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Abstract

Emerging infectious diseases (EIDs) of plants continue to devastate ecosystems and liveli-

hoods worldwide. Effective management requires surveillance to detect epidemics at an

early stage. However, despite the increasing use of risk-based surveillance programs in

plant health, it remains unclear how best to target surveillance resources to achieve this. We

combine a spatially explicit model of pathogen entry and spread with a statistical model of

detection and use a stochastic optimisation routine to identify which arrangement of surveil-

lance sites maximises the probability of detecting an invading epidemic. Our approach

reveals that it is not always optimal to target the highest-risk sites and that the optimal strat-

egy differs depending on not only patterns of pathogen entry and spread but also the choice

of detection method. That is, we find that spatial correlation in risk can make it suboptimal to

focus solely on the highest-risk sites, meaning that it is best to avoid ‘putting all your eggs in

one basket’. However, this depends on an interplay with other factors, such as the sensitivity

of available detection methods. Using the economically important arboreal disease huan-

glongbing (HLB), we demonstrate how our approach leads to a significant performance gain

and cost saving in comparison with conventional methods to targeted surveillance.

Introduction

The collapse of the American chestnut population in the eastern United States in the early

20th century [1], the English elm in 1960s and 1970s UK [2], tan oak and coast live oak in the

western United States over the last 30 years [3], and the citrus industry in Florida since 2005

[4] have all resulted from the emergence of pathogens that were not previously present. Emerg-

ing infectious diseases (EIDs) such as these are an increasing threat to wild and cultivated

plants worldwide [5–7]. In some cases, EIDs may be established pathogens that have moved

into new areas, as exemplified by the ongoing spread of the bacterium causing the citrus dis-

ease huanglongbing (HLB) in the US [8] and a competent vector of this pathogen in Europe
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[9]. In other cases, completely new pathogen strains may emerge, as seen with the emergence

of the CoDiRO strain of Xylella fastidiosa (X. fastidiosa subsp. pauca, sequence type [ST]53:

the cause of olive quick decline syndrome) in Italy [10] and new strains of Puccinia graminis
(the cause of wheat stem rust) worldwide [11]. Although changes in farming practices, land

use, and climate are important drivers of these processes [6], most attention to date has

focused on the global movement of people, plants, and plant products through travel and trade

[12,13]. However, efforts to target these pathways directly through movement restrictions,

quarantine, and border inspection [14] often fail [15], allowing pathogens to enter and poten-

tially establish and spread to levels at which control efforts are infeasible [16]. As a result, it is

increasingly recognised that surveillance activities must already be in place in the region of

interest before pathogen entry [17] and must be capable of detection before the prevalence

(that is, the proportion of the host population that is infected) exceeds the point at which con-

trol is almost certain to be no longer possible. This ‘maximum acceptable prevalence’ will be

impacted by factors such as the epidemiology of the pest, its likely impact, and the availability

and feasibility of control measures.

Developing an effective early detection surveillance strategy is complicated by the need to

survey large, heterogeneous, areas of landscape over an indefinite timespan in the face of lim-

ited financial and logistical resources. Whilst it is well accepted that attention must be focused

on sampling enough hosts regularly enough for the likely prevalence at first detection to be

acceptably low [18], consideration must also be given to which hosts should be inspected and

where to sample. One way of achieving this is through ‘risk-based’ or ‘targeted’ surveillance

[19,20], in which the types of hosts or locations judged most likely to contain the pest or patho-

gen are preferentially selected for inspection or sampling [21]. Although the merits of targeted

surveillance are well recognised, most work to date has focused on identifying static ‘high-risk’

groups and locations using statistical models [22,23]. Although these methods of planning tar-

geted surveillance are a valuable and versatile method of quantifying the infection risk amongst

different groups, they do not explicitly account for the epidemiological processes that deter-

mine where and, importantly, when a pathogen will be present. As a result, there is a risk that

the surveillance strategy may not be optimally targeted, resulting in low performance and/or

excessive costs—both of which can ultimately lead to surveillance system failure.

The inability of conventional risk-based strategies to account explicitly for the epidemiology

of a pest or pathogen also has important implications for early detection surveillance planning.

To take a simple example, a common targeted surveillance strategy for EIDs is to focus on

areas where the pathogen is more likely to first enter [24]. However, conventional methods do

not tell us whether resources should all be placed around the single highest-risk site or spread

across other potential introduction sites as well. Such questions can be answered by consider-

ing the placement of surveillance resources as an optimisation problem [25]. By linking spatial

and/or temporal simulation models that replicate the spread of the pest or pathogen to compu-

tational optimisation routines to identify particular sampling patterns, precise surveillance

and/or control strategies that minimise the impact of the pest or pathogen can be identified

[26]. Although much work to date has focused on identifying how best to conduct surveys in

order to achieve certain disease management or mitigation objectives whilst considering spa-

tial spread of a pest or pathogen [27–32] and on the value of different network metrics for

identifying hosts to target for surveillance [33–37], there has been little work on the optimal

deployment of surveillance resources for early pest or pathogen detection that explicitly con-

siders the spread of the agent through a real-world landscape. No previous study has addressed

the pivotal question: where exactly should surveillance resources be located to maximise the

probability to detect an invading pathogen before it reaches a certain prevalence?
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We propose and test a novel, to our knowledge, approach to surveillance planning that

explicitly accounts for the spatial spread of a pathogen and that can be readily and easily

applied to any pest or pathogen of interest. Using a spatially explicit, stochastic, epidemiologi-

cal model, we represent the processes of pathogen introduction and onward spread across a

real-world host landscape, continuing these simulations until a predefined threshold preva-

lence is exceeded. We then couple these simulation outputs to a stochastic optimisation algo-

rithm designed to select those surveillance sites that maximise the probability of detection of

the pathogen, allowing for a range of logistical parameters, such as different sampling intensi-

ties and detection abilities. We use this optimisation method approach to answer the question

of where in a landscape surveillance should be targeted if we are to maximise the probability of

detecting new pathogen incursions before the threshold prevalence is reached. We interpret

our results by focussing on the following questions:

1. How much of an increase in detection probability can our method achieve compared to

conventional site-selection approaches?

2. How do the locations and frequency of pathogen introductions influence the optimal

arrangement of surveillance locations?

3. What is the impact of the number of survey sites, the frequency of surveys, and the diagnos-

tic sensitivity of the detection method on the optimal arrangement of surveillance

locations?

4. Can we identify general rules for the selection of surveillance sites that approximate those

of optimised surveillance schemes, which thus could be readily deployed in practice without

the need for optimisation?

To demonstrate our method in the context of a pressing example, we use HLB (also known

as citrus greening)—a high-profile, devastating disease of citrus trees—in the US state of Flor-

ida as a case study. HLB is caused by the bacterium Candidatus Liberibacter asiaticus (Las) and

spread by the Asian citrus psyllid, Diaphorina citri, which has been established in Florida as an

invasive species since at least 1998 [38]. HLB is currently endemic in the state, where it deci-

mated the citrus industry in less than a decade following first detection in 2005 [39]. We con-

sider here a scenario prior to this incursion, in which the psyllid is present but Las is absent

from the state, but in which there is an immediate and ongoing risk of introduction of Las

through human movements from other currently infected areas (such as Brazil and China).

We use different estimates of where and how often the pathogen is introduced to the state in

order to capture the inherent uncertainty in these processes and investigate how these influ-

ence the optimal surveillance strategy.

Materials and methods

Summary

We consider here how best to deploy surveillance resources in order to maximise the probabil-

ity of detection before a specified ‘maximum acceptable prevalence’ is reached. To do this, we

developed a grid-based, stochastic, spatially explicit, landscape-scale model and repeatedly

simulated pathogen spread through this landscape until this prevalence was reached. Although

the model is pathogen-generic, we parametrised it to replicate early stage spread of Las in Flor-

ida. We then used an optimisation routine (simulated annealing) in order to identify which

arrangement of a specified number of sites, with a fixed number of samples collected per site,

would give the highest mean probability of detection over all simulation model realisations,

given a particular frequency of sampling using a detection method with known performance
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characteristics (the probability of correctly identifying infected hosts—the diagnostic sensitiv-

ity—and growth in detectability over time).

Simulation model

The simulation model is described in more detail in S1 Text. The model runs on a gridded

landscape of 1 km × 1 km cells, each containing a density of citrus informed by maps of com-

mercial citrus densities (provided by the US Animal and Plant Health Inspection Service

[USDA-APHIS]) and estimates of residential citrus densities (calculated from population data

at the census tract level obtained from the US Census Bureau [40]). Individual cells transition

stochastically from a susceptible to an infected status in continuous time, driven by pathogen

spread from outside the landscape as well as secondary spread within the landscape. Secondary

(between-cell) spread occurs according to an exponential dispersal kernel, fitted to data as

described in S1 Text. Following first infection, each cell becomes more infectious (and detect-

able) as infection bulks up locally, again at a rate parametrised using available data. This

increase in infectiousness and detectability following detection is deterministic, allowing us to

estimate the proportion of both infected and symptomatic plants in each cell at any point in

time (given the timing of infection in each cell is known, which will vary for each simulation

run). By running this stochastic model a large number of times, we are able to capture the

inherent variability in spatiotemporal spread and explicitly account for this when considering

the optimal arrangement of surveillance sites.

Optimisation approach

We consider a setO of N 1-km square grid cells, from within each of which n hosts are assessed

(using a detection method with given performance characteristics) every Δt units of time. We

aim to identify which O (that is, arrangement of surveillance sites) gives the highest probability

of detection (p(O, n, Δt)) before the state-wide prevalence threshold is reached. In the current

study, we allowed each site to be selected only once. Because complete enumeration of all pos-

sible arrangements is not feasible for a problem of this scale, we used a stochastic optimisation

algorithm, simulated annealing, with an exponential cooling schedule [41] to approximate the

optimal arrangement of sites, using the output of the simulation model. More details of the

algorithm are provided in S1 Text.

Calculating the probability to detect at least one case of the epidemic

We assume the proportion of detectable hosts in any site increases logistically following first

infection, meaning—in site L at time t in model iteration i—the proportion of detectable hosts

is given by

φðL; i; tÞ ¼

1

1þ
1

B0

� 1

� �

e� sðt� tðL;iÞÞ
if t � tðL; iÞ

0 otherwise

8
>>><

>>>:

;

in which τ(L, i) is the iteration-specific time at which site L first becomes infected, B0 is the pro-

portion of detectable sites at the time of first infection, and s is the rate of increase in

detectability.

This allows us to quantify the probability of failing to detect infection in site L at time t as

φðL; i; t; nÞ ¼ ð1 � ZφðL; i; tÞÞn;
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in which each of the n samples has a fixed probability of correctly identifying a detectable host

(η).

The probability of not detecting across the entire sampling pattern is therefore given by

φðO; i; t; nÞ ¼
Y

L2O
φðL; i; t; nÞ:

The probability of not detecting in iteration i is therefore given by

φ O; i; n;Dtð Þ ¼
1

Dt

Z t0¼Dt

t0¼0

Y

j
φðO; i; t0 þ jDt; nÞ;

in which the averaging done by the outer integral accounts for uncertainty in the start of sam-

pling (t0) relative to the time of first introduction of the pathogen anywhere in the landscape

(t = 0), and the inner product runs over all values of j until the simulation-specific prevalence

threshold has been exceeded.

In simulation i, the probability of detecting infection given a particular spatial arrangement

(O), timing (Δt), and local intensity of sampling (n) is the complement of this probability,

pðO; i; n;DtÞ ¼ 1 � φðO; i; n;DtÞ:

Our final estimate of the effectiveness of any sampling pattern can therefore be obtained by

averaging over the M simulation runs we consider,

p O; n;Dtð Þ ¼
1

M

XM

i¼1
pðO; i; n;DtÞ:

This was used as the objective function in the optimisation algorithm, which therefore iden-

tifies the components of O.

Code availability

All code for running the simulation model and the optimisation is provided at https://github.

com/nikcunniffe/SpatialSampling. Because of commercial sensitivities, we are unable to pro-

vide the high-resolution citrus density data used in this report, and so instead we provide citrus

density data at the county level, based upon the 2018–2019 Florida Citrus Statistics report.

Running time

The time required to run the simulation model and the optimisation will depend on the nature

of the landscape and the patterns of spatial spread. However, on a 3.00-GHz Intel Xeon proces-

sor (Santa Clara, CA, USA), running 1,000 realisations of spread through the state of Florida

(using the ‘baseline model’ parametrisation) takes 166 seconds. Running a single optimisation

(again using the baseline parametrisation) with 100,000 iterations on this output requires 411

seconds. This gives a total of 577 seconds.

Application to HLB

Parameter values for the simulation model (Table 1) were selected using a combination of sta-

tistical model fitting, iterative parameter adjustment, and published data and are described in

more detail in S1 Text. Because of the level of uncertainty in the rate and distribution of patho-

gen entry into the state (especially resulting from informal, unreported host movements), we

ran different scenarios for these parameters. We considered ‘low’, ‘moderate’, and ‘high’ rates

of pathogen entry, for each of which we modelled 2 different spatial patterns of entry:
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Table 1. Description of parameters used in the model.

Interpretation Value Rationale

Simulation model

Proportion of citrus in cell. [Spatial grid] Estimated as the sum of the commercial and residential citrus density.

Citrus density threshold for spread simulation. 0.0025 km2 Approximately 1/16th of a typical Floridian citrus grove. Also, this density is

around the suspected minimum for citrus canker spread in residential trees in

Miami [58].

Maximal overall rate of pathogen entry into the state. 0.05/year (around one

entry every 200 years)

Details on the modelling of pathogen entry are given in S1 Text. These rates

were selected in order to represent a variety of different situations. The inverse

of each rate relates to the mean number of entries per year if all cells were full of

susceptible hosts. Estimates of the modelled rate based on the mean citrus

density of 0.1 are shown in parentheses. A variety of other rates were considered

when evaluating the impact of model misspecification.

0.50/year (around one

entry every 20 years)

5.00/year (around one

entry every 2 years)

Initial infectivity following cell infection. 0.006 Fitted to data on the spread of disease in Devil’s Garden, assuming a logistic

increase in infectivity. See S1 Text.

Relative rate of pathogen entry. [Spatial grid] Two different distributions of pathogen entry were considered, as described in

the text.

Rate of increase in infectivity per cell. 1.25 infections/infected/

year

Fitted to data from Devil’s Garden, assuming a logistic increase in infectivity

and a 6- to 12-month asymptomatic period. See S1 Text.

Secondary spread parameter (can be interpreted as the

maximal number of cells infected by a single infected

cell).

1,000/year Selected by fixing all other parameters and adjusting until the model simulated

state-wide spread in 10 years (see S1 Text).

Mean pathogen dispersal distance (assuming

exponential kernel).

20 km (in 2 dimensions) Estimate taken from recent study of pathogen spread [20].

Maximum prevalence for simulation model. 1% Selected as representative of a relatively low prevalence that is also able to

capture the impact of spatial autocorrelation following introduction.

Number of epidemic realisations to run. 1,000

Detection model

Initial probability of detection. 0.006 Fitted to data from Devil’s Garden, assuming a logistic increase in detectability.

See S1 Text.

Rate of increase in probability of detection. 1.00 detectable/detectable

/year

Fitted to data from Devil’s Garden, assuming a logistic increase in detectability.

See S1 Text.

Number of sites visited each sampling round. Varied between 1 and 150 Optimisation was only performed for between 1 and 50 sites. Site selection using

risk metrics was performed for between 1 and 150 sites.

Number of samples collected per site each sampling

round.

50 Considered a reasonable intensity of surveillance within a 1-km2 area.

Probability of detection if infected host sampled. 0.5 Assuming visual inspection. Estimate obtained from a comparison of PCR and

visual inspection for detection of infection in Floridian citrus groves [59].

Interval between sampling rounds. 1/365 years Daily

7/365 years Weekly

1/12 years Monthly

0.25 years Quarterly

0.5 years Biannually

0.75 years Every 9 months

1 year Annually

Optimisation

Initial temperature. 10 Identified by adjusting parameter estimates and inspecting the progression of

the objective function (S7 Fig).Rate of cooling. 0.999

Number of iterations of simulated annealing algorithm. 100,000

https://doi.org/10.1371/journal.pbio.3000863.t001

PLOS BIOLOGY Optimising risk-based early detection surveillance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000863 October 12, 2020 6 / 25

https://doi.org/10.1371/journal.pbio.3000863.t001
https://doi.org/10.1371/journal.pbio.3000863


1. A fixed (‘flat’) rate, meaning that citrus density alone determined the relative rate of patho-

gen entry.

2. Variation in rate according to a probabilistic model of likely entry sites (the ‘travel census

model’). This model describes the relative risk of introduction of Las into each census tract

of Florida by accounting for the movement of people into the state from other parts of the

world where HLB is endemic [23]. The model predictions were based on data from 2010.

When parametrising the detection process, we considered a ‘baseline’ scenario in which

detection was through visual inspection (as is standard for most plant pathogens [42]) of 50

trees in 20 sites annually (that is, 1,000 trees in total per year), as shown in Table 1. The optimi-

sation algorithm itself was parametrised by applying this baseline detection model to a simula-

tion model parametrised using the values in Table 1 with a low pathogen entry rate,

distributed according to the travel census model. We then varied the initial temperature and

the cooling parameters of the algorithm and ran the optimisation for 100,000 iterations and

inspected the trace of the detection probability. We found little impact of varying these param-

eters on the objective function of the optimised solution, although the trace plots differed (see

S7 Fig). The optimisation algorithm parameters used are shown in Table 1.

How is the optimal surveillance strategy influenced by risk, detection

methods, and epidemiology?

In order to identify the impact of epidemiological and surveillance system characteristics on

site selection, we used the following 2 methods to characterise the optimal sites:

• Estimating the mean detection probability. This was performed as described above, using a

data set of 1,000 model simulation outputs distinct from those to which the optimisation was

applied.

• Visualising and quantifying the spatial arrangement of selected sites by identifying ‘clusters’

of selected sites. We used a single-linkage agglomerative clustering method to group sites

within 20 km of each other (this distance was selected as representative of the mean annual

dispersal distance of HLB in Florida [20]). The distribution of these clusters assists in the

visualisation of the general arrangement of selected sites, and the total number of clusters

provides a useful summary statistic (with lower values indicating more clustering).

We evaluated how well more conventional targeted surveillance approaches perform in

comparison to the optimal sites by creating ‘risk metrics’ accounting for a range of different

levels of knowledge about the entry, establishment, and spread of Las (described in the

Results). These metrics were allocated to individual sites and the specified number of sites

selected (without replacement) with probability proportional to the metric. We repeated this

process 100 times for each metric and recorded the detection probability for each run using

the data set of 1,000 runs used to estimate the detection probability for the optimal sites.

Results

Although our spread model identifies a number of areas of high risk of pathogen presence

(predominantly centred around areas of high citrus density; Fig 1), when we apply the optimi-

sation routine, we find that the common practice of focussing surveillance in a small number

of highest-risk areas generally does not maximise the mean probability of detecting the patho-

gen (Fig 2). However, we show that the effectiveness of the detection method used to find dis-

ease determines how that method should be deployed across the landscape, with poorer
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Fig 1. Simulation model upon which the optimisation is based. Plot A shows the distribution of citrus trees (which

also represents the relative rate of introduction under the assumption of a ‘flat’ distribution of pathogen entry). Plot B

shows the distribution of the relative risk of introduction according to the ‘travel census’ model (which is combined

with the citrus density to estimate the relative distribution of introductions under the ‘variable’ model [that is, the

‘baseline’ model]). Plots C and D show the mean end prevalence if introductions are based only on citrus density (‘flat’

pathogen entry, C) or both citrus density and travel census risk (‘variable’ pathogen entry, D). Plots E and F show the

5th–95th percentiles of the disease progression curves under each of these assumptions, with greater intensity of

colouration for percentiles approaching the median (shown as a solid line). The data used to create these plots can be

found at https://doi.org/10.17866/rd.salford.12759929.v1 (files ‘spatialData_baselines.csv’, ‘dpcData.csv’, and

‘dpcSummary.csv’).

https://doi.org/10.1371/journal.pbio.3000863.g001
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performing methods often requiring a greater focus in a relatively small number of risk ‘clus-

ters’ (Fig 3).

We compared our method with more conventional targeted surveillance strategies by

selecting surveillance sites based on 1 of 4 cell-specific ‘risk metrics’ that could be expected to

Fig 2. Arrangement of sampling sites under different selection schemes. These plots show the distribution of selected sites for 1 case of optimised

selection and 2 alternative risk-based approaches based upon the mean end prevalence obtained from the simulation model. Plot A shows the sites

selected to maximise the probability of detection when using simulated annealing. The progression of the detection probability over the first 15,000

iterations of the simulated annealing algorithm is shown in plot B, with the solid black line indicating the final detection probability after 100,000

iterations. Plot C shows the 20 sites with the highest mean end prevalence over all realisations, and plot D shows 1 arrangement of 20 sites selected with

a probability proportional to the mean end prevalence. Clusters (defined as sites within 20 km of each other) are shown in distinct colours in plots A, C,

and D. Estimates of the number of clusters and the probability of detection under the different sampling patterns are also shown. The data used to

create these plots can be found at https://doi.org/10.17866/rd.salford.12759929.v1 (files ‘spatialData_baselines.csv’ and ‘ofProgressionExample.csv’).

https://doi.org/10.1371/journal.pbio.3000863.g002
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describe the infection risk for any given site, each representing a different level of knowledge

of the likely presence of the pathogen:

1. Random sampling throughout the simulated landscape (indicating no knowledge of risk

factors for infection).

2. Relative rate of pathogen incursion, excluding citrus density (indicating known areas of

likely pathogen entry).

3. Citrus density (indicating known areas of likely pathogen establishment and spread).

4. Product of citrus density and relative rate of incursion (indicating known areas of likely

pathogen entry, establishment, and spread).

We found that for any combination of epidemiological and surveillance parameters, the

conventional method of selecting sites based on site-specific ‘risk metrics’ gives a consistently

lower probability of pathogen detection than the optimised approach in almost all cases (even

over 100 realisations of these alternative sampling methods; see Figs 4, 5 and 6, S3, S4, S5 and

S6 Figs). Our method is also robust to misspecification of model parameters and consistently

outperforms alternative methods in these situations (Fig 6). These results clearly demonstrate

the importance of carefully considering pathogen epidemiology and entry processes, but also

the detection efficiency of inspection and detection technologies, in a holistic manner when

planning early detection surveillance.

Epidemiological simulations

Our model simulates the early stages of an epidemic up to a predefined ‘threshold prevalence’

of 1%. This particular threshold was arbitrarily selected to indicate a point at which control

would no longer be possible in the case of the HLB pathosystem but could alternatively be

selected based upon regulatory guidance and/or economic considerations, as described in the

Discussion. Since the model is stochastic, we simulate not only the spatial spread within a

Fig 3. Impact of test sensitivity on optimal sampling pattern. These plots show an example of the optimal distribution of sampling sites and clusters

(points within 20 km of each other; shown in distinct colours) when the probability of correctly identifying any sampled infected tree (the diagnostic

sensitivity) is low (0.01; plot A), medium (0.50; plot B), and high (1.00; plot C). The data used to create these plots can be found at https://doi.org/10.

17866/rd.salford.12759929.v1 (file ‘spatialData_baselines.csv’).

https://doi.org/10.1371/journal.pbio.3000863.g003
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landscape over time but how this varies from one epidemic to the next. Taking the average

over all of these epidemics, we find that the distribution of entry sites (whether only influenced

by the distribution of citrus trees or also by the predictions of the travel census model) affected

which sites were more or less likely to be infected by the end of the simulation (Fig 1 and S1

Fig).

Comparison with conventional targeted surveillance

As a result of spatial autocorrelation (that is, the fact that the risk status of any given site is

likely to be similar to that of surrounding sites), we found that simply selecting the sites with

the highest risk of infection tended to result in a small number of clusters of sites (Fig 2). To

avoid this, we therefore used instead a selection method in which the probability of site selec-

tion was proportional to the risk metric, as has been used previously for targeted surveillance

[20]. This resulted in a greater spread of selected sites (that is, a larger number of distinct

Fig 4. Impact of varying test sensitivity on detection probability and sampling site clustering. These plots show the effect of different site-selection

strategies on the detection probability or number of clusters. We consider 5 selection strategies: an optimised arrangement and weighted sampling

according to 4 different ‘risk metrics’—the product of travel census probabilities and citrus density (‘Entry and spread’), citrus density, probability of

entry according to the travel census model (‘Pathogen entry’), and random (that is, unweighted) selection. All selection strategies were repeated 100

times. Plots A and B show the detection probability for these different selection strategies, and plots C and D show the number of clusters (with a cluster

being all points within 20 km of each other), all with fitted locally weighted regression curves. Plots A and C show the mean probability of detection or

number of clusters, with the vertical dashed line representing the ‘baseline’ scenario of a diagnostic sensitivity of 0.5. Plots B and D show the variation in

individual-level selection runs under this baseline scenario. The data used to create these plots can be found at https://doi.org/10.17866/rd.salford.

12759929.v1 (file ‘optimisationOutputs_testSens.csv’).

https://doi.org/10.1371/journal.pbio.3000863.g004
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‘clusters’ of sites) and a higher detection probability than the ranking approach (Figs 2 and 3).

The detection probability of optimised sites was consistently higher than that for sites selected

using more conventional methods (with the only exception being when the true rate of patho-

gen entry was underestimated by a factor of 3,200 or more [Fig 6A]). However, of the conven-

tional strategies, the risk metric calculated as the product of citrus density and relative rate of

incursion gave the closest detection probabilities to the optimised approach. This was most

pronounced in cases for which the rate of pathogen entry was very high (Fig 6). As expected,

random sampling gave the lowest mean detection probability, demonstrating the value of tar-

geted surveillance strategies for early detection surveillance.

Surveillance costs

As expected, for any given set of epidemiological and detection parameters, the detection

probability could be increased by increasing the number of sites sampled (Fig 5A). Therefore,

in order to achieve any given detection probability between 0.50 and 0.95 using a conventional

site-selection strategy, between 2 and 13 times as many sites needed to be sampled as was

required under the optimised strategy (S6 Fig). We can also consider this in terms of the total

cost of these inspections, as shown in Fig 5B. Here, the mean detection probability was esti-

mated for different numbers of surveillance sites (between 1 and 50 sites for a single run of

optimised sites and between 1 and 150 sites for 100 replicates of the other risk metrics). Using

rough estimates of sampling costs taken from citrus survey activities undertaken by the United

States Department of Agriculture Agricultural Research Service (USDA-ARS) and USDA-

APHIS in Florida, a single surveyor would cost around US$120 per day and a single PCR test

around US$10 (T. Gottwald, personal communication). Assuming that a single 1-km cell can

Fig 5. Impact of varying sample size on detection probability. These plots show the effect of varying the number of sites—and therefore also the

expected cost of surveillance—on the detection probability before the threshold prevalence is reached. Again, we consider a range of selection strategies:

an optimised arrangement (based in this case on a single optimisation run for each number of sites) and 100 runs of a weighted sampling strategy based

on 4 different ‘risk metrics’. These risk metrics are the product of travel census probabilities and citrus density (‘Entry and spread’), citrus density,

probability of entry according to the travel census model (‘Pathogen entry’), and random (that is, unweighted) selection. Estimates of the probability of

detection were made for all numbers of sites between 1 and 50 for all selection methods and additionally for all numbers of sites between 51 and 150 for

the risk metric strategies, and estimates of the detection probability were interpolated using locally weighted regression. Plot A shows the mean

probability of detection for a range of different numbers of sampling locations and demonstrates the variation in probability of detection for any given

sample size, with the vertical dashed line representing the ‘baseline’ scenario of 20 sites. Plot B shows the mean expected annual surveillance costs

required to achieve any given probability of detection between 0.50 and 0.95 for the different selection strategies. We assume that the total surveillance

cost is the product of the number of sampling sites and the per-site cost of surveillance, as described in the text. The data used to create these plots can

be found at https://doi.org/10.17866/rd.salford.12759929.v1 (files ‘optimisationOutputs_numSites.csv’ and ‘costEstimates.csv’).

https://doi.org/10.1371/journal.pbio.3000863.g005
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be fully surveyed in a single day by a single inspector and that each of the 50 trees inspected

within this cell will be tested with a single PCR test, the total surveillance cost per cell is US

$620. This would mean that our ‘baseline’ surveillance strategy of 20 cells per year would have

an annual cost around US$12,400. Fig 5B shows that for any given detection probability

between 0.50 and 0.95, the annual surveillance cost using the optimised strategy ranged from

US$1,500 to $8,859 (mean: US$3,594). However, the costs of the best-performing conventional

strategy ranged from US$3,297 to $19,282, with a mean of US$7,534, and those of random

sampling ranged from US$19,606 to $88,689 per year, with a mean of US$42,092 (Fig 5B).

Varying surveillance characteristics

Under the baseline model (a low rate of pathogen entry, with spatial variation in entry rate,

and 20 sites surveyed annually using a detection method with a diagnostic sensitivity of 0.5),

the optimised mean detection probability approached 1, with very little variation in the

Fig 6. Impact of incorrect assumptions on performance of different site-selection methods. These plots show the mean detection probability under

different site-selection methods for different rates and patterns of pathogen entry. Plot A shows the detection probability when pathogen entry follows

the travel census model, and plot B shows the same when entry is only affected by the citrus density. In all cases, sites were selected under the baseline

model assumptions (that is, a maximal rate of pathogen entry equal to 0.05/year and a distribution of entry based upon the travel census model, as

shown in the vertical dashed line). Each selection method was repeated 100 times, with each individual detection probability shown as a coloured point.

The mean detection probability is shown as a black-bordered point, and a locally weighted regression curve is overlaid to better illustrate the trends. The

risk metrics used for conventional targeted selection represent the product of travel census probabilities and citrus density (‘Entry and spread’), citrus

density, the probability of entry according to the travel census model (‘Pathogen entry’), and random selection from the landscape. The data used to

create these plots can be found at https://doi.org/10.17866/rd.salford.12759929.v1 (file ‘modelMisspecification.csv’).

https://doi.org/10.1371/journal.pbio.3000863.g006
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optimised detection probability between different optimisation runs (Figs 4 and 6, S3 and S5

Figs). There was, therefore, little effect of reducing the sampling interval on the performance

of the optimised method (S4 Fig). However, reducing the number of sites visited (Fig 5 and S6

Fig) or the probability of correctly identifying infected hosts (that is, the diagnostic sensitivity

of the detection method; Fig 4 and S5 Fig) decreased the mean probability of detection under

the optimised strategy. We also found that when the diagnostic sensitivity was high, surveys

should be spread throughout the citrus landscape. However, as this was reduced, surveys

become increasingly concentrated in a small number of ‘hot spots’ (Fig 3), where higher rates

of pathogen entry intersected with higher citrus density (Fig 1). This was apparent when the

numbers of clusters of sites were considered (Fig 4 and S5 Fig).

Varying the rate and distribution of pathogen entry

Increasing the rate of pathogen entry into the state decreased the number of clusters of surveil-

lance sites (S2 and S3 Figs). This effect was more pronounced when ‘high-risk’ entry sites were

present, reflecting the end prevalence estimates in these sites from the model simulations (S1

Fig). We identified 3 consistent clusters of surveillance locations in citrus growing regions to

the northeast, northwest, and southwest of Lake Okeechobee, as well as clusters to the east of

the lake and in the centre of the peninsula. The detection probability increased slightly as the

rate of pathogen entry increased and was higher when the distribution of introduction points

was variable than when it was flat (S2 and S3 Figs), likely reflecting the higher site-specific

prevalences (and therefore higher achievable detection probabilities) in these situations. We

found that misspecifying the rate of pathogen entry (that is, assuming that the baseline model

was correct when the true entry rate was higher or lower than this) had a relatively small

impact on the performance of the optimised method, which consistently outperformed all

other selection strategies in the vast majority of cases (Fig 6). In all cases, higher rates of intro-

duction were associated with equal or higher detection probabilities (even for optimised selec-

tion when site selection was based upon an incorrect model) (Fig 6).

Discussion

Model-informed surveillance

In the current report, we describe a novel, to our knowledge, method of identifying how best

to deploy surveillance efforts in order to detect epidemics of exotic pathogens at an early stage.

We also explore how certain epidemiological and surveillance characteristics impact on the

optimal surveillance strategies. Our method links the output of an epidemiologically informed,

spatially explicit simulation model capable of reproducing early-stage pathogen spread with an

optimisation routine informed by specified surveillance parameters [43]. Our key finding is

that it is generally best to avoid ‘putting all your eggs in one basket’ when planning surveillance

and that surveillance resources should generally be spread throughout the landscape to cover

all areas of risk (Figs 2 and 3). This is an important message because many surveillance pro-

grams in plant health are typically disproportionately targeted to a small number of high-risk

areas, such as areas immediately adjacent to current outbreaks or surrounding ports of entry.

Suboptimal deployment of surveillance resources such as this can be ill-afforded at a time

when the number of plant pests and pathogen threats is rising.

Our method also goes beyond the simple maxim of not putting all eggs in one basket by

suggesting precisely which number of baskets should be used and where they should be. We

find that the answer to these questions is particularly affected by the performance of the detec-

tion method being used (Fig 3), whereas the rate and distribution of pathogen entry is less

important (S2 Fig). Although the exact selected sites varied slightly when the optimisation
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algorithm was run repeatedly on the same model output, the general locations and arrange-

ment were very similar and resulted in minimal perceivable change in the final detection prob-

ability (Figs 4 and 6, S3 and S5 Figs), indicating that the performance of the optimised strategy

was robust. We also found that that there was relatively little impact of making the wrong

assumption regarding the rate and distribution of pathogen entry on the detection probability

of the optimised strategy (Fig 6). Our method considers a surveillance strategy in which a static

selection of sites are repeatedly visited, thus bearing similarities to ‘sentinel surveillance’ [44].

This allows us to better explore the general drivers behind surveillance site placement and how

these are impacted by different epidemiological and practical issues. We do not consider an

‘adaptive’ surveillance strategy, in which surveillance sites are adjusted in light of previous

findings. However, using optimisation methods to explore this would potentially have consid-

erable practical value and would be worthy of further attention.

Optimisation outperforms conventional targeted surveillance strategies

because it considers the system as a whole

For all scenarios assessed (including those based on an incorrectly parametrised model), the

optimised surveillance strategy outperformed all strategies based on risk metrics (Figs 2, 4, 5

and 6, S3, S4, S5 and S6 Figs). This results from the optimisation being able to explicitly cap-

ture relevant aspects of the transmission and detection process and evaluate the surveillance

plan whilst considering the system as a whole, thereby identifying and accounting for ‘clusters

of risk’. This is shown schematically in Fig 7, in which the risk status of the 2 upper locations is

correlated (that is, when one site is infected, the other is also likely to be infected). In the pres-

ence of an effective detection method, visiting either of these locations would give valuable

information on the other, thereby effectively freeing up surveillance resources to be placed in

the third site, even though the probability of infection in this site is lower. This complex inter-

play between the spread of the pathogen and the performance of the detection method requires

the consideration of patterns of spread on a run-by-run basis, which lends itself naturally to

simulation modelling, which can replicate large numbers of simulation realisations. These pat-

terns cannot be explicitly captured using conventional targeted surveillance strategies based

on risk metrics, which are commonly more focused on ‘average’ patterns of spread, nor by

other heuristic methods of site selection [45]. The use of an optimisation algorithm provides a

valuable method of collating and interpreting these individual simulation model outputs.

Although it was generally not possible to replicate the performance of the optimal strategy

using the conventional targeted surveillance strategy of selecting sites according to site-specific

risk metrics, we found that the product of the relative probability of introduction and the citrus

density (which effectively describes the expected relative rate of pathogen entry in the model)

gave the highest detection probability of the risk metrics we considered (Figs 4, 5 and 6, S3, S4,

S5 and S6 Figs). This metric gave a clear improvement in comparison to random sampling or

selection based upon relative rate of pathogen entry alone, likely reflecting the ability of this

metric to capture both the probability of pathogen entry and its onwards spread (which would

be expected to be associated with citrus density). This reinforces the importance of considering

pathogen epidemiology when selecting surveillance sites and shares characteristics with our

previous targeted surveillance strategy of quantifying risk as the product of the introduction

probability and the magnitude of onward spread if introduction occurs [20]. We found that

the performance of this risk metric was particularly high when the true rate of pathogen entry

was very high and either matched or outperformed the (incorrectly specified) optimised strat-

egy in these cases (Fig 6).
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Fig 7. Maximising the probability to detect a pathogen is achieved not by selecting the highest-risk patches, but by spreading surveillance across all

clusters of risk. For ease of communication, we consider patch status as a dichotomous variable (which can be infected, shown in red, or uninfected, shown

in green), rather than considering dynamic trends over time. We wish to sample the 2 patches that maximise the probability of detecting infection over all

realisations (selected patches are shown with a blue dashed outline). The 2 ‘strategy’ diagrams on the top each show 3 possible realisations of patch infection

status, with the status of the upper 2 host patches correlated due to their proximity. We consider 2 selection strategies: one in which patches are selected

based on their mean risk (Strategy 1) and one in which only one high-risk patch is selected and the remaining resources placed in the low risk patch (Strategy

2). If our detection method is perfect, we demonstrate that Strategy 2 outperforms Strategy 1 (being able to detect infection in each of the 3 realisations). The

plot on the bottom shows how this is affected by the ability to detect infection in the patch (that is, the diagnostic sensitivity), with the detection probability

under Strategy 1 shown in orange and that under Strategy 2 shown in red, for all sensitivity estimates between 0 and 1. In this particular example, the mean
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The performance of the detection method should be considered when

planning where to conduct surveillance

An important component of our optimisation algorithm is the ability to explicitly account for

parameters which influence the detection ability, but do not affect the epidemiological dynam-

ics of the pest or pathogen itself. Our analysis shows that the performance of the detection

method (that is, the diagnostic sensitivity) has a considerable impact on the optimal arrange-

ment of surveillance resources, as well as on the overall detection probability. This finding is

due to spatial autocorrelation in the status of individual sites, meaning that the status of each

individual surveillance site is not independent of that of nearby sites. As demonstrated in Fig

7, each site inspected provides some information on the status of nearby sites, but the amount

of this information decreases as the diagnostic sensitivity of the detection method and/or the

number of samples taken per site decreases (and the probability of detecting individual

infected hosts decreases). This means that the optimal surveillance strategy for any given path-

ogen will differ when a highly sensitive detection method is used compared to when the sensi-

tivity is low, with focused sampling in a smaller number of clusters of sites advisable in the

latter case (Fig 3). In cases for which the test sensitivity and the number of hosts inspected

taken per site are low, the value of optimising the surveillance strategy is reduced, and conven-

tional targeted surveillance strategies may be more acceptable (Fig 4). Further work will inves-

tigate the impact of detection lag periods [15,46] on the optimal deployment of surveillance

resources.

Uncertainty in the rate and pattern of introduction has a relatively small

impact on where best to conduct surveillance

Although the ability to explicitly account for the processes of pathogen entry (‘primary infec-

tion’) and onwards spread (‘secondary infection’) is a particular strength of our method, in

some cases there may be considerable uncertainty and/or variability in these processes, making

them difficult to parametrise. We therefore investigated how the rate and distribution of path-

ogen entry impact on the optimal surveillance strategy. Whilst the impact of changing these

parameters was relatively low, the optimal surveillance sites tended to be clustered in the sites

of highest citrus density for high rates of pathogen entry, with surveillance in lower citrus den-

sity areas only being promoted as the rate was decreased (S2 Fig). Despite these differences,

the impact of misspecifying the rate and distribution of pathogen entry had a relatively small

impact on the overall detection probability, which remained high in all scenarios considered

(Fig 6). Interestingly, we also found that the detection probability for all site-selection methods

increased as the rate of pathogen entry increased (Fig 6), likely reflecting a greater spread of

infected sites due to relatively less spread within the state. Investigation of the impact of

changes in secondary spread patterns, as well as spread within and between different groups of

hosts, will be considered in future work.

Conclusions for HLB surveillance

Under the baseline assumptions regarding spread and detection, our method suggests that the

highest probability of early detection of HLB prior to 2005 would have been achieved by

probability to detect under Strategy 1 is calculated as 2 � (1 − (1 − sensitivity)2)/3, whereas for Strategy 2 it is equal to the sensitivity. When the sensitivity is

low, selection of a single high-risk patch is insufficient to reliably detect infection, and since infection is more common in the uppermost sites, the optimal

strategy is therefore to place all the resources amongst these sites (that is, Strategy 1). However, this strategy will never detect the infection in Realisation 3.

This limitation becomes more apparent as the diagnostic sensitivity is increased, and beyond a sensitivity of 0.5, Strategy 2 outperforms Strategy 1, with the

difference in performance increasing as the sensitivity is increased.

https://doi.org/10.1371/journal.pbio.3000863.g007
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focussing surveillance efforts in 8 spatial clusters, mainly located in regions of high commercial

citrus density in the centre of the peninsula (Fig 3B). We estimate that this arrangement of sur-

veillance sites would have given a high chance (97%) of detecting incursions before a state-

wide prevalence of 1% was reached. This suggested arrangement differs from the actual sur-

veillance implemented prior to the first detection of HLB in Florida in 2005, which was

focused to the southeast of Lake Okeechobee, around Tampa in the west of the peninsula, and

around Orlando [39], none of which are suggested by our method. However, we note that the

site of the first detection [39] was close to the southernmost of our predicted sites (Fig 2), and

subsequent positive detections to the northeast and southwest of Lake Okeechobee [47] were

also identified as surveillance targets using our method (Fig 2). Our approach thus has poten-

tial implications for early detection programs in areas where HLB is a threat but has not yet

been detected, including citrus production areas in Europe.

Surveillance aims

We focus our attention in the current report on surveillance for early detection rather than

other surveillance aims such as prevalence estimation or spatial delimitation [48] (although

our method can be adapted to a variety of surveillance aims by adjusting the objective func-

tion). This allows us to concentrate on early stage pathogen spread, when spread dynamics are

more predictable and thus easier to model (although we appreciate that there may be uncer-

tainty in parameter estimates in these stages [49]). In doing so, we do not explicitly consider

the impact of the disease (or any associated control measures). By instead focussing on the

probability of detection before a prespecified prevalence threshold is reached, we are better

able to explore the impact of epidemiological and diagnostic parameters on the optimal

deployment of surveillance resources for early detection. This allows us to draw valuable

insights into surveillance strategies, unencumbered by the influence of other factors such as

control costs, and thus bears similarities with studies of how to improve sentinel surveillance

strategies in networks [33–37] (which, similarly, generally do not consider costs explicitly). On

a practical level, our current approach also fits in well with the concept of ‘maximum preva-

lence thresholds’ commonly specified when planning conventional regulatory surveillance for

regulated pathogens [50,51], making it valuable in a practical context.

Capturing costs

Our method considers how best to deploy surveillance in order to maximise the probability of

detection of new pathogen incursions. Whilst the detection probability is a valuable metric for

evaluating surveillance, it does not itself explicitly capture the costs of surveillance and the

costs of disease control at the time of first detection or the benefits of disease control associated

with earlier detection (that is, the additional economic impact of disease and the disease man-

agement costs avoided). Indeed, our decision to exclude these factors from explicit consider-

ation in our method sets it apart from much of the previous work on optimising and

improving surveillance strategies. These studies commonly consider the economics of surveil-

lance and control in unison [52], whether through the linking of optimisation routines with

simulation models [27–31,53–55] or through the use of simulation models to explore the

impact of different surveillance and control strategies in real-world landscapes [56,57]. The

aim of these studies has therefore predominantly focused on identifying the optimal balance of

surveillance and control intensity required to minimise the total economic impact of invasive

species, which can offer valuable practical insights into how surveillance and control strategies

interact. By considering surveillance in isolation of control, our approach offers a different per-

spective on this important issue and demonstrates how noneconomic factors can influence
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surveillance performance. We do not attempt to answer the question of whether surveillance is

an economically viable strategy (that is, that the economic costs associated with earlier detec-

tion are lower than the costs associated with later detection). Instead, this should be considered

when the ‘maximum acceptable prevalence’ is determined. This could be achieved by fixing

the surveillance intensity and estimating, for a range of different maximum acceptable preva-

lences, the expected costs of surveillance, disease impact, and disease management if detection

occurs at or before this prevalence and the costs of disease impact and management in the

absence of surveillance. Given that surveillance is economically feasible, the maximum accept-

able prevalence could then be selected as the point at which the expected costs of surveillance

are lowest.

By considering surveillance effort and the performance of the detection method used, our

method does lend itself well to the capturing of the costs of surveillance itself in isolation from

the costs of disease or control, which can be achieved by simply comparing the number of sam-

ples that need to be collected in order to achieve a given probability of detection. This is shown

in Fig 5 and S6 Fig, which clearly demonstrate that at least twice as many samples would be

required to achieve any given detection probability when conventional site-selection methods

are used in contrast to the optimised approach. If we ignore the costs of travelling between

sites (which are likely minimal in comparison to the costs of inspection and testing of hosts)

and assume a fixed cost of surveillance per site, the use of conventional site-selection strategies

would therefore be expected to at least double the costs of surveillance in comparison to the

optimised approach. Based on the cost estimates described above, in order to achieve a mean

detection probability of 0.95, the optimised strategy would cost US$8,859 per year, in contrast

to the US$19,282 per year required to achieve the same mean detection probability using the

best-performing conventional strategy. This therefore represents a potential saving of US

$10,423 per year. Assuming in our particular case that the first pathogen entry occurred

around 1 year after the start of surveillance and took an average of around 7 years to reach the

threshold prevalence, this represents a total cost saving of US$83,384 when using the optimised

approach. This is a considerable saving, considering the limited funds generally available for

plant health monitoring and surveillance. The bulk of this cost is associated with PCR testing,

and whilst savings could be made by only testing suspected cases, this would likely require the

use of more highly trained surveyors, which would constitute an additional cost in itself. Fur-

ther exploration of the optimal balance of these costs would be an interesting and valuable area

for further exploration.

Further work

Although the current study is intended to explore optimal surveillance deployment rather than

make concrete suggestions for implementation, further work will apply our method to current

ongoing threats, such as the spread of Las in California [8] and X. fastidiosa in Italy [10]. Fur-

ther work will also consider the impact of different surveillance aims (such as maximising the

number of detections rather than the probability of at least 1 detection) and incorporate dis-

ease and control costs and benefits more explicitly within the objective function (by estimating

the exact prevalence at first detection and the implications of this for control).

Supporting information

S1 Text. Details on the model formulation, optimisation algorithm, and model parametri-

sation.

(DOCX)
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S1 Fig. Distribution of mean end prevalence estimates under different patterns of patho-

gen entry, demonstrating the increase in variability when pathogen entry is more variable.

These plots demonstrate the impact of varying the characteristics of pathogen entry into the

state on the mean prevalence at the point the state-wide prevalence threshold of 1% is reached.

Plots A–C show the mean prevalence when the probability of pathogen entry into any given

site is affected by the density of citrus host and the travel census probabilities, and plots D–F

show the mean prevalence when only the citrus density influences the probability of pathogen

entry. Plots A and D show a ‘low’ mean rate of pathogen entry up to 0.05 entries per year, B

and E show a ‘medium’ mean rate of up to 0.5 entries per year, and C and F show a ‘high’ rate

of up to 5 entries per year. Higher rates of entry result in more variability in end prevalence

estimates throughout the state. The data used to create these plots can be found at https://doi.

org/10.17866/rd.salford.12759929.v1 (file ‘spatialData_primaryInf.csv’).

(TIF)

S2 Fig. Impact of rate and distribution of pathogen entry on optimal targeting of surveil-

lance. These plots show the spatial arrangement of optimal sites (taken from a single optimisa-

tion run) and clusters of these sites, along with the detection probability, when the rate of

pathogen entry is varied. Plots A–C show the distribution when the probability of pathogen

entry into any given site is affected by the density of citrus host and the travel census probabili-

ties. Plots D–F show the distribution when only the citrus density influences the probability of

pathogen entry. Plots A and D show a ‘low’ mean rate of pathogen entry up to 0.05 entries per

year, B and E show a ‘medium’ mean rate of up to 0.5 entries per year, and C and F show a

‘high’ rate of up to 5 entries per year. Estimates of the number of clusters and the probability of

detection under the different sampling patterns are also shown. The data used to create these

plots can be found at https://doi.org/10.17866/rd.salford.12759929.v1 (file ‘spatialData_pri-

maryInf.csv’).

(TIF)

S3 Fig. Impact of varying rate of pathogen entry on detection probability and numbers of

clusters. These plots show the impact of rate of pathogen entry on the detection probability

and number of clusters of sites within 20 km of each other for the different site-selection strate-

gies explored in the manuscript. Plots A and B show the impact of varying the rate of pathogen

entry on the overall mean probability of detection (A) and the total number of clusters (B)

when the probability of pathogen entry into any given site is affected by the density of citrus

host and the travel census probabilities. Plots C and D show the impact of varying the rate of

pathogen entry on the overall mean probability of detection (C) and the total number of clus-

ters (D) when only the citrus density influences the probability of pathogen entry. All estimates

are taken from 100 realisations for both the optimised sites and sites selected using different

risk metrics. These metrics are the product of travel census probabilities and citrus density

(‘Entry and spread’), citrus density, probability of entry according to the travel census model

(‘Pathogen entry’), and random selection from the landscape. The data used to create these

plots can be found at https://doi.org/10.17866/rd.salford.12759929.v1 (file ‘optimisationOut-

puts_primaryInf.csv’).

(TIF)

S4 Fig. Impact of varying the sampling interval on the detection probability. This plot

shows the detection probability when the interval between sampling rounds is varied for both

the optimised approach and a selection of different conventional targeted approaches using a

variety of different metrics. All nonoptimised estimates are the mean of 1,000 sampling realisa-

tions in which the probability of site selection was based upon the site-specific measure of
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interest. These measures are the product of travel census probabilities and citrus density

(‘Entry and spread’), citrus density, probability of entry according to the travel census model

(‘Pathogen entry’), or random selection from the landscape. The optimised estimates are the

mean of 10 optimisation runs. The dashed line indicates the ‘baseline’ scenario considered in

the manuscript. The data used to create these plots can be found at https://doi.org/10.17866/

rd.salford.12759929.v1 (file ‘samplingInterval.csv’).

(TIF)

S5 Fig. Impact of varying test sensitivity on detection probability and numbers of clusters.

These plots show the effect of varying the test sensitivity and different site-selection strategies

on the detection probability and number of clusters of selected sites. Each of 100 individual

site selection runs are shown per selection strategy, along with the locally weighted regression

curve. Plot A shows the impact on the probability of detection, and plot B shows the impact on

the total number of clusters (with a cluster being all points within 20 km of each other). As

well as the optimised strategy, sites were selected using 4 site-specific risk metrics: the product

of travel census probabilities and citrus density (‘Entry and spread’), citrus density, probability

of entry according to the travel census model (‘Pathogen entry’), and random selection from

the landscape. The data used to create these plots can be found at https://doi.org/10.17866/rd.

salford.12759929.v1 (file ‘optimisationOutputs_testSens.csv’).

(TIF)

S6 Fig. Impact of varying number of sites surveyed. This plot shows the effect of varying the

number of sites on the detection probability under a range of selection strategies. A total of

100 site selection runs were performed for each strategy and a locally weighted regression

curve was fit to each. As well as the optimised strategy, sites were selected using 4 site-specific

risk metrics: the product of travel census probabilities and citrus density (‘Entry and spread’),

citrus density, probability of entry according to the travel census model (‘Pathogen entry’),

and random (that is, unweighted) selection. Estimates of the probability of detection were

made for all numbers of sites between 1 and 50 for all selection methods and additionally for

all numbers of sites between 51 and 150 for the risk metric strategies. The horizontal dashed

line shows a detection probability of 0.95, and the vertical dashed lines shows the mean num-

ber of sites required to achieve this detection probability under the different sampling strate-

gies. The data used to create these plots can be found at https://doi.org/10.17866/rd.salford.

12759929.v1 (file ‘optimisationOutputs_numSites.csv’).

(TIF)

S7 Fig. Plots of the ‘trace’ of the simulated annealing algorithm for a range of different

parameter values. This plot shows the change the detection probability as the simulated

annealing algorithm progresses over the first 15,000 iterations, using the baseline simulation

and detection parameters. The final selected combination of initial temperature and cooling

parameters were 10 and 0.9990, respectively (plot in the second column of the third row). The

data used to create these plots can be found at https://doi.org/10.17866/rd.salford.12759929.v1

(file ‘ofPlots.csv’).

(TIF)
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