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1. Introduction
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In recent decades, the development of complex materials developed a class of biomass waste-derived porous carbons (BWDPCs),
which are used for carbon capture and sustainable waste management. It is difficult in understanding the adsorption mechanism
of CO, in the air as it has a wide range of properties associated with its diverse textures, functional group existence, pressure, and
temperature of varying range. These properties influence diversely the adsorption mechanism of CO, and pose serious challenges
in the process. To resolve this multiobjective formulation, we use a machine learning classifier that maps systematically the CO,
adsorption as a function of compositional and textural properties and adsorption parameters. The machine learning classifier
helps in the classification of various porous carbon materials during the time of training and testing. The results of the
simulation show that the proposed method is more efficient in classifying the porous nature of the CO, adsorption materials
than other methods.

CCS cost is still accounted for by CCS systems. Aside from
precombustion and postcombustion, oxy-fuel combustion

To reduce CO, emissions, carbon capture and storage (CCS)
has been widely accepted [1-4]. As the concentration of car-
bon dioxide (CO,) in the atmosphere continues to rise [5],
CCS has been regarded as an essential technique. Due to
the expense of CO, capture [6], more than half of the entire

is the third most cost-effective method of CO, capture from
industrial emission point sources [7, 8].

This technique, however, has a major barrier due to the low
CO, concentration in postcombustion flue gases. Regenerative
amine solution techniques for postcombustion CO, capture
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are expensive and plagued by corrosion, solvent loss due to deg-
radation, and environmental toxicity [9]. Researchers are trying
to produce cost-effective membranes with high CO, permeabil-
ity for extracting CO, from flue gas, but this is still a long way
off. In the second generation of carbon capture, solid porous
carbon-based CO, adsorption is usually considered the most
promising method [1, 8, 10].

In addition, it is inexpensive, has minimal energy con-
sumption, and is stable in the cyclic mode. Biomass waste
has a number of advantages for making porous CO, adsor-
bents, including sustainability, cost-effectiveness, and abun-
dance [2, 11]. The environmental contamination produced
by improper biomass waste management can be reduced
with the use of BWDPCs for CO, collection, as can climate
change mitigation through decarbonization and negative
emission technologies [9].

More and more research has been done on BWDPC CO,
adsorption isotherms at various temperatures in order to deci-
pher and optimise CO, adsorption process thermodynamic
features [12]. Solid carbon adsorbents are vulnerable to
adsorption settings with limited CO2 selectivity because CO,
adsorption is predominantly dominated by physisorption [10].

Carbonization and activation, followed by heteroatom
doping, have a substantial role in increasing CO, adsorption
capacity and CO, selectivity. Carbonization and activation
are the two main processes in the production of porous car-
bon from biomass waste. Carbonization has been a major
focus of thermochemical techniques [11].

Chemical and physical activations have received a lot of
attention [13, 14]. The fundamental active sites of porous car-
bons can also be increased by heteroatom doping treatments
[15-18]. Acid-base interactions improve CO, absorption
and selectivity over other gases. Some hazardous or green-
house gases are released during thermochemical reactions.

Aside from carbon dioxide, the handling of nitrogen
oxides emitted must be carefully studied because NOx is
both harmful and one of the most common greenhouse
gases [18]. In the last decade, BWDPCs under varied carbon-
ization/activation settings and diverse adsorption parameters
have largely been treated in similar ways [1, 14], determining
whether or not BWDPCs can be effectively employed to
absorb CO,. It is currently uncertain how to optimise the
synthesis process by combining carbonization and activation
with a realistic guideline.

Furthermore, the textural properties and functional
groups of porous carbons are widely regarded as the most
important factors influencing CO, capture performance
[1, 11, 16, 19, 20]. However, it is still unclear how to
prioritise these three qualities; a prioritising technique
would be advantageous for guiding the synthesis of porous
carbons from biomass waste.

Waste-to-energy, biochar for metal and organic com-
pound sorption [21, 22], municipal solid waste treatment
[23, 24], and micropollutant oxidation [25, 26] have all
recently received a lot of attention due to the potential for
machine learning.

Tree-based ML models are a subclass of supervised ML
methods that leverage recursive binary splitting of data in a
manner that minimises the residual sum of squares [19].
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Random forest, decision trees, light and gradient boost-
ing decision trees, and extreme gradient boost are some of
the most popular models. With their capacity to cope with
tiny datasets, resistance to overfitting, and ability to over-
come noisy features, the last three boosting tree-based
models have witnessed a spike in popularity in scientific
research [27].

Boosting trees have advantages over traditional RF [28],
such as global predictions, nonbiased feature weighting, and
efficient processing of unevenly distributed datasets. It has
also been found that these boosting tree techniques are more
efficient in tuning hyperparameters than the more com-
monly used SVM algorithms when working with relatively
small datasets.

The SVM classifier used in this study maps CO,
adsorption as a function of compositional and textural fea-
tures, as well as adsorption parameters, to resolve this
multiobjective formulation. During training and testing,
the machine learning classifier assists in the classification
of diverse porous carbon materials. The simulation results
suggest that the proposed method is more effective than
existing ways of categorising CO, adsorption material
porous nature.

The major contributions of the work involve the
following:

(i) First, we need to collect the information from the
database BWDPCs for CO, capture was carried
out using various keywords (such as biomass waste,
porous carbon, biochar, CO, adsorption, and cap-
ture). Further, it will lead to preprocessing where
we eliminate the duplication, similar data, null set,
etc.; the rest of the other data will be forwarded to
the next stage

(ii) The proposed method FCN extracts and selects the
contents from an input image by constructing an
accurate data split

(iii) The simulation is conducted to test the efficacy of
the model that integrates the contextual informa-
tion for optimal segmentation of optical cup and
disc

2. Data Collection

With the use of major databases, a comprehensive literature
analysis of BWDPCs for CO, capture was carried out using
various keywords (such as biomass waste, porous carbon,
biochar, CO, adsorption, and capture). 632 data points were
gathered from 76 peer-reviewed papers published in the last
decade. Biomass waste-derived porous carbons (BWDPCs)
are a class of complex materials that are widely used in sus-
tainable waste management and carbon capture. BWDPCs
have been extensively used to synthesise CO, adsorbents,
and the most important requirements for their development
were good adsorption and selectivity, steady working
capacity, cost-effectiveness, recycling, facile regeneration,
and quick absorption-desorption dynamics. This is worth
emphasising.
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As a result of this, we focused largely on the CO, adsorp-
tion capacity of BWDPCs at various temperatures and pres-
sures, as well as the textural and compositional features of
BWDPCs.

(1) A lack of data on the working capacity, kinetic char-
acteristics, and regeneration of adsorbents was found
in most of the articles evaluated, resulting in the
inability to create ML models for all of the aforemen-
tioned important attributes

(2) Due to a lack of environmental effects and technoe-
conomic evaluation, performance standards for the
other categories were lacking

As a result, when gathering data, the following hypothe-
ses and tactics were employed:

(i) There was no initial judgement or bias on the valid-
ity of the data that was initially accepted

(ii) The vast majority of the data was gleaned from pub-
lished study publications. It was essential to extract
the relevant data from the figures using the Web-
PlotDigitizer software for those data points that
were not explicitly listed in a table. An extensive
screening process ensured that all data was unique
and free of duplications or duplicated submissions

(iii) For the purposes of this study, the input features
were divided into three general categories: (1) tex-
tural properties; (2) BWDPC elemental composi-
tions; and (3) adsorption parameters, such as CO,
adsorption temperature and pressure

(iv) It is important to note that the BWDPC surface area
(SA), total pore volume (TPV), micropore volume
(MPV), and elemental compositions of carbon,
hydrogen, nitrogen, and oxygen were all examined

(v) Different adsorption parameters were employed to
determine the CO, uptake by the BWDPCs. There
are 288 data points and 344 data points from differ-
ent publications for heteroatom-doped porous
carbons

3. Proposed Method

Input features were correctly detected and labelled based on
the data collected. Data preprocessing was carried out after
the gathering of data to enable effective SVM prediction
performance. Figure 1 illustrates the data processing and
data classification methodology to improve the quality of
information.

3.1. Data Preprocessing. The first stage in machine learning
is data preprocessing. Many concerns must be resolved
before any further analysis can take place. These include
ensuring that the data is clean and free of noise or missing
numbers. Machine learning algorithms are constantly being
improved to be able to perform well in the presence of miss-

Data collection

Pre-processing

Feature selection

Feature extraction

Data split

Classification

Results
FIGURE 1: Proposed workflow schematic.

ing values or noise, but the quality of the outcomes is still
affected by the input data.

3.2. Missing Value Imputation. Our initial step is to deal with
the issue of missing data and impute the values that were not
found during our preliminary analysis of the data.

There are many ways to deal with the problem of miss-
ing numbers in weather data, some of which are more
involved than others. In order to deal with missing values,
it is helpful to know the reason for their absence in the data-
set, and this is based on their unpredictability.

The last two types are the most challenging to work with
since the substituted value may not accurately reflect the
original observation. This is the most straightforward tech-
nique to deal with a missing value. There may be too few
complete examples to justify removing partial features. It is
also possible that the discarded values include valuable
information, and deleting them could have a negative impact
on the outcome.

We do not have to remove features that have missing
values; instead, we can “impute” new values to the missing
data. The apparent option is to remove the features with
missing values, but this can result in the loss of valuable data.
Because of this, we can utilise imputation methods to auto-
matically fill in the blanks with new data.

This allows us to evaluate more characteristics rather
than eliminate all the observations with missing values. We
can use missing values. To ensure that the entire dataset is
included, missing values might be inserted to ensure that
the results are not skewed. It can, however, have a small
impact on the final outcome. For those missing variables,
we opted to use mean imputation to fill in those that were
not included in the original dataset.

Means of observed values are utilised to fill in missing
values in each feature in this method, which is one of the most
accessible and often used strategies. It is worth noting that fill-
ing in the blanks is a critical part of data preparation because it
serves as the basis for subsequent operations. From linear cor-
relation to support vector regression, there are increasingly
complex imputation approaches.



3.3. Feature Selection with Correlation. Selecting features that
are not correlated with each other but still predictive of the
class is what feature selection is all about. If a variable is not
predictive of the class, it can be deleted. An evaluation of the
dataset inner feature correlation and its contribution to classi-
fication models is carried out to establish the value of this task.

Data interdependencies can be assessed using Pearson’s
correlation coeflicients, which are simple to calculate.
Assuming x; is the number of observations (i) and y is

the class label, the Pearson correlation coefficient can be
defined as

cov (xi’y) (1)

Ry = ———=t2l
O~ var (x;) var(y)

where cov is covariance and var is variance.
Mathematically, the complete formulation is

R(i) _ Z?:l(xk,i B ’?i)()’k _)7) ) (2)
\/ercnzl(xk,i - jci)zercn:I(yk -y

A correlation map is used in the implementation to dem-
onstrate the correlation between the columns. One adsorp-
tion feature is dropped from each pair in this algorithm. A
classification algorithm is then used to see how the classifier
performs when we add a new subset to our dataset. A closer
look at the strongly connected group of attributes is useful at
this point. Because of this, feature selection by a correlation
coefficient of adsorption relies heavily on trial and error and
does not produce optimal results.

3.4. Recursive Feature Elimination with Cross-Validation. In
most circumstances, RFE and cross-validation can be used to
pick a new subset of characteristics for adsorption in most
circumstances, because the preferred number of features is
often unknown. Once the model has been fitted, cross-
validation scores can be compared to determine the best
number of features for classification accuracy. Prior to classifi-
cation, RFE can be used to identify the intercorrelated features
and patterns in the dataset. Unnecessary and redundant data
are removed quickly with RFE. But there are certain disadvan-
tages to this approach. It is important to think about compu-
tational intensity. Before training the data, the user must
choose the number of features to be used in RFE. Other feature
selection strategies have been employed to overcome this issue
and arrive at the ideal dataset.

3.5. Feature Extraction. PCA is a popular feature extraction
technique that uses principal component analysis to deter-
mine a lower-dimensional basis from the original dataset
that captures most of the data variation. For the lower-
dimensional basis, the correlated features are transformed
into fewer uncorrelated ones by linear transformation into
principal components.

The goal of PCA is to discover the lowest-dimension sur-
faces onto which to project the data in order to minimise the
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projection error. Using vectors, we may describe the lower-
dimensional surfaces. Two conditions must be met for a
surface to be considered good. The first two goals are to
maximise anticipated variance and decrease mean squared
error. All dimensions must meet these parameters. It is these
dimensions or directions that account for the greatest
amount of variance in PCA vectors, which are known as
principal components.

PCA is a linear transformation that rotates the points
into a new coordinate system, erasing the association
between them in the mathematical sense. By projecting the
data into a lower dimension and reducing the mean squared
projected error, PCA performs the transformation by mini-
mising the difference between the original and projected
data. The formula for calculating the average squared projec-
tion error is as follows:

s Ly 2
Mean square projection error = E; [|% = *opprox | - (3)

Component variance is calculated by ensuring that the
mean squared projection error over total variance is less
than 1% for the 99% criterion.

1/}’}’1221 H‘xi - x;pprox

Umy ||«

2
H <0.01. (4)

For a particular threshold a, the steps of the PCA algo-
rithm are as follows:

Step 1: the mean should be calculated from the data

Step 2: data should be the focus

Step 3: take the covariance matrix and run it through

Step 4: eigenvectors must be computed

Step 5: the eigenvectors can be computed

Step 6: calculate the percentage of the overall variation
that is accounted for

Step 7: in order to reduce the overall variance to less than
1%, choose a dimensionality that has the fewest components

A smaller base and less dimensionality are now possible.
Reduced dimensionality using PCA can keep the variance
and accuracy of the classifier but also helps learning algo-
rithms run more effectively and reduce computation time
because many features in real-world datasets are correlated
or redundant.

3.6. Classification—Support Vector Machines. In fraud detec-
tion, identifying cancer cells from healthy ones, face recogni-
tion, weather forecasts, etc., SVM is a common classification
algorithm. For this reason, the SVM is referred to as a super-
vised learning classifier since it uses data that has already
been labelled by the supervisor.

In order to maximise speed while retaining generalisa-
tion for unknown data, classification methods are used.
In other words, the model potential to generalise is com-
promised in favour of better fitting the data. Data classi-
fication is done by finding a hyperplane that separates the
two classes in SVM. This method is summarised in a sin-
gle sentence:
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y =sign (H(x)). ()

In this formulation, the decision function H(x) is
used. Any location on the separating hyperplane can
meet the following requirement:

H(x)sz +b=0,
i (6)

x,w € R",

and
beR, (7)

where x is feature vector, w is weight vector, and b is
offset.

The hyperplane position in space is determined by the
linear equation weight vector for adsorption. Weight vector
is perpendicular to the hyperplane, and b is the hyperplane
offset, or distance from the origin. The input space is divided
into two halves by the hyperplane: H(x) > 0 in one half space
and H(x) =0 in the other. For all data points on the hyper-
plane, the critical property of this hyperplane is H(x) = 0.
On this hyperplane, which is used to divide the test data
into two groups, H(x) >0 corresponds to a +1 label, and
H(x) <0 corresponds to a -1 label on this hyperplane.

~ 1 wix+b>0
y= . (8)
-1 wx+b<0.

The margin of separation is defined as the distance
between the nearest adsorption data point in the training
set and the separating hyperplane. The hyperplane with
the greatest separation between the two classes is unique
and can only be identified by optimization, even when
several hyperplanes satisfy the criteria. Maximising the
largest margin of separation is essential because it boosts
a model generalisation or ability to better handle noise
in the test data, and the data points that are classified
based on their position in the band are classified.

The term support vector is also a key component of this
method name. A support vector is a set of data points whose
distance from the separating hyperplane is equal to one after
normalisation.

3.7. Parametric Modeling. An algorithm known as SVM can
be used to forecast the future. However, it may require a lot
of time and resources. A regularisation parameter known as
C is used to adjust the model parameters in order to get the
best results from SVM. There are two goals to be met: min-
imise the error term and weight vector norm and maximise
the margin of separation. The regularisation parameter gov-
erns this trade-off. The SVM classifier performance can be
significantly impacted by fine-tuning this parameter. Grid
search is a common method for tweaking parameters in
SVM, as there are few other options. The model is trained
on a collection of hyperparameters to discover the best
parameters for the given model before performing a grid

search for parameter selection. An expensive and time-
consuming method of searching huge datasets, grid search
constructs many models with given parameter values and
chooses the optimal one after comparing outcomes for all
combinations.

In this paper, we present a method based on the para-
metric simplex method for exhaustively searching the solu-
tion path and determining the optimal regularisation
parameter value. A parametric simplex approach can be
used to obtain all possible values for the parameter in this
work using the SVM algorithm, which is a linear program-
ming problem. We can then select the best value from a
small number of possible values.

The parametric simplex approach can be applied in a
variety of ways, each with a somewhat different set of vari-
ables to update. The approach suggested in this paper solves
the linear programming issue at a global level.

There are a few terms that need to be defined before we
can get into the method further. Algorithms begin by solving
augmented forms of the original issue to ensure that the
problem can be successfully solved. The optimal values of
the choice variables in the enhanced LP are the result of solv-
ing this problem. The LP corner-point solution is a simple
one. Whether or not the basic answer is practical, it is
referred to as a “basic, feasible solution.”

The sole difference between the corner-point solution
and a basic solution is the inclusion of slack variables. There
are two types of variables in the corner-point solution: basic
and nonbasic. These are the variables whose values are set to
zero in the basic solution, while the remaining variables are
considered nonbasic. The basis is a collection of all the var-
iables that are essential to the model. When minimising the
objective function, it is necessary to lower the coefficients in
order to get the optimal value. The reduced cost vector is
another word that needs to be defined.

Support vector machines with L1-norm kernels are used
to classify the indivisible data and the problem is stated as

wik(x, %)) +b=1-0;1,

)

! I
Minw,b,({ll Z'wz" +4, Z (i}s't'yi {Z
i=1 =1 =1 j

1
=1 j=1

where {; >0, w;>0,A, + A, =1,and A, A, > 0.

A multiobjective problem can be solved in a variety of
ways. The weighted sum of two goal functions that we are
seeking to minimise simultaneously is the objective function.
We are trying to figure out the best values for A, and A, to
achieve this. Let the study set A, =A and A, =1 - A to make
the problem compatible with the form described in Section 4.

4. Results and Discussions

Section 2 shows the data collection, and the proposed SVM
is compared with existing methods in terms of various per-
formance metrics that include the accuracy, precision, and
recall of the percentage error.

Figure 2 shows the results of precision between conven-
tional machine models and proposed SVM. The results of
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the simulation show that the proposed SVM achieves a
higher rate of segmentation performance with high precision
than other methods.

Figure 3 shows the results of accuracy between conven-
tional machine models and proposed SVM. The results of
the simulation show that the proposed SVM achieves a
higher rate of classification performance with high accuracy
than other methods.

Figure 4 shows the results of recall between conventional
machine models and proposed SVM. The results of the sim-
ulation show that the proposed SVM achieves a higher rate
of segmentation performance with high recall than other
methods.

Figure 5 shows the results of MAPE between conven-
tional machine models and proposed SVM. The results of
the simulation show that the proposed SVM achieves a
reduced rate of MAPE than other methods.

5. Conclusions

An SVM-based multiobjective formulation is presented in
this study, which shows how changes in composition, tex-
ture, and other adsorption characteristics affect CO, absorp-
tion. During training and testing, the machine learning
classifier assists in the classification of diverse porous carbon
materials. The simulation results suggest that the proposed
method is more effective than existing ways of categorising
CO, adsorption material porous nature.

In addition, these data-driven models provided certain
mechanistic knowledge about the real CO, capture process,
which raised confidence in their adoption because their find-
ings and inferences were supported by the existing literature.

This study has provided us with a framework for our
next steps, which include developing a strategy to maximise
the CO, adsorption of BWDPCs by optimising the adsorp-
tion parameters and textural properties of the BWDPCs
and testing the optimizer, which will be done by incorporat-
ing new experimental data points into the database and

making it freely available for use by other researchers in
the community.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding authors on reasonable
request.
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