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Abstract

Brucellosis is one of the most common zoonotic infections globally. It affects humans, domestic
animals and wildlife. In this paper, we conduct an intrinsic analysis of human brucellosis
dynamics in non-periodic and periodic environments. As such we propose and study two
mathematical models for human brucellosis transmission and control, in which humans acquire
infection from cattle and wildlife. The first model is an autonomous dynamical system and the
second is a non-autonomous dynamical system in which the seasonal transmission of brucellosis
is incorporated. Disease intervention strategies incorporated in this study are cattle vaccination,
culling of infectious cattle and human treatment. For both models we conduct both epidemic and
endemic analysis, with a focus on the threshold dynamics characterized by the basic reproduction
numbers. Using sensitivity analysis we established that R0 is most sensitive to the rate of
brucellosis transmission from buffalos to cattle, the result suggest that in order to control human
brucellosis there is a need to control cattle infection. Based on our models, we also formulate
an optimal control problem with cattle vaccination and culling of infectious cattle as control
functions. Using reasonable parameter values, numerical simulations of the optimal control
demonstrate the possibility of reducing brucellosis incidence in humans, wildlife and cattle, within
a finite time horizon, for both periodic and non-periodic environments.
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1 Introduction

Globally, human brucellosis remains an important and widespread infection [1]. The infection is
more common in Mediterranean areas, the south and the center of America, Africa, Asia, Arab
peninsula, Indian subcontinent and the Middle East [2]. In 2012, reported brucellosis incidence
in some endemic regions were as follows: Saudi Arabia (214.4), Iran (238.6), Turkey (262.2), Iraq
(278.4), and Syria (1603.4) [3]. However, the World Health Organization (WHO) believes that the
real incidence is 10–25 times more than what have been reported [2]. Although, human brucellosis
in rampant in many developing nations it is also a severe public health problem in China where
160, 214 brucellosis cases were observed in the period 2005–2010 [4].

In animals, brucellosis is transmitted by direct contact transmission through the brucella carriers or
indirect contact transmission when animals ingest contaminated forages or the excrement containing
large quantities of bacteria, generally discharged by infected animals [5]. Domesticated species such
as cattle, sheep, horse and goats are regarded as the main source of human brucellosis [2], in which
transmission may occur directly or through the consumption of unpasteurised dairy products [5].
The cross-transmission of brucellosis between domesticated animals and wildlife is well documented
[6, 7]. However, the debate on whether wildlife is the reservoir of infection for domestic animals or
vice versa continues [6]. One wild animal that is a villain for inter-species spread of many infectious
disease such as brucellosis, foot-and-mouth disease-virus (FMDV) in many Africa nations is the
African buffalo [6]. African buffaloes have several intrinsic behavioural characteristics which are
key to inter-species spread of infectious diseases. They are highly mobile and sociable species and
they often move in large herds of 1000 or more [8].

Recently, a number of veterinary scientists have suggested that buffalo, a preferred source of bush
meat could be another source of human brucellosis in many developing nations [6]. Buffalo meat is
highly preferred bush meat in many African countries [9]. Since bush meat is consumed and handled
(legally and illegally) in many developing nations its contribution to human brucellosis cannot be
ignored.

Several mathematical models have been proposed to study the dynamics of brucellosis outbreaks
[5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Undeniably, these studies have
produced many useful results and improved the existing knowledge on brucellosis dynamics. One
of the limitations of these models, however, is that none of them incorporated the aspect of bush
meat on modeling the transmission dynamics of human brucellosis. In this paper we develop a
novel mathematical model that evaluates the impact of bush meat on human brucellosis dynamics.
Our model will incorporate human population, cattle and wildlife (African buffalo). In addition,
we will explore optimal disease control measures based on cattle vaccination, culling of infectious
cattle and treatment of infected humans.

The remainder of this paper is organized as follows. In section 2 we formulate and comprehensively
analyze the transmission dynamics of brucellosis in non-periodic environments. We provide sensitivity
analysis of the basic reproductive number on various model parameters in non-periodic environments,
identifying the parameters to which reproductive number is most sensitive, we use this information
to suggest strategies for controlling brucellosis using techniques from optimal control theory. We
extend the autonomous brucellosis models formulated to incorporate seasonal variations on disease
transmission. We then conduct mathematical analyses, including the computation of the basic
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reproductive number, and the stability analysis of equilibria. We formulate an optimal control
problem with cattle vaccination and culling of infectious cattle as control functions. Finally, a brief
discussion in Section 3 rounds up the paper.

2 Materials and Methods

2.1 An autonomous brucellosis model

We propose an autonomous dynamical system that comprise of cattle population, human population
and African buffalo population. The African buffalo population constitute three compartments:
susceptible Sb(t), symptomatic infectious Ib(t) and carrier state - asymptomatic persistent infection
A(t). Thus the total population of buffaloes at time t is Nb(t) = Sb(t) + Ib(t) + A(t). The cattle
population is subdivided into classes of: susceptible Sc(t), infectious Ic(t), and the total cattle
population at time t is Nc(t) = Sc(t)+ Ic(t). Further, the human population constitute: susceptible
Sh(t) and infectious Ih(t). The total human population at time t is Nh(t) = Sh(t) + Ih(t). There
are some assumptions for our model:

1. Brucellosis in the exposure period is hardly detected, and animals in this period can also
infect susceptible animal and humans. Hence, we ignored the exposed/latent period in both
human and animal population (see for example [15, 20, 21, 22]);

2. Prior studies suggest that African buffaloes have more chances of becoming chronic carriers
of the disease [6, 27]. As such we omitted the carrier compartment on describing brucellosis
transmission dynamics in cattle and humans;

3. Here, brucellosis transmission rate is being modeled by the mass action incidence since it
is appropriate when N(t) is not too large [28]. We assume that the transmission rate is
dependent on the size of the population which implies that the contact rate is an increasing
function of the population. The mass action incidence is density- dependent since contact
rate per infective is proportional to the density of the infectious host.

In all the discussions to follow we will denote the African buffalo, cattle and human by subscripts b,
c and h, respectively. A flow diagram describing the model is given in Fig.1 and the model equations
are: 

dSb
dt

= Λb − [βbb(Ib + εA) + βcbIc]Sb − µbSb,
dIb
dt

= [βbb(Ib + εA) + βcbIc]Sb − [µb + γ]Ib,
dA
dt

= fγIb − [µb + db]A,
dSc
dt

= Λc − [βbc(Ib + εA) + βccIc]Sc − [σ + µc]Sc,
dIc
dt

= [βbc(Ib + εA) + βccIc]Sc − [µc + dc]Ic,
dSh
dt

= Λh − βbh(Ib + εA)Sh − βchIcSh − µhSh + θIh,
dIh
dt

= βbh(Ib + εA)Sh + βchIcSh − (θ + µh)Ih,

(1)

In system (1), Λi denote the constant recruitment rate into the population through birth, µi is
the natural-related death rate (i = b, c, h), db is the disease-related mortality rate for buffalo
population, dc = α+δ, where α is the culling rate and δ is the disease-related mortality rate, σ is the
vaccination rate, ε accounts for the unequal chances of disease transmission between symptomatic
and asymptomatic buffaloes, βij (i, j = b, c) denotes disease transmission rate, with i = j implying
buffalo–to–buffalo or cattle–to–cattle transmission and i 6= j signify cross-transmission, respectively,
βbh and βch denotes transmission rate from buffalo and cattle, respectively, to humans. Further,
infected African buffaloes display clinical signs of the disease for γ−1 days after which a fraction f
become chronic carriers and the complementary (1− f) succumb to disease-related death. Infected
human displaying clinical signs of the disease are treated at rate θ. Prior studies suggests that the
optimal treatment of uncomplicated brucellosis should be based on a six-week regimen of doxycycline
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combined either with streptomycin for 2–3 weeks, or rifampicin for six weeks [29].

Although, species can be infected by the brucella through indirect transmission (environmental
transmission), prior studies suggests that this form of infection plays a relatively small role on the
spread of brucellosis [11, 14]. In addition, prior studies also suggests that humans rarely transmit
the disease [11, 14].

Fig. 1. Flow diagram representing the transmission routes and other processes
model by system (1).

Since the last two equations are independent of the first five equations of model (1), without loss
of generality, in our mathematical analysis we will consider only the first five equations :

dSb
dt

= Λb − [βbb(Ib + εA) + βcbIc]Sb − µbSb,
dIb
dt

= [βbb(Ib + εA) + βcbIc]Sb − [µb + γ]Ib,
dA
dt

= fγIb − [µb + db]A,
dSc
dt

= Λc − [βbc(Ib + εA) + βccIc]Sc − [σ + µc]Sc,
dIc
dt

= [βbc(Ib + εA) + βccIc]Sc − [µc + dc]Ic.

(2)

It can easily be verified that model (2) has a unique and bounded solutions with initial value in
R5

+. Further, the compact set

Γ =

{
(Sb, Ib, A, Sc, Ic) ∈ R5

+ : Nb ≤
Λb
µb
, Nc ≤

Λc
µc
.

}
, (3)

is positively invariant and attracting with respect to model (2).

2.1.1 The reproductive number

It is evident that (2) always has a disease-free equilibrium (DFE) given by

E
0 :
[
S0
b , I

0
b , A

0, S0
c , I

0
c

]
=

[
Λb
µb
, 0, 0,

Λc
(σ + µc)

, 0

]
.

One measure of the severity of a disease is the basic reproductive number, R0, which is defined
as the average number of secondary infections caused by a single infected animal in a completely
susceptible population. Using the second generation matrix approach [30], the non-negative matrix
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F that denotes the generation of new infection terms and the non-singular matrix V that denotes
the remaining transfer terms are respectively, given (at the disease-free equilibrium) by

F =


βbbΛb
µb

εβbbΛb
µb

βcbΛb
µb

0 0 0
βbcΛc

(σ+µc)
εβbcΛc
(σ+µc)

βccΛc
(σ+µc)

 , and V =

(µb + γ) 0 0
−fγ (µb + db) 0

0 0 (µc + dc)

 . (4)

Thus, the next generation matrix of system (2) is

FV −1 =

M11 M12 M13

M21 M22 M23

0 0 0

 ,
where 

M11 =
Λbβbb

(µb + γ)µb
+

fγΛbεβbb
(µb + γ)(µb + db)µb

,

M21 =
Λcβbc

(µb + γ)(σ + µc)
+

fγΛcεβbc
(µb + γ)(µb + db)(σ + µc)

,

M12 =
Λbεβbb

µb(µb + db)
, M22 =

Λcεβbc
(σ + µc)(µb + db)

,

M13 =
Λbβcb

µb(µc + dc)
, M23 =

Λcβcc
(σ + µc)(µc + dc)

.

It follows that the basic reproductive number is

R0 = ρ(FV −1) =
M11 +M22 +

√
(M11 −M22)2 + 4M12M21

2
,

Defining the appropriate value of R0 for a disease characterized by hidden infections is challenging
but essential in developing control measures. The reproductive number is the key threshold parameter
whose values determine the global dynamics of system (2). A disease is considered to be endemic
if R0 > 1. However, if R0 ≤ 1 it implies that the disease dies out.

2.1.2 Equilibrium analysis

Theorem 2.1. If R0 ≤ 1, the system (2) has a unique DFE that is globally asymptotically stable
in the region Γ.

Proof. Let Y(t) = [Ib(t), A(t), Ic(t)]. Since
İb ≤ [βbb(Ib + εA) + βcbIc]S

0
b − [µb + γ]Ib,

Ȧ ≤ fγIb − [µb + db]A,

İc ≤ [βbc(Ib + εA) + βccIc]S
0
c − [µc + dc]Ic,

(5)

it follows that

Ẏ ≤ (F − V )Y,

where F and V are defined in Eq. (4). One can easily deduce that, both F and V −1 are non-
negative. By the Perron-Frobenius Theorem, the non-negative matrix V −1F has a non-negative
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left eigenvector w ≥ 0 with respect to ρ(V −1F ) = ρ(FV −1) = R0, that is wTV −1F = R0w
T .

Motivated by [31], we define a Lyapunov function as follows:

L = wTV −1
Y.

Differentiating L along solutions of (2), we have

L̇ = wTV −1
Ẏ ≤ wTV −1(F − V )Y = (R0 − 1)wTY.

If R0 < 1, L̇ = 0 implies that wTY = 0 and hence Ib = A = Ic = 0. It follows from the first and
fourth equations of (2) that Sb = S0

b and Sc = S0
c . Hence, the only invariant set where L̇ = 0 is the

singleton {S0
b , 0, 0, S

0
c , 0}. By LaSalle’s invariance principle [32], the DFE is globally asymptotic all

stable in Γ if R0 < 1.

If R0 = 1, L̇ = 0 implies that Sb = S0
b and Sc = S0

c , by the first and third equations of (5) and the fact
that wTY > 0. Then, from the first and fourth equations of (2) we have, [βbb(Ib+ εA)+βcbIc]Sb = 0
and [βbc(Ib + εA) + βccIc]Sc = 0, respectively. This can only happen if Ib = A = Ic = 0. Therefore,
the largest invariant set where L̇ = 0 is the singleton {S0

b , 0, 0, S
0
c , 0}, and by LaSalle’s invariance

principle, the DFE is globally asymptotic all stable in Γ if R0 = 1.

Theorem 2.2. If R0 > 1, there exists a unique endemic equilibrium of the system (2) which is
globally asymptotically stable in the region Γ.

Proof. In order to analyze the global asymptotic stability of the endemic equilibrium of system (2)
we set:

x =
Sb
S∗b
, y =

Ib
I∗b
, z =

A

A∗
, u =

Sc
S∗c

and v =
Ic
I∗c
.

Thus, system (2) is transformed into the following form:

dx

dt
= x

[
Λb
S∗b

(
1

x
− 1

)
− βbbI∗b (y − 1)− βbbεA∗(z − 1)− βcbI∗c (v − 1)

]
,

dy

dt
= y

[
βbbS

∗
b (x− 1) +

βbbεA
∗S∗b

I∗b

(
zx

y
− 1

)
+
βcbI

∗
cS
∗
b

I∗b

(
vx

y
− 1

)]
,

du

dt
= u

[
Λc
S∗c

(
1

u
− 1

)
− βbcI∗b (y − 1)− βbcεA∗(z − 1)− βccI∗c (v − 1)

]
,

dv

dt
= v

[
βccS

∗
c (u− 1) +

βbcεA
∗S∗c

I∗c

(zu
v
− 1
)

+
βbcI

∗
b S
∗
c

I∗c

(yu
v
− 1
)]
,

dz

dt
= z

[
fγI∗b
A∗

(y
z
− 1
)]
.

(6)

It can easily be verified that model (6) has a unique endemic equilibrium E∗(1, 1, 1, 1, 1), and that
the global stability of E∗ is the same as that of system (2). Consider the Lyapunov function

U = S∗b [x− 1− lnx] + I∗b [y − 1− ln y]

+
[βbbεA

∗S∗b + βbcεA
∗S∗c ]A∗

fγI∗b
[z − 1− ln z]

+S∗c [u− 1− lnu] + I∗c [v − 1− ln v].
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Differentiating U with respect to t along solutions of (6) gives:

dU

dt
= +(x− 1)

[
Λb

(
1

x
− 1

)
− βbbI∗b S∗b (y − 1)− βbbεA∗S∗b (z − 1)− βcbI∗cS∗b (v − 1)

]

+(y − 1)

[
βbbI

∗
b S
∗
b (x− 1) + βbbεA

∗S∗b

(
zx

y
− 1

)
+ βcbI

∗
cS
∗
b

(
vx

y
− 1

)]

+(u− 1)

[
Λc

(
1

u
− 1

)
− βbcI∗b S∗c (y − 1)− βbcεA∗S∗c (z − 1)− βccI∗cS∗c (v − 1)

]

+(v − 1)
[
βccI

∗
cS
∗
c (u− 1) + βbcεA

∗S∗c

(zu
v
− 1
)

+ βbcI
∗
b S
∗
c

(yu
v
− 1
)]

+
[βbbεA

∗S∗b + βbcεA
∗S∗c ]

fγI∗b
(z − 1)

[
fγI∗b

(y
z
− 1
)]

= F (x, y, z, u, v).

(7)

At endemic point we have the following identities:

µb =
Λb
S∗b
− [βbbI

∗
b + βbbεA

∗ + βcbI
∗
c ],

(µb + γ) = βbbS
∗
b +

βbbεA
∗S∗b

I∗b
+
βcbI

∗
cS
∗
b

I∗b
,

(σ + µc) =
Λc
S∗c
− [βbcI

∗
b + βbcεA

∗ + βccI
∗
c ],

(µc + dc) = βccS
∗
c +

βbcεA
∗S∗c

I∗c
+
βbcI

∗
b S
∗
c

I∗c
,

(µb + db) =
fγI∗b
A∗

.

(8)

To assure that F (x, y, z, u, v) ≤ 0 for x > 0, y > 0, z > 0, u > 0, v > 0, the following condition must
be satisfied βcbI

∗
cS
∗
b = βbc(I

∗
b + εA∗)S∗c (see [34]). After some algebraic manipulations, we have

dU

dt
= (µbS

∗
b + βbbI

∗
b S
∗
b )

(
2− x− 1

x

)
+
(

(σ + µc)S
∗
c + βccI

∗
cS
∗
c

)(
2− u− 1

u

)
+βbbεA

∗S∗b

(
3− 1

x
− y

z
− zx

y

)
+ βbcI

∗
b S
∗
c

(
4− 1

x
− 1

u
− vx

y
− yu

v

)
+βbcεA

∗S∗c

(
5− 1

x
− 1

u
− vx

y
− zu

v
− y

z

)
.

Since the arithmetic mean is greater or equal to the geometric mean, it can easily be verified that
U̇ ≤ 0 provided that S∗b , I∗b ,A∗, S∗c , I∗c are positive, where the equality U̇ = 0 holds only for
x = y = z = u = v = 1. Therefore U̇ ≤ 0 holds. Then the endemic equilibrium point Ω∗ is globally
asymptotically stable if R0 > 1 by LaSalle’s invariance principle [32].

2.1.3 Sensitivity analysis of the reproduction number

In this section we perform the sensitivity analysis of the model system (1). The threshold quantity
R0 known as basic reproduction number is an important parameter to determine the persistence
and extinction of brucellosis disease transmission in the population. To be able to suggest the most
efficient way of controlling the disease we need to determine the parameters we can control and to
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which R0 is more sensitive. Therefore we perform the sensitivity analysis of the model system (1)
using partial rank correlated coefficient (PRCC) developed in [33] and the values of the parameters
used in the model simulations are in Table (2) to demonstrate the influence of each parameter in the
size of threshold quantity R0. PRCC is an efficient sensitivity analysis method based on sampling.
PRCC assigns a value between −1 to +1 for each parameter. Positive PRCC value indicates
a positive correlation of the parameter with the disease maintenance, whereas a negative value
indicates a negative correlation with the infectiousness of the diseases. The Parameters studied are:
Λb, Λc, Λh, µb, µc, µh, db, βbc, βbb, βcc, βbh, βch, f , θ, γ, σ, βbc, dc, ε.

Definition 2.1. (See, [33]) The normalized sensitivity index of R0 which depends on differentiability
of parameter, ω is defined as follows:

ΨR0
ω =

∂R0

∂ω
× ω

R0
. (9)

From (9), the value of normalized sensitivity index for each parameter used in the model (1) is
summarized in Table 1:

Table 1. Sensitivity analysis of parameters for the model system (1)

Parameter Λb Λc Λh µb µc µh db
Index +0.7399 +0.2601 0 -1.0476 -0.1141 0 −0.4615

Parameter βbc βbb βcc βbh βch f θ
Index +0.1937 +0.7399 0 0 0 +0.64 0

Parameter γ σ βbc dc ε
Index -0.2308 -0.1460 +0.2601 0 +0.7691

Fig. 2. Sensitivity analysis of the model system (1)

8
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In Fig. 2, we observed that model parameters such as Λb, Λc, βbc, βbb, ε, and f , have a positive
influence on the R0, that is, whenever they are increased, the size of R0 increases. For example, an
increase in recruitment rate of Buffalo Λb by 73.99% will lead to an increase in the size of R0 by
73.99%. In the other-hand, model parameters with negative index values have a negative influence
on R0, for example, an increase in mortality rate of Buffalo db by 46.15% will lead to a decrease on
the magnitude of R0 by 46.15%.

(a)

(b)
Fig. 3. Effects of varying (a) progression rate of infected cattle to chronic stage

modeled by parameter γ on R0 (b) vaccination rate of susceptible cattle modeled by
parameter σ on R0

Numerical results in Fig. 3a shows the progression rate of infected cattle from susceptible to
chronic stage modeled by parameter γ on R0. Overall, we noted that increase on progression rate
of infected cattle to chronic stage reduce the size of R0. In particular, one can note that whenever

9
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the progression rate is greater than 0.5 the disease dies in the community. Fig 3b demonstrates the
effect of vaccination rate of susceptible cattle on the spread of brucellosis disease in the population.
Overall, we observed that whenever the vaccination rate of susceptible cattle is less than 0.5 the
disease persists in the community.

Fig. 4. Effects of varying rate of modifying factor for disease transmission modeled
by parameter ε on R0

Fig.4 demonstrates the effects of modifying factor in the dynamics of brucellosis disease transmission.
Overall, one can note that whenever the modifying factor for disease transmission is less then 0.5
the magnitude of R0 is less than unit and thus, the disease dies in the population.

Fig. 5. Contour plot of the basic reproduction number R0 as the function of
treatment rate of infected cattle (modeled by parameter θ) and vaccination rate of

susceptible cattle (modeled by parameter σ)

10
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Fig. 5 shows the contour plot of basic reproduction number R0 as the function of treatment rate
of infected cattle (modeled by parameter θ) and vaccination rate of susceptible cattle (modeled by
parameter σ). Overall, we noted that, increase on vaccination rate of susceptible and treatment of
infected cattle reduce the size of R0. In particular one can note that whenever σ is greater than 0.5
the disease dies in the population.

2.2 A periodic brucellosis model

Infectious disease dynamics are often strongly influenced by seasonal patterns,irrespective of pathogen
rate transmission mode [7, 35]. The breadth and consistency of these patterns suggest that seasonal
influence on host and pathogen biology can have significant effects on patterns of pathogen invasion
and transmission [36]. The relationship between host abundance and pathogen transmission,
influenced strongly by seasons in some environments such as the semi-arid, is central to understanding
infectious disease ecology and patterns and processes of pathogen invasion [7].

In fact, like many other infectious diseases, brucellosis is significantly influence by seasonal variations,
and prior studies have demonstrated a strong connection between brucellosis infection and seasonal
variations [7, 37, 38]. Factors such as the seasonal availability of forage which in turn lead to nomadic
animal farming may be attributed to seasonality of brucellosis dynamics. Botswana provides an
important example of this potential influence with extreme seasonal climatic variation, which occurs
within and between years. In Botswana water availability is highly variable in time and space
in relation to rainfall patterns and this can strongly influence density and spatial distribution of
domestic animals and wildlife including buffalo over the whole year including buffalo calving periods
[6].

Against this background, in this section, we extend model (1) to incorporate seasonality. Thus we
introduce seasonal-induced transmission rate. Our new model takes the form:

dSb
dt

= Λb − [βbb(t)(Ib + εA) + βcb(t)Ic]Sb(t)− µbSb(t),
dIb
dt

= [βbb(t)(Ib + εA) + βcb(t)Ic]Sb(t)− [µb + γ]Ib,
dA
dt

= fγIb − [µb + db]A(t),
dSc
dt

= Λc − [βbc(t)(Ib + εA) + βcc(t)Ic]Sc(t)− [σ + µc]Sc(t),
dIc
dt

= [βbc(t)(Ib + εA) + βcc(t)Ic]Sc(t)− [µc + dc]Ic(t),
dSh
dt

= Λh − βbh(t)(Ib + εA)Sh − βch(t)IcSh − µhSh + θIh,
dIh
dt

= βbh(t)(Ib + εA)Sh + βch(t)IcSh − (θ + µh)Ih.

(10)

All the variables and model parameters are assumed to be positive and they retain the same
definitions as in model (1). Further, we assume that βij(t), (i, j = b, c, h) are periodic continuous
functions in t with a period ω > 0 (specifically, ω = 12 months). Thus,

βij(t) = βij

[
1 + ak sin

(
2πt

12

)]
, k = 1, 2, 3, 4, 5, 6 (11)

where βij denotes the basic contact rate without seasonal forcing and 0 < ak < 1 denotes the
magnitude of seasonal fluctuations.

2.2.1 The reproductive number

To introduce the basic reproduction number in the fluctuating environment Wang and Zhao [39],
extended the general procedure presented by Driessche and Watmough [30] by introducing the next
infection operator

(Lφ)(t) =

∫ ∞
0

Y (t, t− s)F (t− s)φ(t− s)ds (12)

11
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Assume that Y (t, s), t ≥ s, is the evolution operator of the linear ω -periodic system dy
dt

= V (t)y and
φ(t), the initial distribution of infectious animals, is ω -periodic and always positive. Then effective
reproductive number of the system (10) is then established by calculating the spectral radius of the
next infection operator,

Rs = ρ(L).

Thus, the evolution operator Y (t, s), for the system (10) is

Y (t, s) =

 e−(µb+γ)(t−s) 0 0
fγ

(γ−db)
[e−(µb+db)(t−s) − e−(µb+γ)(t−s)] e−(µb+db)(t−s) 0

0 0 e−(µc+dc)(t−s)

 . (13)

The next infection operator can be numerically evaluated by

(Lφ(t) =

∫ ∞
0

Y (t, t− s)F (t− s)φ(t− s)ds =

∫ T

0

G(t, s)φ(t− s)ds,

where

G(t, s) ≈
M∑
k=0

Y (t, t− s− kω)F (t− s)

≈
M∑
k=0

 l11 l12 l13

l21 l22 l23

l31 l32 l33

 ,
for some positive integer M large enough, and

εl11 = l12 = εβbb(t−s)Λb
µb

e−(µb+γ)(s+kω),

l13 = βcb(t−s)Λb
µb

e−(µb+γ)(s+kω),

εl21 = l22 = ε fγ
(γ−db)

[
βbb(t−s)Λb

µb
e−(µb+db)(s+kω) − l11

]
,

l23 =
[
βcb(t−s)Λb

µb
e−(µb+db)(s+kω) − l13

]
,

εl31 = l32 = εβbc(t−s)Λc
(σ+µc)

e−(µc+dc)(s+kω),

l33 = βcc(t−s)Λc
(σ+µc)

e−(µc+dc)(s+kω).

In the special case of βij(t) ≡ βij , ∀t ≥ 0, we obtain F (t) ≡ F, and V (t) ≡ V , ∀t ≥ 0, then Rs = R0.

2.2.2 Brucellosis extinction and persistence

In this section, we present that if Rs < 1, then DFE is globally stable and the disease dies out.
Then, if Rs > 1 the disease persist.

In the special case of βij(t) ≡ βij , ∀t ≥ 0, we obtain F (t) ≡ F, and V (t) ≡ V , ∀t ≥ 0, then Rs = R0.
It can easily be verified that system (10) satisfies assumptions (A1)-(A7) in Wang and Zhao (2008)
[39]. Thus, we have the following results , which are crucial for our simulations and the main
analytical results in this section.

12
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Lemma 2.3. (Wang and Zhao Theorem 2.2 in [39]). The following statements are valid:

(i) R0 = 1 if and only if ρ(Φ(F−V )(ω)) = 1.

(ii) R0 > 1 if and only if ρ(Φ(F−V )(ω)) > 1.

(ii) R0 < 1 if and only if ρ(Φ(F−V )(ω)) < 1.

We now proceed to prove Theorem 2.5.

Proof. In the case where Rs < 1, Lemma 2.3 implies that E0 is locally asymptotically stable. It
suffices to prove that E0 is globally attractive in Γ.
Assume that Rs < 1, By Lemma 2.3, it follows that for any ϕ > 0, there exists large t0 > 0 such
that Sb(t) < S0

b + ϕ and Sc < S0
c + ϕ, when t > t0. Then for system (10), we have, when t > t0,

that 
İb(t) ≤ [βbb(t)(Ib + εA) + βcb(t)Ic][S

0
b (t) + ϕ]− [µb + γ]Ib,

Ȧ(t) = fγIb − [µb + db]A(t),

İc(t) ≤ [βbc(t)(Ib + εA) + βcc(t)Ic][S
0
c (t) + ϕ]− [µc + dc]Ic(t).

(14)

Considering the comparison system,

dh

dt
= (F (t)− V (t) +Mϕ)h(t), h(t) = (Ib(t), Ic(t), A(t)). (15)

By Lemma 2.1 in [40], it follows that there exists a positive ω-periodic function h̄(t) such that
h(t) = eψth̄(t) is a solution of the system (15) where ψ = 1

ω
ln ρ(Φ(F−V+Mϕ)(·)(ω)). Further,

we know that Rs < 1, if and only if ρ(Φ(F−V+Mϕ)(·)(ω)) < 1. Since ρ(Φ(F−V+Mϕ)(·)(ω)) < 1,
it follows that, ψ is a negative constant. Therefore, we have h(t) −→ 0 as t −→ +∞. This
implies that the zero solution of system (15) is globally asymptotically stable. For any non-
negative initial value (Ib(0), A(0), Ic(0)))T for system (14), there a sufficient large M∗ > 0 such
that (Ib(0), A(0), Ic(0))T ≤ M∗h̄(0) holds. Following the comparison principle [41], we have
(Ib(t), A(t), Ic(t))

T ≤M∗h(t) for all t > 0 where M∗h(t) is also a solution of system (15). Therefore,
we get Ib(t) −→ 0, A(t) −→ 0 and Ic(t) −→ 0 , as t −→ +∞. By the theory of asymptotic
autonomous systems [42], it then follows that Sb(t) −→ S0

b and Sc(t) −→ S0
c . So E0 is globally

attractive when Rs < 1. It follows that E0 is globally asymptotically stable when Rs < 1.

Define:

X0 = {(Sb, Sc, A, Ib, Ic) ∈ R5
+ : A > 0, Ib > 0, Ic > 0}. ∂X0 = R5

+\X0.

Let P : R5
+ −→ R5

+ be the Poincaré map associated with system (10) such that

P (x0) = u(ω, x0), ∀x0 ∈ R5
+,

where u(t, x0) denotes the unique solution of the system (10) with u(0, x0) = x0. It is easy to verify
that

Pm(x0) = u(mω, x0), ∀m > 0,

Lemma 2.4. When Rs > 1, then there exists a δ > 0 such that when

‖(S0
b , I

0
b , A

0, S0
c , I

0
c )− P0‖ ≤ δ

for any (S0
b , I

0
b , A

0, S0
c , I

0
c ) ∈ X0, we have

lim sup
m→∞

d[Pm(S0
b , I

0
b , A

0, S0
c , I

0
c ), P0] ≥ δ (16)

where P0 = (S0
b , 0, 0, S

0
c , 0).

13
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Proof. If R0 > 1, we obtain ρ(Φ(F−V (ω)) > 1 by Lemma 2.3. Choose ε̃ small enough such that
ρ(Φ(F−V−Mε̃(ω)) > 1, where

Mε̃ =

ε̃ ε̃ ε̃
ε̃ ε̃ ε̃
0 0 0

 .
Now we proceed by contradiction to prove that

lim sup
m→∞

d[Pm(S0
b , I

0
b , A

0, S0
c , I

0
c ), P0] ≥ δ.

If not, then

lim sup
m→∞

d[Pm(S0
b , I

0
b , A

0, S0
c , I

0
c ), P0] < δ,

for some (S0
b , I

0
b , A

0, S0
c , I

0
c ) ∈ X0.Without loss of generality, we assume that d[Pm(S0

b , I
0
b , A

0, S0
c , I

0
c ), P0] <

δ for all m ≥ 0. By the continuity of the solution with respect to the initial values, we obtain

‖u(t, Pm(S0
b , I

0
b , A

0, S0
c , I

0
c ))− u(t1, P0)‖ ≤ ε̃, ∀m ≥ 0, ∀t1 ∈ [0, ω].

For any t ≥ 0, let t = mω + t1, where t1 ∈ [0, ω] and m = [ t
ω

], which the greatest integer less than
or equal to t

ω
. Then we have

‖u(t, (S0
b , I

0
b , A

0, S0
c , I

0
c ))− u(t, P0)‖ = ‖u(t1, P

m(S0
b , I

0
b , A

0, S0
c , I

0
c ))− u(t1, P0)‖ ≤ ε̃

for any t ≥ 0, which implies that S0
b − ε̃ < Sb(t) < S0

b + ε̃, S0
c − ε̃ < Sc(t) < S0

c + ε̃, t ≥ 0. Then for
‖(S0

b , I
0
b , A

0, S0
c , I

0
c )− P0‖ ≤ δ, we have
İb(t) ≥ [βbb(t)(Ib + εA) + βcb(t)Ic][S

0
b (t)− ε̃]− [µb + γ]Ib,

Ȧ(t) = fγIb − [µb + db]A(t),

İc(t) ≥ [βbc(t)(Ib + εA) + βcc(t)Ic][S
0
c (t)− ε̃]− [µc + dc]Ic(t).

(17)

Next we consider the linear system
İb(t) = [βbb(t)(Ib + εA) + βcb(t)Ic][S

0
b (t)− ε̃]− [µb + γ]Ib,

Ȧ(t) = fγIb − [µb + db]A(t),

İc(t) = [βbc(t)(Ib + εA) + βcc(t)Ic][S
0
c (t)− ε̃]− [µc + dc]Ic.

(18)

Once again by Lemma 2.3, it follows that there exists a positive ω− periodic function g̃(t) such that
g(t) = eptg̃(t) is a solution of system (18), where p = 1

ω
ln ρ(ΦF−V−Mε̃(ω)). Because ρ(ΦF−V−Mε̃(ω)) >

1, when g(0) > 0, g(t) → ∞ as t → . Applying the comparison principle [41], we know that when
Ib(0) > 0, A(0) > 0 and Ic(0) > 0, Ib(t) → ∞, A(t) → ∞ and Ic(t) → ∞ as t → ∞. This is a
contradiction. This completes the proof.

Theorem 2.5. If the basic reproduction number Rs < 1, then the unique DFE is globally asymptotically
stable in Γ. Further, if Rs > 1 the disease persists.

2.3 Optimal control

In this section, we turn to an optimal control study of our brucellosis models, with an aim of
exploring effective prevention and intervention strategies that could best balance the outcomes and
costs of the control. To that end, we will perform the optimal control study both the autonomous
model (1) and non-autonomous model (10). We introduce two time-dependent control strategies,
u1(t) and u2(t) which are represented as functions of time and assigned reasonable upper and lower
bounds. The control function u1(t) measures the rate at which susceptible cattle are vaccinated

14
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during each time period, while control function u2(t) accounts for the impact of detection and
culling of infectious cattle. Since humans do not transmit the disease we did not consider time
dependent intervention strategy. Retaining the same variable and parameter names as in (1), the
system of differential equations describing our model with controls is:



dSb
dt

= Λb − [βbb(Ib + εA) + βcbIc]Sb − µbSb,
dIb
dt

= [βbb(Ib + εA) + βcbIc]Sb − [µb + γ]Ib,
dA
dt

= fγIb − [µb + db]A,
dSc
dt

= Λc − [βbc(Ib + εA) + βccIc]Sc − [σu1(t) + µc]Sc,
dIc
dt

= [βbc(t)(Ib + εA) + βccIc]Sc − [µc + αu2(t) + δ]Ic,
dSh
dt

= Λh − βbh(Ib + εA)Sh − βchIcSh − µhSh + θIh,
dIh
dt

= βbh(Ib + εA)Sh + βchIcSh − (θ + µh)Ih.

(19)

According to the extended model above, an optimal control problem with the objective function is
formulated by

Minimize J
(
u1(t), u2(t)

)
=

∫ T

0

[
BIc(t) +

W1

2
u2

1(t) +
W2

2
u2

2(t)
]
dt . (20)

The objective is to minimize infected cattle population over a finite time interval [0, T ] at minimal
costs. In equation (20), B1 represent weight constant of the infected cattle. In addition, W1

and W2 are weight for cattle vaccination and cattle culling. The control efforts in equation (20)
are assumed to be nonlinear-quadratic, since a quadratic structure in the control has mathematical
advantages, such as: if the control set is compact and convex it follows that the Hamiltonian attains
its minimum over the control set at a unique point [43, 44, 45, 46, 47, 48]. Further, W1u

2
1(t), and

W2u
2
2(t) describe the costs associated with vaccination and culling, respectively. We assumed that

the costs are proportional to the square of the corresponding control function.
The control set is defined as

Ω =
{

(u1(t), u2(t))
∣∣ 1 ≤ u1(t) ≤ U1, 1 ≤ u2(t) ≤ U2}, (21)

where U1, and U2 denote the upper bounds for the efforts of vaccination, culling and human
treatment, respectively. The bounds reflect practical limitation on the maximum rate of control
that can be implemented in a given time period. If, however, u1(t) = u2(t) = 1 for all t, then the
model (19) is reduced to the original model (1) or (10), with regular (i.e., minimum) controls.
The optimal control problem hence becomes that we seek optimal functions, (u∗1(t), u∗2(t)), such
that

J
(
u∗1(t), u∗2(t)

)
= min

Ω
J
(
u1(t), u2(t)

)
(22)

subject to the state equations in system (19) with initial conditions. The existence of optimal control
follows from standard results in optimal control theory [48, 49]. The necessary conditions that
optimal controls must satisfy are derived using Pontryagin’s Maximum Principle [50]. Thus, system
(2) is converted into an equivalent problem, namely the problem of minimizing the Hamiltonian H
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given by:

H(t) = BIc(t) +
W1

2
u2

1(t) +
W2

2
u2

2(t)

+λSb(t)
[
Λb − (βbb(Ib + εA) + βcbIc)Sb − µbSb

]
+λIb(t)

[
(βbb(Ib + εA) + βcbIc)Sb − (µb + γ)Ib

]
+λA(t)

[
fγIb − (µb + db)A

]
+λSc(t)

[
Λc − (βbc(Ib + εA) + βccIc)Sc − (σu1(t) + µc)Sc

]
+λIc(t)

[
(βbcu2(t)(Ib + εA) + βccIc)Sc − (µc + αu2(t) + δ)Ic

]
+λSh(t)

[
Λh − βbh(Ib + εA)Sh − βchIcSh − µhSh + θIh

]
+λIh(t)

[
βbh(Ib + εA)Sh + βchIcSh − (θ + µh)Ih

]
,

where λSb(t), λIb(t), λA(t), λSc(t), λIc(t), λSh(t) and λIh(t) denote the adjoint functions associated
with the states Sb, Ib, A, Sc and Ic, respectively. Note that, in H(t), each adjoint function multiplies
the right-hand side of the differential equation of its corresponding state function. The first term
in H(t) comes from the integrand of the objective functional.
Given an optimal control treble (u∗1, u

∗
2, u

∗
3) and corresponding states (Sb, Ib, A, Sc, Ic), there exist

adjoint functions [?] satisfying

dλSb(t)

dt
= − ∂H

∂Sb
,
dλIb(t)

dt
= −∂H

∂Ib
,
dλA(t)

dt
= −∂H

∂A
,

dλSc(t)

dt
= − ∂H

∂Sc
,
dλIc(t)

dt
= −∂H

∂Ic
,
dλSh(t)

dt
= − ∂H

∂Sh
,
dλIh(t)

dt
= −∂H

∂Ih
. (23)

These yield

dλSb(t)

dt
= λSb(t)

(
βbb(Ib + εA) + βcbIc + µb

)
− λIb(t)

(
βbb(Ib + εA) + βcbIc

)
,

dλIb(t)

dt
= λSbβbbSb + λIb(t)

(
µb + γ − βbbSb

)
− fγλA(t) + λSc(t)βbc(t)Sc − λIc(t)βbc(t)Sc

+λSh(t)βbhSh − λIh(t)βbhSh,

dλA(t)

dt
= λSb(t)βbbεSb + λSc(t)βbcεSc − λIc(t)βbcεSc − λIb(t)βbbεSb + λA(µb + db),

+λShβbhεSh − λIhβbhεSh,
dλSc(t)

dt
= λSc(t)

(
βbc(Ib + εA) + βccIc + µc + σu1(t)(t)

)
− λIb(t)

(
βbc(Ib + εA) + βccIc

)
,

dλIc(t)

dt
= −B + λSb(t)βcbSb − λIb(t)βcbSb + λSc(t)βccSc + λIc(t)

(
µc + αu2(t) + δ − βccSc

)
+λShβchSh − λIhβchSh,

dλSh(t)

dt
= λSh(βbh(Ib + εA) + βchIc + µh)− λIh(βbh(Ib + εA) + βchIc),

dλIh(t)

dt
= λIh(t)(θ + µh)− λSh(t)θ,

with transversality conditions λi(T ) = 0, for i = Sb(t), Ib(t), A(t), Sc(t), Ic(t), Sh(t), Ih(t). Furthermore,
the optimal controls are characterized by the optimality conditions:

u∗1(t) = max[1, min(ū1(t), U1)], u∗2(t) = max[1, min(ū2(t), U2)]. (24)
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where

ū1(t) =
σScλSc

2W1
, ū2(t) =

αIcλIc
2W2

. (25)

While it is known that wildlife can be important in brucellosis transmission dynamics, lack of
data present an enormous challenge to modellers on evaluating animal and public health control
strategies. Wildlife present a complex component of transmission that can be difficult to characterize
and there is a need for surveillance data to be coupled with molecular, genetic, and dynamical
modeling tools in order to begin to unravel this complexity [7]. Despite the unavailability of
surveillance data we proceed to explore the numerical solutions to our autonomous model. Parameter
values and variables used in our simulations are listed in Table 2.

In the formulation above, the parameters βij , (i, j = b, c, h) can be either constants, for the
autonomous model (1), or periodic functions in the form of equation (11), for the periodic model
(10). For each case, the state equations, adjoint equations and optimality conditions constitute an
optimal control problem, which is then solved numerically.

We adopted the following initial population levels from [13], Sc(0) = 1.33× 106, Ic(0) = 3.3× 105,
Sh(0) = 1.618 × 106, Ih = 0 and estimate the African buffalo population levels as follows Sb(0) =
4.341 × 107, Ib(0) = 1.33 × 106 and A(0) = 0. For simplicity we set B = 1. We further assume
that vaccination incurs higher costs than those for culling so that W1 > W2 . More specifically we
set W1 = 106 and W2 = 103. In addition, we set the control bound of u1(t) and u2(t) as follows
U1 = 20 and U2 = 3, respectively.

Baseline values for our model parameter have been adopted from various source abound in literature
as indicated in Table 2. Since prior studies suggests that the optimal treatment of uncomplicated
brucellosis should be based on a six-week regimen of doxycycline combined either with streptomycin
for 2–3 weeks, or rifampicin for six weeks [29], we assume that the average treatment duration is 4
weeks and then θ = 52

4
= 13.

Table 2. Parameters and values

Symbol Definition Value Units Source

(Λb,Λc,Λh) Recruitment rate (1680000,1976000,9150) year−1 [13]

(µb, µc, µh) Natural elimination rate (0.04,0.22,0.02) year−1 [12, 51]

(db, dc) Disease-related death rate (0.35, 0.2) year−1 [12]
ak(k = 1, 2, 3, 4) Amplitude of oscillation 0.8

(βbc, βcb) Averaged direct transmission rate 0.135× 10−6 animal−1year−1 [13]

βbb Averaged direct transmission rate 0.21× 10−6 animal−1year−1 [13]

βcc Averaged direct transmission rate 0.18× 10−6 animal−1year−1 [13]

βbh Averaged direct transmission rate 1.3458× 10−9 animal−1year−1 [13]

βch Averaged direct transmission rate 0.5896× 10−9 animal−1year−1 [13]
f Proportion of new infections that

develop into chronic 0.8 [11]
γ Rate of progression to chronic

carrier state African buffaloes 0.67 year−1 [51]

θ Human treatment rate 13 year−1 [29]
ε Modification factor 0.5

σ Vaccination rate 0.316 year−1 [11]

Fig. 6 depict the numbers of infected wildlife, cattle and human over finite time interval in the
presence and absence of optimal control. The results demonstrate that optimal control strategy
a significant effect on the numbers of infected wildlife, cattle and humans, though, these control
strategies are targeting cattle population only. Similar behavior is also present on the results for
the periodic model (see Fig. 7, but with oscillatory patterns indicate the influence of seasonality
on brucellosis dynamics. Results in both Fig. 6 and Fig. 7 shows that the implementation of time
dependent intervention strategies aimed targeting domesticated livestock may not be sufficient to

17



Lolika and Helikumi; ARJOM, 18(11): 1-26, 2022; Article no.ARJOM.90620

(a)

(b)

(c)

(d)
Fig. 6. The numbers of infected wildlife, cattle and human for the autonomous
model (1): (a) clinically infected buffaloes (b) chronically infected buffaloes; (c)

infected cattle; (d) infected humans.
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(a)

(b)

(c)

(d)
Fig. 7. The numbers of infected wildlife, cattle and human for the periodic model
(10): (a) clinically infected buffaloes (b) chronically infected buffaloes; (c) infected

cattle; (d) infected humans.
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Fig. 8. The numbers of infected cattle for the autonomous model (1) with extremely
minimal interaction between wildlife and both cattle and humans.

Fig. 9. Control profiles for the periodic model (10)

control the spread of human brucellosis in communities where cattle, wildlife and human interact.
However, when there is extremely minimum interaction between wildlife and both cattle and humans
(we set βcb = βbc = 0.21×10−10) we observe that optimal vaccination and culling of cattle will lead
to brucellosis elimination (see Fig. 8).

Fig. 9 depicts the optimal control profiles for u1(t) and u2(t) for the periodic model (10). As we can
observe, both u1 and u2 starts at the maximum and remain there for a period of 18 years. There
after both controls (u1 and u2) begin to oscillate with time for all the remaining period. These
results suggest a maximum effort for vaccination and culling for the entire horizon. A similar remark
can be drawn for an autonomous model (1) since both controls u1 and u2 start at the maximum
and remain there for the entire time horizon see Fig. 10.

To explore the effects of costs on the implementation of control strategies, we varied W1 and W2.
Suppose W1 = 1010 and W2 = 105. Then as illustrated in Fig. 11 control u1 and u2 will not stay
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Fig. 10. Control profiles for the periodic model (1)

at the maximum for the entire time horizon as we have observed earlier. More specifically, u1 will
stay at the maximum for a period of 2 years while u2 will stay at the maximum for about 7 years
and this is due to the relatively lower value of W2.

Fig. 11. Control profiles for the periodic model (10) with high costs

3 Concluding Remarks

In this paper, we constructed a theoretical framework to investigate the transmission dynamics of
human brucellosis in periodic and non-periodic environments. We also investigated the implications
of intervention strategies on controlling the spread of brucellosis. To explore brucellosis dynamics in
non-periodic environments we developed an autonomous dynamical system with constant parameters
that account for all the essential biological dynamics of brucellosis. Our model incorporated human
population, cattle population and wildlife population (African buffaloes). We conducted thorough
analysis of the model, including computation of the basic reproduction number and stability analysis
of the model steady states. Particularly, we demonstrated that when the basic reproduction number
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is less than unity then our autonomous model has globally stable disease free equilibrium. This
implies that the disease dies out in the community. However, if the basic reproduction number is
greater than unity then there exists a unique endemic equilibrium that is globally asymptotically
stable.

Extensive investigation of the relationship between reproduction number R0 and model parameters,
we observed that model parameters such as Λb, Λc, βbc, βbb, ε, and f , have a positive influence on
the R0, that is, whenever they are increased, the size of R0 increases. For example, an increase
in recruitment rate of Buffalo Λb by 73.99% will lead to an increase in the size of R0 by 73.99%.
In the other-hand, model parameters with negative index values have a negative influence on R0,
for example, an increase in mortality rate of Buffalo db by 46.15% will lead to a decrease on the
magnitude of R0 by 46.15%. Overall, we noted that increase on progression rate of infected cattle
to chronic stage reduce the size of R0. In particular, one can note that whenever the progression
rate is greater than 0.5 the disease dies in the community. Furthermore, we observed that whenever
the vaccination rate of susceptible cattle is less than 0.5 the disease persists in the community.

The model allowed us to demonstrate the implications of time dependent controls. Specifically
we have shown that time dependent intervention strategies for cattle population could minimized
brucellosis incidence in both humans and wildlife. In addition, our optimal control simulations
demonstrate that if humans and cattle have extremely minimal interaction then brucellosis can be
effectively controlled in both humans and cattle and it may require a period of 5 years to successful
contain the disease. However, if the intervention strategies are regular the disease may not be
successful contained even if the strategies are implemented for a time period of 40 years.

In the second model, we extended the autonomous system to a periodic environment to analyze
the impacts of seasonal variation that may affect the movements of animals and, consequently,
brucellosis transmission. We derived an expression for the seasonal-induced basic reproductive
number and showed that the basic reproductive number remains a sharp threshold for brucellosis
dynamics even in a periodic environment. Thus, if the basic reproduction number is less than
unity brucellosis will be eradicated. We also proved uniform persistence of the disease as well
as the existence of a nontrivial periodic solution when the basic reproduction number is greater
than unity. In a similar manner, to our autonomous model, we explored the implication of time
dependent cattle vaccination and culling of infected cattle. Our optimal control simulations in
this case concurred with our earlier findings on the autonomous model, that optimal control can
greatly reduce brucellosis incidence among human, wildlife and cattle. However, our optimal control
simulations of the periodic model also exhibited annual oscillations which reflect the effect of
seasonality on brucellosis dynamics in periodic environments. In conclusion, our study demonstrate
that, in all scenarios, the optimal control can greatly reduce the burden of brucellosis in the
community and most importantly if wildlife and cattle and humans and cattle have extremely
minimal contacts then the disease can be effectively controlled in a shorter period of time.

A potential limitation of the present paper is that we have employed the mass action incidence for
the direct transmission route for both the autonomous and time-periodic model. Such mass action
forms, with the advantage of making model calculations more tractable, have been extensively
used in previously published brucellosis modeling work (see, e.g., [12, 11, 16, 18]). On the other
hand our model did not include indirect transmission, for realistic applications, the indirect (i.e.,
environment-to host) transmission it would have been better if it is included in our model and
represented by saturated type functional responses, and such type of incidence forms have been
used in modeling some other environmentally transmitted diseases (such as cholera [52, 53]). It
would be interesting to employ saturated type incidence in our future work on brucellosis modeling,
for both the autonomous and time-periodic cases.
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Our study can be extended by assessing the impact of intervention strategies that minimize cattle
and wildlife interactions such as maintenance of game fencing. Also the study can be strengthened by
incorporating heterogeneous interaction between cattle, wildlife and humans. It is also undeniable
that fitting those key model parameters with realistic seasonal data will improve our model and its
applicability.
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