

International Journal of Environment and Climate Change

Volume 12, Issue 12, Page 860-868, 2022; Article no.IJECC.94171 ISSN: 2581-8627 (Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784)

Screening of Lentil (*Lens culinaris ssp. culinaris*) Germplasm for Resistance to Stemphylium Blight Disease Using Qualitative Characters

K. Vaishnavi^a, P. Bhaumik^a, P. M. Bhattacharya^a and A. K. Chowdhury^{a*}

^a Department of Plant Pathology, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal 736165, India.

Authors' contributions

This work was carried out in collaboration among all authors. Authors KV and PB conducted all the trials. Author PMB designed the trials and wrote the initial draft manuscript and author AKC wrote the final manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJECC/2022/v12i121525

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/94171

Original Research Article

Received: 10/10/2022 Accepted: 18/12/2022 Published: 23/12/2022

ABSTRACT

In terms of both acreage and productivity, lentil is India's second most important pulse crop. Stemphylium blight, caused by *Stemphylium botrysum* Wallr., is a serious economic problem in eastern parts of India including West Bengal. As most of the cultivated lentil are susceptible to Stemphylium blight disease, the main alternatives for the control of the disease is to use highly toxic fungicides. The objective of this work is to evaluate the responses of 210 numbers of genotype collected from International Centre for Agricultural Research in the Dry Areas (ICARDA) in order to support the alternative disease management strategy. The qualitative attributes like days to flowering, height of the plant and leaf area were taken into consideration which were converted to qualitative attributes by using cluster analysis. Along with that branching pattern and canopy types

^{*}Corresponding author: E-mail: apurba@ubkv.ac.in;

Int. J. Environ. Clim. Change, vol. 12, no. 12, pp. 860-868, 2022

was also recorded as qualitative parameters. The result clearly indicated that days to flowering, leaf area, branching habit and canopy temperature significantly influence the disease development.

Keywords: Lentil; qualitative traits; stemphylium blight disease; resistance.

1. INTRODUCTION

India is the world's greatest producer and customer of pulses accounting 27% of the whole production and about 30 percent of the whole consumption in the world. Lentil (*Lens culinaris ssp. culinaris* Medik.) is the world's fifth biggest pulse crop cultivated in additional 70 nations around the world, mostly in West Asia, North Africa, the Indian subcontinent, North America, and Australia. In India, lentil ranks second only to chickpea as one of the most nutritious coolseason eating legumes. During 2018-2019, it was grown on 1.51 million hectares in India, with an annual production of 1.56 million tonnes and a productivity of roughly 1032 kg/ha (Directorate of Economics and Statistics, 2018-2019).

Diseases are a major constraint to lentil production all over the world [1]. Among the Stemphylium blight (caused by diseases. Stemphylium botrysum Wallr) is a major one. The disease causes the loss of green part of leaf and reduction in photosynthetic capacity at flowering and pod filling stage affecting the quantity and quality of grain as well as seed production [2]. In India, 93% crop losses were recorded due to the disease [3]. The disease has been on the rise in frequency and intensity in India, which ranks first in lentil coverage areas globally. Under diverse environmental conditions, S. botryosum can infect a wide range of plant species. Temperature and moisture are the most critical environmental factors impacting S. botryosum conidial germination and disease progression on other hosts. It is a seed-borne disease that appears as small, light beige to brown lesions on leaves and leaflets above and below the canopy, often with angular light and dark brown areas, and causes severe leaf drop, resulting in defoliated vegetation and serving as a source of spores for future infection. Sometimes massive defoliation and stem bending was observed in severe cases [4]. Infected seeds are often stained and can have low germination rates. Many fungicides have been found to effectively control the fungal blight disease, with variable cost-benefit ratios [5]. Cultivating resistant cultivars is the best and most cost-effective approach to protect the crop

from Stemphylium blight. The introduction of susceptible new cultivars could result in severe outbreaks of the disease. As a result, the aim of the research is to screen lentil germplasm and evaluate the association between phenological and morphological features and disease resistance.

2. MATERIALS AND METHODS

The experiment was conducted during the year 2019-2020 at UBKV, Pundibari, Coochbehar, West Bengal, India. During the 2019-2020 growing season, a set of lentil germplasm with 210 genotypes collected from International Centre for Agricultural Research in dry Areas (ICARDA) were grown to see if disease severity is influenced by particular qualitative features. The phenotyping of the germplasm namely, days to flowering, plant height, compound leaf area, angle, and canopy types branch were considered. The seeds were sown in different blocks of 4 rows of 2m length of each genotype. Initially nitrogen (N), phosphorus (P_2O_5), potash (K₂O) fertilizers were applied at a rate of 20:40:0 kg ha-1. Irrigation was provided as required.

The following observations were recorded:

- Days to 50% flowering: The number of days from the date of sowing required in which flowers in 50% of the plants first opened.
- Plant height: The plant height is the shortest distance between the upper boundary of the main photosynthetic tissues on a plant and the ground level. The plant was measured with a ruler starting from zero on the bottom.
- iii) Branching angle: The branching angle is the angle between the main stem to the branches.
- iv) Canopy: Open canopy, closed canopy and wide canopy.
- v) Leaf area: Leaf area is measured by using millimetre graph paper method.
- vi) Grain yield: After harvesting from each plot, plants of each genotype is properly dried, threshed and cleaned properly. The grains were collected after threshing. Threshing is done bymachine.

- Disease scoring: The disease severity vii) was indexed on a 0-10 disease scoring scale [6] where, 0=Healthy plant; free of disease, 1=Dull leaves or few tiny tan spots, 2=A few small to large chlorotic spots, 3=Expanding lesions on leaves and leaf drop starting, 4=20% nodes on main stem showing chlorotic/ necrotic symptoms and/or leaf drop, 5=40% nodes on main stem showing chlorotic/necrotic symptoms and/or leaf drop, 6=60% nodes on main stem showing chlorotic/necrotic symptoms and/or leaf drop, 7=80% nodes on lateral stems showing main and chlorotic/necrotic symptoms and leaf drop, 8= 100% leaves dried up/ defoliated but small green tip recovering, 9=100% leaves dried up/defoliated including tip but stem still green, and 10=Whole plant die and completely dried up.
- viii) Percent Disease Index: The percent disease incidence (PDI) was calculated using the formula,

PDI = [Sum of numerical rating/total number of observations taken x maximum disease score] x 100Space issue

ix) Area under Disease Progress Curve (AUDPC): Area under Disease Progress Curve (AUDPC), measure the amount of disease as well as the rate of progress, was calculated by using formula [7]. The value of AUDPC was estimated using the midpoint rate or so-called trapezoidal integration method. The AUDPC has no unit.

 $\begin{array}{l} \text{n-1} \\ \text{AUDPC} = \sum \left[(Xi + Xi + 1)/2 \right] (ti + 1 - ti) \right] \\ \text{i-1} \end{array}$

Where, xi is the spot blotch severity on ith date, the ti is the ith day and n is the number of scoring days.

3. RESULTS AND DISCUSSION

In order to identify the resistant sources against the disease, the average Area Under Disease Progress Curve (AUDPC) in the clusters and the quantitative parameters according to the AUDPC cluster were arranged (Table 1). It indicates that the resistant plants were early in flowering, short and having large leaf area. Based on the data classification an attempt was taken to analyse the data using qualitative data analysis technique named as contingency analysis with Pearson chi- square test and estimating the level of significance of the classification based on frequency distribution.

The germplasm was categorized based on the said traits separately and contingency analysis was done using Pearson chi-square test to test dependency. The said parameters were categorized based on Ward's clustering method and accordingly cluster names were given to convert the quantitative data into qualitative data (Fig. 1). The disease was categorized in 5 classes based on AUDPC (<50, 50-150, 150-250, 250-350 and > 350) and were termed as Resistant, Moderately Resistant, Moderately Susceptible, Susceptible and Highly susceptible respectively. Similarly, days to flowerina indicating the earliness of the genotype was also categorized as very early (<52 days), early (52-65 days), medium (65-85 days), late (>85 days). Plant height was also categorized as short (<24 cm), medium (24-27 cm), tall (>27). Branching pattern was categorized as erect or droopy, whereas canopy structure was divided into closed canopy and open canopy. Leaf area of the compound leaf was also classified into five clusters following the same method, which were small (<21 mm²), medium (21-33 mm²) large (>33 mm^2).

The Fig. 2 depicts the frequency distribution of AUDPC through contingency analysis of different parameters with respective chi-square test and disease development in lentil is significantly dependent on days to flowering, compound leaf area and pattern of branching of the genotype. The early sowing generally escape infection as recorded in Nepal [8] and also wider spacing is recommended for reduced disease incidence [9]. The leaf area has been found higher in comparatively resistant genotypes as found in other crops like pear [10] however leaf area indexes have been found to be linearly correlated with yield under different pathosystems as sunflower [11]. Canopy architecture and density effects the spread and severity of leaf disease as in rice [12], however, this character depends on the different parameters as branching pattern, nitrogen nutrition. Leaf erectness have been found to be positively related with resistance in wheat [13] and in tea [14]. The close canopy may influence the disease

development by altering the microclimate of the plants including temperature, humidity, light

transmission and thus makes it difficult to relate them with resistance [12,15].

Table 1. Average AUDPC of the clusters and days to flowering, plant height and leaf area of206 genotypes grouped in 5 clusters

Cluster	Number of genotypes	AUDPC	Days to Flowering	Plant Height	Leaf Area
1	13	30.00 ± 21.84	58.23 ± 14.61	24.25 ± 4.63	42.21 ± 12.03
2	41	121.42 ± 20.97	84.68 ± 17.49	26.72 ± 3.11	24.98 ± 13.40
3	71	192.09 ± 20.95	82.79 ± 16.33	26.22 ± 3.48	22.96 ± 8.27
4	69	281.10 ± 34.27	84.88 ± 17.82	26.04 ± 4.27	23.97 ± 8.54
5	12	408.61 ± 27.06	65.67 ± 21.02	28.63 ± 2.56	23.50 ± 9.82

Fig. 1. Hierarchical clustering of days to flowering, plant height and leaf area by ward's method

Vaishnavi et al.; Int. J. Environ. Clim. Change, vol. 12, no. 12, pp. 860-868, 2022; Article no.IJECC.94171

Fig. 2. Frequency distribution of AUDPC through contingency analysis of different parameters with respective chi-square test

4. CONCLUSION

To find the qualitative attributes of the crop related to its resistance to stemphyllum blight, a set of 210 genotypes were grown in the University farm with varying duration, plant and crop architecture. tvpe. Quantitative attributes as days to flowering, height of the plant and leaf area were converted to qualitative attributes by using cluster analysis using Ward method. Along with that branching pattern and canopy types was also recorded as qualitative parameters. Contingency analysis with Pearson chi-square test was performed on the frequency Tables and dependence of disease (AUDPC) on the said qualitative attributes were made. The result clearly indicated that days to flowering, leaf area and branching habit do influence the disease build up significantly at probability less than 5% and canopy structure influences at 5% level of significance. Thus, if we use these parameters to select genotypes from a huge population for resistance we can go with these qualitative attributes.

ACKNOWLEDGEMENT

The International Center for Agricultural Research in the Dry Areas (ICARDA) for providing the genotypes.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Bayaa B, Erskine W, Hamdi A. Evaluation of a wild lentil collection for resistance to vascular wilt. genetics. Resource Crop Evolution.1995;42:231-235.
- Hay FS, Sharma S, Hoepting C, Strickland D, Luong K, Pethybridge SJ. Emergence of stemphylium leaf blight of onion in New York associated with fungicide resistance. Plant Disease. 2019;103(12): 3083-3092.
- Mondal D, Bhattacharyya PK, Das R. Disease reaction of lentil genotypes against stemphylium blight caused by Stemphylium botryosum Wallr. in West Bengal. Journal of Agroecology and National Resource Management. 2017; 4(2):149-152.

- Alam KH, Ali MK, Rashid MH, Haque AHMM, Uddin MA, Begum MIA. Characterization of stemphylium blight symptoms in lentil. International Journal of Advancements in Research and Technology. 2017;6(5):2278-7763.
- 5. Das R. Evaluation of fungicides against alternaria blight disease of rapeseedmustard in West Bengal. Journal Crop and Weed. 2015;11:220-223.
- Hashemi P, Vandenberg A, Banniza S. Developing a protocol for large scale inoculation of lentil germplasms with *Stemphylium botryosum* (Wallroth). Proceedings of Plant Canada. Edmonton, Ab, (Abstract); 2005.
- Das MK, Rajaram S, Mundt CC, Kronstad WE. Inheritance of slow rusting resistance to leaf rust in wheat. Crop Science. 1992;32:1450-1456.
- Gharti DB, Darai R, Subedi S, Sarker A, Kumar S. Grain legumes in Nepal: Present scenario and future prospects. World Journal of Agricultural Research. 2014; 2(5):216-222.
- 9. Darai R, Ojha RR, Dhakal KH. Disease management of major grain legumes and breeding strategies in Nepal. Advance Plants Agricultural Research. 2017;6(1):1-7.
- Karklina AK, Lacis G, Lace B. Differences in leaf morphological parameters of pear (*Pyrus communis L.*) based on their susceptibility to european pear rust caused by *Gymnosporangium sabinae* (Dicks.) Oerst. Plants. 2021;10:1024.
- 11. Leite RMVBC, Amorim L, Bergamin FA . Relationships of disease and leaf area variables with yield in the Alternária helianthi-Sunflower pathosystem. Plant Pathology. 2006; 55:73-81.
- Zong Y, Lloyd JM, Leng MJ, Yim WWS, Huang G. Reconstruction of holocene monsoon history from the Pearl River Estuary, southern China, using diatoms and carbon isotope ratios. The Holocene. 2006;16(2):251-263.
- 13. Joshi AK, Chand R, Arun B. Relationship of plant height and days to maturity with resistance to spot blotch in wheat (*Triticum aestivum*). Euphytica. 2002;124:283-291.
- 14. Ponmurugan P, Gnanamangai MB, Karunambika KM. Architectural effect of different tea clones on the development of blister blight disease. Journal of Applied Botany and Food Quality. 2019;92:7-14.

15. Srinivasachary, Willocquet L, Savary S. Resistance to rice sheath blight (Rhizoctonia solani Kuhin) [(telomorph: Thanatephorus cucumeris (AB Frank) Donk.] disease: Current status and perspectives. Euphytica. 2011;178:1-22.

SUPPLEMENTARY

Entry_ No	Pedigree	Entry_ No	Pedigree
1	6037/10733/4-2	106	6994/10141/8-2
2	6002/LIRL-21-50-1-1-1/38-7	107	590/8461/2-4
3	6002/ILWL 118/1-1	108	4380/4372/7-4
4	6002/LIRL-21-50-1-1-1/38-5	109	8114/10956/22-5
5	6037/10733/4-4	110	5588/4372/4-5
6	6002/LIRL-21-50-1-1-1/14-1	111	8114/10956/12-2
7	6002/LIRL-21-50-1-1-1/14-5	112	813/4605/1-1
8	6002/LIRL-21-50-1-1-1/9-8	113	7716/7663/3-1
9	6037/10733/3-3	114	6994/10141/1-5
10	6002/LIRL-21-50-1-1-1/14-4	115	10016/10068/11-1
11	6002/LIRL-21-50-1-1-1/11-6	116	F1X2011S-132/F1X2011S-110/23-10
12	6002/LIRL-21-50-1-1-1/38-9	117	6002/7716/20-1
13	6002/LIRE 21-50-1-1-1/30-4	118	4380/4372/8-1
14	6002/LIRE 21-50-1-1-1/38-2	110	F1X2011S-132/F1X2011S-110/6-2
15	6002/200/200/2-5	120	813//605/1-2
16	8008/LIRL-21-50-1-1-1/20-9	120	8008/10012/2
17	6002/7716/ <i>I</i> _1	121	E1Y2011S-132/E1Y2011S-110/23-2
10		122	6004/10141/1 10
10	6002/ZT16/14 2	123	1005/10947/5
19	2212/1605/2 2	124	1005/10047/5 9114/10056/10 7
20	2313/4003/3-2 4605/III.WL 448/46D6	120	0114/10900/12-7 8114/10056/16 0
21	4005/ILWL 110/13F3	120	0114/10900/10-9 7010/000 00565 1/1 0
22	4605/ILVVL 118/25P5	127	7010/095 96565-1/1-2
23	4605/ILVVL 118/35P5	128	10806/10174/115P5
24	4605/ILVVL 118/6SPS	129	10867/10174/5SPS
25	4605/ILWL 118/9SPS	130	10867/10174/6SPS
26	4605/6002/5SPS	131	10012/590/4SPS
27	4605/6002/6SPS	132	10012/590/6SPS
28	4605/6002/7SPS	133	8114/7663/2SPS
29	4605/10848/5SPS	134	8114/7663/8SPS
30	6002/6994/11SPS	135	6002/6994/9SPS
31	6002/99/209/14SPS	136	10848/DPL 62/8SPS
32	1462/4372/11SPS	137	52/8461/2SPS
33	7986/ILWL074/10SPS	138	52/8461/3SPS
34	ILL4605	139	ILL10947
35	ILL4400	140	6002/LIRL-21-50-1-1-1/24-6
36	4380/4377/1-1	141	6002/LIRL-21-50-1-1-1/17-9
37	10675/8461/3-3	142	6002/LIRL-21-50-1-1-1/24-5
38	5883/8461/1-2	143	7716/7663/2SPS
39	10675/8461/4-4	144	358/10870/12-7
40	10675/8461/3-5	145	7531/8461/2-1
41	590/8461/1-4	146	7531/8461/1-5
42	6002/LIRL-21-50-1-1-1/3-9	147	7531/8461/3-4
43	590/8461/2-6	148	8114/7663/7
44	5588/4372/2-1	149	358/10870/6-2
45	6206/8461/8-2	150	10300/10061/5-1
46	10848/8143/1-2	151	4380/4372/3-6
47	8114/10956/11-5	152	10848/DPL 62/4-3
48	4380/4372/4-1	153	4605/8006/1-5
49	6206/8461/8-1	154	8114/7663/10-8
50	8008/10012/10	155	10865/10174/2SPS
51	4380/4372/16-1	156	10866/10174/4SPS
52	10848/LIRL-21-50-1-1-1/3-3	157	10866/10174/15SPS
53	8114/10956/14-8	158	10848/8114/5SPS
54	8114/10956/14-1	159	10012/2585/13SPS
55	8114/10956/9-8	160	6797/6816/2SPS
56	99/209/DPL 62/13-2	161	10072/1712/3SPS
57	8114/10956/22-9	162	6212/09S 96565-1SPS
58	8114/10956/9-2	163	6037/8006/5SPS

Table S1. List of lentil genotype with pedigree

Entry_No	Pedigree	Entry_No	Pedigree
59	4380/4372/5-6	164	4605/7978/1SPS
60	DPL 62/8461/5-3	165	6994/DPL 62/4SPS
61	1875/8461/2-1	166	7978/DPL 62/7SPS
62	10140/DPL 62/6-1	167	7978/DPL 62/8SPS
63	8114/10956/4-5	168	LIRL-21-50-1-1-1/DPL 62/1SPS
64	10848/6994/1-2	169	LIRL-21-50-1-1-1/DPL 62/3SPS
65	7210/8010/7	170	LIRL-21-50-1-1-1/DPL 62/5SPS
66	8114/10956/12-8	171	99/209/DPL 62/6SPS
67	5588/8461/4SPS	172	4605/4380/2SPS
68	DPL 62/8461/6SPS	173	ILL5582
69	11 2580	174	1115883
70	II 1 7978	175	6002/LIRL-21-50-1-1-1/17-2
71	4903/5888/1-6	176	6002/LIRL-21-50-1-1-1/24-8
72	8406/8006/4-3	177	7978/DPL 62/1-1
73	10140/6994/6-9	178	LIRI -21-50-1-1-1/DPL 62/12-3
74	7978/II WI 118/1-1	179	590/8461/3-7
75	4380/8461/1-3	180	LIRI -21-50-1-1-1/6994/3-6
76	7978/II \\// 118/4-2	181	6002/7716/9-1
77	/380//372/8-9	182	6002/7716/14-1
78	1005/10847/3-2	183	LIRI -21-50-1-1-1/DPL 62/13-3
70	811//10956/11-3	18/	7978/DPL 62/10-8
80	1875/8/61/6-2	185	5597/6797/10-4
81	10870/10871/9-10	186	5597/6797/10-8
01 02	6002/7716/2 2	197	
83	6002/1110/2-2	107	211//7716/3-/
0J 94	6004/10141/1 2	190	9114/7716/2 5
0 4 95	8008/10141/1-2 8008/10012/4 1	109	9114/7716/1 4
00	1975/9461/0 2	190	0114/7716/17
00 97	6004/10141/1 6	102	6114/7710/1-7 5507/6707/9
07	10949/10141/1-0	192	
00	10040/0994/1-4 7079/II \\// 119/2 2	193	LIRL-21-30-1-1-1/DFL 02/11-7
09	7970/ILVVL 110/2-2 6002/7716/20 4	194	
90	10072/1710/20-4	195	LIRL-21-30-1-1-1/DFL 02/1-4
91		190	10072/1712/10-3
92	F1X2011S-132/F1X2011S-110/25-1	197	8114/7003/10-9 6002/7716/78D8
93	F1X20115-132/F1X20115-110/1-4	190	0002/1110/13F3
94	F1X2011S-132/F1X2011S-110/25-5	199	4605/LIRL 21-50-1-1-1/25P5
95	F1X20115-132/F1X20115-110/25-6	200	10848/DPL 62/55PS
96	813/4605/1-6	201	10848/DPL 62/14SPS
97	6037/8006/65P5	202	10848/DPL 62/165P5
98	6002/LIRL-21-50-1-1-1/4SPS	203	7978/LIRL-21-50-1-1-1/9SPS
99	10848/99/209/1SPS	204	7978/99/209/1SPS
100	7978/LIRL-22-107/1SPS	205	10220/8461/5SPS
101	LIKL-21-50-1-1-1/DPL 62/8SPS	206	4605/2684/45PS
102	2313/4372/1SPS	207	4605/3596/2SPS
103	7986/ILWL074/2SPS	208	ILL8006
104	ILL4605	209	ILL6821
105	ILL590	210	WBL //

© 2022 Vaishnavi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/94171