.154 ± 0.002	0.221
14	Si	3.221 ± 0.010	4.631
15	Р	2.992 ± 0.017	4.302
16	S	1.606 ± 0.006	2.309
17	CI	3.396 ± 0.006	4.883
19	K	21.654 ± 0.009	31.136
20	Ca	29.452 ± 0.100	42.349
22	Ti	0.060 ± 0.016	0.086
23	V	0.023 ± 0.015	0.033
25	Mn	0.099 ± 0.014	0.142
26	Fe	0.506 ± 0.019	0.728
29	Cu	0.008 ± 0.002	0.012
30	Zn	0.008 ± 0.002	0.012
33	As	0.004 ± 0.002	0.006
35	Br		
37	Rb	0.029 ± 0.007	0.042
38	Sr	0.317 ± 0.038	0.456
40	Zr		
56	Ba	0.011 ± 0.003	0.016

– Kariya pod-husks, ±Conc. Error. *KF

Table 3. Kariya Biodiesel Yield compared with other biodiesels that use biocatalyst

Biodiesel Type	Catalyst Used	Biodiesel Yield	Reference
Kariya Biodiesel	calcined kariya pod-husk biocatalyst	94%	This Research
Jatropha Biodiesel	$CaO + Fe_2(SO_4)_3$	100%	Endalew et al., [5]
Soybean Oil Biodiesel	Calcium oxide derived from eggshell	97-98%	Chouhan and Sarma [20]
Palm oil Biodiesel	eggshells	95%	Viriya-Empikul et al. [21]

3.3 Biodiesel Yield

From Table 3, the biodiesel yield of 94% was obtained when the calcined biocatalyst was used for the production of kariya biodiesel. This result corresponds to the report of Endalew et al., [5] in which a 100% optimum yield of biodiesel produced from jatropha was observed when a heterogeneous catalyst (CaO + $Fe_2(SO_4)_3$) was used at 6:1 methanol-oil molar ratio and 60 °C for 3 hrs. Chouhan and Sarma [20] similarly stated that Calcium oxide derived from eggshell was an effective catalyst for trans-esterification of soybean oil, producing 97-98% biodiesel yield at 65 °C with alcohol/oil ratio 9:1. Likewise, Viriya-Empikul et al. [21] used eggshells with palm oil, and a 95% biodiesel yield was produced in 2h at a 12:1 methanol to oil ratio.

This result present calcined kariya pod-husks as a good biocatalyst in the production of biodiesel.

4. CONCLUSION

In this study, the use of calcined kariya podhusks as a heterogenous catalysts in biodiesel production was examined. The biodiesel yield of 94 % was obtained at a temperature of $75^{\circ}C$, time of 3 h, and an ethanol-oil molar ratio of 10:1. This study shows that calcined kariya pod-husks could catalyze biodiesel production.

COMPETING INTERESTS

Authors have declared that they have no known competing financial interests OR non-financial interests OR personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

- 1. Sergio R. Preparation of Catalyst: Heterogeneous catalysts. ICP-CSIC; 2013.
- Yan S, DiMaggio C, Mohan S, Kim M, Salley SO, Ng KYS. Advancements in heterogeneous catalysis for biodiesel synthesis. Top Catalyst. 2010;53(11): 721-736.
- Helwani Z, Othman MR, Aziz N, Fernando WJN, Kim J. Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technology. 2009;90(12):1502e14.
- 4. Di Serio M, Tesser R, Pengmei L, Santacesaria E. Heterogeneous catalysts

for biodiesel production. Journal of Sustainable Energy Fuel. 2008;22(1):207-217.

- 5. Endalew AK, Kiros Y, Zanzi R. Heterogeneous catalysis for biodiesel production from Jatropha curcas oil. Energy. 2011;36(5):693-700.
- Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF. A review of current technology for biodiesel production: State of the art, Biomass and Bioenergy. 2013:277 – 297.
- Kawashima A, Matsubara K, Honda K. Development of heterogeneous base catalysts for biodiesel production. Bioresources Technology. 2008;99(9): 3439-3443.
- Zabeti M, Wan-Daud WMA, Aroua MK. Activity of solid catalysts for biodiesel production: a review. Fuel Process Technology. 2009;90(6):770e7.
- 9. Zeng H-y, Feng Z, Deng X, Li, Y. Activation of Mge Al hydrotalcite catalysts for trans-esterification of rape oil. Fuel. 2008;87(13e14):3071e6.
- Adebayo AW, Ogunsina BS, Gbadamosi OS. The effect of cold-pressing and solvent extraction on some characteristics of kariya (*Hildergadia barteri*) seed oil, Nutrition and Food Science. 2015;45(4): 625-633.
- 11. Oluwadare AO, Adeniyi EA. Potential of seed oil Hildegardia barteri (mast.) Kosterm for biodiesel production. SWST International Presentation in Convention: Renewable Materials and the Bio-Economy, Dept. of Forest Resources Management, Faculty of Agriculture and Forestry, University of Ibadan, Nigeria; 2015.
- 12. ASTM. Biodiesel Specification. ASTM. 2002:6751 02.
- Ogundahunsi OE, Fagunwa AO, Ayorinde AT. Random Surface Methodology: Process Optimization for Peanut Oil Extraction in A Mechanical Oil Expeller. Turkish Journal of Agriculture-Food Science and Technology. 2022;10(4):663-668.
- 14. Sharma YC, Singh B, Korstad J. Latest developments on application of heterogeneous basic catalysts for an efficient and ecofriendly synthesis of biodiesel: a review. Biofuel Journal. 2011; 90:1309-1324.
- 15. Tang Y, Xu J, Zhang J, Lu Y. Biodiesel production from vegetable oil by using

modified CaO as solid basic catalysts. Journal of Clean Energy Production. 2013;42:198-203.

- 16. Tshizanga N, Aransiola EF, Oyekola O. Optimization of biodiesel production from waste vegetable oil and eggshell ash. South African Journal of Chemical Engineering. 2017;23:145-156.
- Navajas A, Issariyakul T, Arzamendi G, Gandı'a L, Dalai A. Development of eggshell derived catalyst for transesterification of used cooking oil for biodiesel production. Asia-Pacific Journal of Chem. Eng. 2013;8:742-748.
- 18. Niju S, Meera K, Begum S, Anantharaman N. Modification of egg shell and its

application in biodiesel production. J. Saudi Chem. Soc. 2014;18:702-706.

- Zhang Y, Dube M, McLean D, Kates M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresources Technology. 2003;89:1-16.
- 20. Chouhan AS, Sarma A. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Rev. 2011;15:4378-4399.
- 21. Viriya-Empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresource Technology. 2010;101:3765-3767.

© 2022 Ogundahunsi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/88798