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ABSTRACT 
 

Biomass transformation of lignocellulose into compost offers ‘green’ technology for sustainable 
agricultural development. So far, biomass conversion into compost outweighs fossil resources and 
other conversational techniques due to the low production cost and environmental pollution 
reduction. Although composting has aesthetically been resorted to in the digestibility of 
lignocellulose biomass, its realization has keenly been directed towards adding chemical reagents. 
However, inclining massively to this treatment instigated research bias as microorganisms’ 
biomass digestibility remains mostly inadequate. Besides, proliferated growth and activities of 
microorganisms native to lignocellulose biomass are usually disrupted by chemical treatment. The 
microbial flora (fungi, bacteria, actinomycetes, archaea, and yeast) involved in composting 
synthesizes complex biocatalysts (enzymes) that are crucial for solubilizing the biopolymers of 
lignocellulose materials at a density of 1012 cells g-1. Filamentous fungi are by far excellent 
degraders of lignocellulose in nature. To adequately ensure sustainable lignocellulose digestibility, 
microbial engineers must subject research studies to surpassing conditions (feedstock formulation 
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and management processes) suitable for inducing ligninolytic, cellulolytic, and hemicellulolytic 
enzymes. Hence, the state-of-the-art-method of this review provides insights that relate to 
mechanisms of microbial reactions on the digestibility of lignocellulose biomass during composting. 
 

 
Keywords: Biopolymers; compost; fossil resources; Lignocellulose biomass; microorganisms. 
 

1. INTRODUCTION 
 
Lignocellulosic residues are organic base 
materials that are commonly generated through 
agricultural intensification and industrialization. A 
combined network involving cellulose, 
hemicellulose, lignin, proteins, pectin, and ashes 
constitutes the polymeric material’s structural 
components [1]. However, percentage 
quantification broadly hails cellulose (40-50%), 
hemicellulose (25-30%), and lignin (15-25%) as 
tridimensional constituents [2,3]. The tethering of 
lignin to cellulose and hemicellulose traditionally 
influences the integral network complexation of 
biopolymers [4]. This attribution, however, 
promotes the recalcitrance and rigidity of 
lignocellulose residues that impede 
depolymerization [5], hence their concurrent 
disposal in landfills, incineration, and gasification 
treatments which sparks environmental pollutions 
that are inimical to human health. 
 
Nonetheless, lignocellulose digestibility has often 
been realized with chemical reagents, which 
instigate research bias because of the one-way 
direction [6,7]. Microbial growth and population 
density are inhibited with chemical reagents, 
which affect biological activities in return [8]. 
Although lignocellulosic residues could have 
equally warranted direct soil incorporation as a 
requisite alternative to composting, such practice 
has keenly been found to promote seed 
dormancy, retard plant growth, and result in loss 
of soil organic matter [9].  
 
Digestion of lignocellulose biomass into compost 
through microbially-mediated activities is more 
advantageous over the use of chemical reagents 
together with other management practices as 
found in biorefinery, landfills, incineration, and 
gasification [10]. Comparatively, composting 
offers in practice ‘green’ technology for 
sustainable agriculture, low production cost, and 
ensures environmental safety together with 
saving enough land area for other economic 
purposes [11]. By far, the microbial consortia roll 
out their reaction mechanics on lignocellulose by 
producing a blend of ligninolytic, cellulolytic, and 
hemicellulolytic enzymes that together have high 
synergistic effects on the degradation process 

[3,12]. The enzymes synthesized by the 
microorganisms initially act on lignocellulose 
structures to unveil and hydrolyze the cellulose 
content, leading to the release of available 
sugars. The available sugars are then fermented 
via organic acids’ production by the 
microorganisms to produce the fiber-rich and 
humus-containing product [3]. Current genetic 
engineering has been effective in raising 
microbial cell factories suitable for lignocellulose 
digestibility [13]. While this is a promising trend 
for biomass decomposition and usage, a one-
stop-shop knowledge on structural composition 
of lignocellulosic materials and mechanisms of 
microbiological processes that could facilitate the 
degradation process remain relatively 
unavailable to aid decision-making. This review 
was thus designed to provide insights on (1) the 
structure and composition of lignocellulose 
constituents, (2) lignocellulose materials 
recommended for composting, (3) synergistic 
actions of microorganisms on lignocellulose 
biomass, and (4) microbial processes and 
responsiveness to factors affecting composting. 
 
2. STRUCTURE AND COMPOSITION OF 

LIGNOCELLULOSE CONSTITUENTS 
 

2.1 Cellulose  
 
Cellulose is by far the most considerable 
biopolymer fraction (40-50%) and the plant cell 
wall’s critical component [2]. Ideally, cellulose 
has a robust hierarchical structure composed of 
D-glucose units interlinked with β-1,4-glycosidic 
bonds to form a linear and stereo-regular 
molecular chain [14]. Cellulosic chains are 
differentiated by their lengths and lateral sizes 
[15]. Cellulosic materials are fashioned with long 
microfibrils (100-40,000 nm) whose average 
widths range between 5-10 nm and 30-50 nm for 
primary and secondary cell walls, respectively 
[16]. Cellulose microfibrils are jointly held by van 
der Waals forces existing between the hydrogen 
bonds and the glucan chains [15]. According to 
[17], cellulose is paraded as crystalline and non-
crystalline biomaterials. Crystalline cellulose 
exhibits dual allomorphs of varied recognition 
(cellulose I and cellulose II). The molecular 
chains of crystalline cellulose reckon on 
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hydrogen bonds situated at the flanks and in the 
same direction of the chains [14,17]. 
 

In contrast, non-crystalline cellulose is 
amorphously ordered and dominated by 
transparent gel suitable for accommodating 
pressing and stretching effects [17]. The 
crystalline cellulose molecules are 
complemented with orderly arrangements, 
whereas that of the non-crystalline cellulose 
exercises lose and disordered-arrangements 
[14]. Cellulosic chains are congealed with intra-
and inter-molecular-hydrogen bonds, which 
partially influence crystallinity and structural 
rigidity [2]. Stable cellulosic bonds are resistant 
to acidic and alkaline wash, heating, and 
stretching [18]. Naturally, cellulose forms a 
radical index of the carbon cycle and a preferred 
organic material for bacteria and fungi existence 
[18]. Enzymatic access to cellulose 
saccharification is hindered by the crystallinity of 
the materials [19]. Cellulose biosynthesis is 
accomplished by series of metabolic activities of 
cellulase enzymes combine with UDP-glucose 
monomers [20]. Enzymatic and protein groups 
ardently correspond to influence cellulose 
biosynthesis [15]. Cellulose synthase protein 
catalyzes the glucan chains during the 
polymerization process. Higher plants, bacteria, 
algae, and tunicates exercise cellulose 
biosynthesis [21].  
 

2.2 Hemicellulose 
 

Hemicellulose is a polysaccharide-supporting 
material of the plant cell wall whose relationship 
with cellulose and lignin is facilitated by hydrogen 
and covalent bonds (Fig. 1) [22]. Despite the 
hygroscopic and hydrophilic polymers of lignin, 
hemicellulose relates better with cellulose than 
lignin [23]. Herein, hemicellulose is ranked next 
to cellulose in composition, representing 25-35% 
of the dry weight-base of all woody materials 
[24]. The extraction of hemicellulose with water 
offers better results than alkaline reagents [25] 
and bridges well with esters to influence acetyl 
units and hydroxycinnamic acids [26]. According 
to [24], hemicellulose can be grouped into 
pentose (xylose, arabinose, and mannose), 
hexose (galactose, mannose, and glucose), 
uronic acid (glucuronic, methylgalacturonic, and 
galacturonic acids) and other sugars (rhamnose 
and fucose). However, xylans, xyloglucans, and 
galactomannans constitute the principal 
structures of hemicellulose [22].  
 

Xylans are mainly localized within the secondary 
cell wall of plants and bear b-1,4-linked D-xylose 

backbones as their structural composition. They 
account for about 20-30% of hardwood and 
herbaceous plants [27]. Among individual grassy 
and cereal plants, xylan composition can 
increase to about 50% [28]. Galactomannans are 
the largest hemicellulose component of the 
secondary cell walls in hardwood biomass and, 
conversely, the least in softwood biomass. 
Xyloglucans have appreciable dominance within 
the primary cell walls of dicotyledons and non-
gramineous monocotyledons. As sugars, 
xyloglucans are composed of b-1,4-linked D-
glucose coupled with 1,6-a-xylosyl residues in 
their backbone [27]. Xyloglucans also serve as 
tethering materials for cellulose microfibrils to 
improve plant cell wall rigidity. Hemicellulose 
differs in terms of branching patterns, 
carbohydrate composition, and degree of 
polymerization based on substrate source, 
characteristics, and the species involved [29]. 
Softwood contains mannose and 
galactoglucomannan as primary hemicellulose 
composition, while hardwood contains xylose 
and glucuronoxylan [24]. Complex enzyme 
interaction involving xylanase and mannanase 
promotes hemicellulose’s digestibility in its native 
environment [30].  

 
2.3 Lignin  
 
Lignin is, thus, the third (15-25%) lignocellulose 
and heterogeneous polymer derived from 
monoclonal precursors. According to [31], lignin 
is a natural polymer closely associated with 
cellulose (<50%) and hemicellulose (15-30%). 
The backbone of lignin is typically composed of 
three phenylpropanoids (guaiacyl, syringyl, and 
p-hydroxyphenyl) sub-structures [32]. The 
phenylpropanoid sub-structures are embodied 
with carboxyls, carbonyls, hydroxyls, and 
methoxyl, serving as functional groups for lignin 
modification and utilization [33]. Besides, lignin 
configuration, branching patterns, and reactivities 
are also defined by the phenylpropanoids [34]. 
Content quantification and formation by lignin 
differ among plant species and substrate origin 
[31]. Hardwood lignin is made up of both 
coniferyl and sinapyl alcohols, whereas coniferyl 
alcohol makes softwood lignin’s composition. 
Grassy lignin exercises guaiacyl, syringyl, and p-
hydroxyphenyl as composition [34]. Fungal 
(white-rot, red-rot, and soft-rot) and bacterial 
species (Sterptomyces, Rhodococcus, 
Pseudomonas, and Bacillus) influence the 
digestibility of lignin through the secretion of 
ligninolytic enzymes [35]. 
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Fig. 1. Composition of cellulose, hemicellulose, and lignin in lignocellulosic materials  
Modified from source: [22] 

 

3. SYNERGISTIC ACTIONS OF 
MICROORGANISMS ON DIGESTION 
OF LIGNOCELLULOSE BIOMASS 

 

Lignocellulose digestibility is crucial for realizing 
the rate of biomass transformation and nutrient 
availability [36]. Various microbial communities 
and population densities are capable of 
degrading and enhancing biomass humification 
[37]. Biologically, the transformation of 
lignocellulose biomass is driven by 
corresponding intracellular and extracellular 
enzymes through microbial secretions [38]. The 
microbial consortia, most importantly fungi, 
bacteria, actinomycetes, and archaea, secrete 
ligninolytic, cellulolytic, and hemicellulolytic 
enzymes, which hydrolyze the content of lignin, 
cellulose, and hemicellulose [39], respectively. 
Secretion of glycoside hydrolases aided by 
bacteria and actinomycetes does not sufficiently 
hydrolyze hemicellulose due to their reduced 
numbers [10]. Fungal degrading species 
(Trichoderma, Aspergillus, Penicillium, and 
Neurospora crassa) have deliberated ability 
owning to the digestibility of lignocellulose [10]. 
Synergistic actions of non-enzymatic proteins 
(expansins) promote the hydrolysis of cellulosic 
and hemicellulosic biomass through the executed 
impact of cellulases and hemicellulases [10]. In a 
related study, Zea-h proteins extracted from 
freshly harvested corn stover interacted 
synergistically with cellulase [40]. In addition, 
non-enzymatic proteins purified from Oryza 
sativa escalated the action of cellulase by 2.4 
times in comparison with sole enzymes [41]. 

Microorganisms exhibit profound tolerance to 
varied environmental conditions, which makes 
them ideal entities for biomass degradation. They 
influence substrate digestibility by initially 
attacking the material’s lignin content, which 
serves as a potential barrier to cellulose and 
hemicellulose accessibility [7]. Although the 
microbial degradation process is often slow, 
biomass decomposition and nutrient 
transformation safeguard the natural 
environment’s safety than the chemical, physical, 
and mechanical treatment strategies [42]. The 
transformational process (aerobic and anaerobic) 
by which microorganisms are subjected 
determines the resultant end-products. For 
instance, aerobic microorganisms end up 
transforming lignocellulosic materials into carbon 
dioxide and water, whereas anaerobic microbes 
ultimately produce carbon dioxide, methane, and 
water as end-products [43]. Biologically, bacterial 
and fungal strains are crucial facilitators of 
lignocellulose biosynthesis [44]. While all these 
processes and others work interchangeably to 
facilitate the processes and speed up biomass 
degradation, forecast on fungal and bacteria 
interaction with lignocellulose biomass are further 
highlighted below.  
 

3.1 Fungal Actions on Lignocellulose 
Biomass 

 
Fungi traditionally exhibit an irreplaceable role in 
lignocellulosic biomass degradation [45,46]. Most 
fungi are attracted to biomass with high nitrogen 
content, acidic medium, and mesophilic 
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temperatures [47]. Contrary, fungal growth is 
hindered by nitrogen and carbon displacement 
during composting [48]. Mesophilic (Geotrichum 
sp., and Cladosporium cladosporioides) and 
thermophilic (Aspergillus sp., and Thermomyces 
lanuginosus) fungal count per gram on 
lignocellulose biomass has been estimated 
approximately at 10

6
 and 10

3
 to 10

6
, respectively 

[49]. Fungi exercise ligninolytic capabilities as an 
arousing mechanism of biomass delignification 
[45]. The bioactivities of fungi are commonly 
expressed on lignin and hemicellulose 
constituents than on cellulose [50]. Fungi roll out 
their digestibility mechanics by initially attacking 
and solubilizing lignin chains to release available 
sugars. The sugars are then hydrolyzed through 
fermentation processes to produce valuable end-
products [7]. Lignocellulose materials contain 
iron (II), a substance which enables fungi to 
produce more peroxidase for the digestibility of 
lignin [46]. The ligninolytic enzymes synthesized 
invade and increase the lignocellulose materials’ 
surface area, making them more accessible to 
cellulolytic and hemicellulolytic enzymes [12]. 
Fungal genera such as Trichoderma, Penicillium, 
Aspergillus, Fusarium, and Humicola secrete 
enzymes (laccases, manganese peroxidase, 
pyranose-2 oxidase, glyoxaline, and aryl-alcohol 
oxidase) which are crucial in the digestibility 
process [6]. A complex class of fungi involving 
brown-rot, white-rot, and soft-rot also contributes 
to lignocellulose biomass’s digestibility [51]. For 
white-rots (Phanerochaete chrysosporium, and 
Ganoderma colossum), they possess a 
ligninolytic system, making them the most 
efficient lytic degraders. White-rot attacks both 
hardwood and softwood and professes selective 
and nonselective delignification characteristics. 
White-rot fungal genera involving Phlebia radiate 
and Phanerochaete chrysosporium expresses 
selective digestibility of lignin whereas Trametes 
versicolor ensures nonselective delignification 
[52]. Instead of white-rots releasing all their 
metabolic energy at once for substrate 
decomposition, they reserve part of it to influence 
extracellular enzyme (laccase, lignin peroxidase, 
and manganese peroxidase) synthesis. This 
reservation promotes further digestibility of the 
biomass [53]. The establishment of Pleurotus 
ostreatus, Phanerochaete chrysosporium, 
Cyathus stercoreus, Ceriporiopsis 
subvermispora, and Coriolus versicolor as also 
genera of white-rot fungi ensures lignin 
digestibility and humification at a higher rate [54]. 
Under favorable conditions, influential white-rots 
can ensure 50-70% mineralization of 14C-lignin 
[47]. Hardwood lignocellulose is prone to white-

rot degradation than that of softwood [55]. 
Brown-rot fungi (Basidiomycetes) respond to 
materials that do not require maximum alteration 
efficiency. Per that, they are mostly adjudged as 
forest litter degraders [51]. The brown 
discoloration and cracks discovered on forest 
biomass are postulated indices of brown-rot 
attack [56]. Instead of enhancing lignin 
degradation, the wood-rotting Caprinus of the 
brown-rot has been justified by its modification 
effect [47]. Soft-rot fungi are generally known for 
cavity creation together with invading effects on 
plant secondary cell walls. Some soft-rot fungi, 
especially Paecilomyces sp., Thielavia terrestris, 
and Talaromyces thermophilus expresses weak 
lytic effect despite their tolerance to thermophilic 
conditions [57]. Soft-rot fungi secrete 
Trichoderma reesei as enzymes for disrupting 
the lignin content in wood angiosperm despite 
the slow delignification process [58]. 
Comparatively, soft-rot fungi exercise minimal 
wood digestibility than that of white-rot and 
brown-rot fungi [59]. Till now, filamentous fungi 
are by far appraised as excellent degraders of 
lignocellulose in nature [60]. 
 

3.2 Bacterial Actions on Lignocellulose 
Biomass 

 

Bacteria are incredibly enormous and diversified 
microbial entities with a special solubilization 
effect on lignin [61]. As unicellular 
microorganisms, they range between 0.5 μm to 
3.0 μm in size with a high volume ratio which 
accelerates soluble residue conveyance into the 
body cells [47]. Species of bacteria (Bacillus, 
Pseudomonas, Zymomonas, Acinetobacter, 
Cellulomonas, Sphingomonas paucimobilis, 
Comamonadaceae, and Caulobacteraceae) 
produce high recombinant enzymes 
(peroxidases, laccases, cellulosomes, a-
amylase, proteases, glucoamylase, and glucose-
isomerase) that are necessary for lignocellulose 
deconstruction [6,62]. Among these biocatalysts, 
laccase is widespread due to its broad residue 
specification coupled with its ability to 
accommodate high temperatures and pH [63]. 
Cellulosome is also a multi-complex enzyme that 
is synthesized by anaerobic cellulolytic bacteria. 
They exert a more significant hydrolytic influence 
on biopolymer degradation [6]. Bacteria 
population density increases as the 
decomposition process reach its later phase, 
especially in areas where carbon mineralization 
is high [6,64]. Bacteria mediate the digestibility of 
cellulose and lignin constituents through the 
demonstrated tolerance of low (25-39°C) and 
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high (40-65°C) temperatures, slightly acidic-to-
alkaline pH (between 5.5 to 9.0), and saline 
conditions (30% w/v total salt). Bacteria exhibit 
these tolerances on account of the 
lignocellulolytic enzymes they synthesize [65]. 
Although most lignocellulose residues are 
generally low in nitrogen, bacteria often meet 
their nitrogen requirement through biological N-
fixation, hence attributed as critical organisms 
responsible for N losses during composting [43]. 
The Bacillus species involving subtilis, 
licheniformis, and circulans synthesize thick-
walled endospores that are thermotolerant, 
highly resistant to chemical reagents, and 
radiations [47].  
 

4. LIGNOCELLULOSIC RESIDUES FOR 
COMPOSTING 

 
Lignocellulose biomass quantification across the 
globe shows that over 200×10

9
 tons of the raw 

material are produced annually [66]. Most 
materials serving as bulking agents, regulators, 

and organic substrates during composting are 
substantially obtained from lignocellulose [47]. 
The raw material warrants enormous and 
promising utilization that involves composting 
and biorefinery into fossil resources. Considering 
the various management methods (landfills, 
incineration, open dumps, gasification, and 
biorefinery engineering) that exist, composting 
remains the ultimate choice. Lignocellulose 
residues (shown in Table 1) emanate crucially 
from crop production fields (corn straw, and rice 
straw), forest (soft wood, and hard wood), 
domestic (fruit, vegetables, and food waste), 
municipal (waste paper), and industrial 
(sugarcane bagasse, and coffee straw) wastes 
[43]. According to [116], corn, wheat, rice, and 
sugarcane forms the top four crops produced in 
the world. The production of these crops has 
been phenomenal due to the rate of consumption 
by the human population and as feed to animals. 
The biomass source indicates the amount of 
cellulose, hemicellulose, and lignin in given 
lignocellulose (Table 1) proportionately. 

  
Table 1. Classification and composition of cellulose, hemicellulose, and lignin in lignocellulose 

residues 
 
Residue type Common name Composition of lignocellulose residues Reference 

Cellulose 
 (%) 

Hemicellulose 
(%) 

Lignin  
 (%) 

Cereal crop Barley straw 36.0-43.0 24.0-33.0  6.3-13.1 [66] 
 Barley hull 34.0  36.0 16.0 [67] 
 Corn cob  33.7-41.0 31.9-36.0 6.1 [68] 
 Corn stover 37.6 21.5 19.1 [69] 
 Corn stalk 34.5 27.6 21.8 [70] 
 Oat straw 34.8 26.7 8.7 [71] 
 Rice husk 40.3 12.5 25.4 [72] 
 Rice straw 29.2-38.1 23.0-31.1 17.0-26.4 [66] 
 Sorghum straw 32.0-35.0 24.0-27.0 15.0-21.0 [66] 
 Wheat straw 44.4 19.2 5.8 [73] 
Fiber crop Hemp stalk 52.0 25.0 17.0 [66] 
 Cotton stalk 67.0 16.0 13.0 [74] 
 Cotton gin 20.0 9.1 17.6 [66] 
 Sponge gourd 66.6 17.4 15.5 [75] 
Fruit crop Banana peels 13.2 14.8 14 [75] 
 Cashew apple 

bagasse 
20.6 10.2 35.3 [76] 

 Walnut shells 23.3 20.4 53.5 [77] 
Grass/weed Bamboo leaves 34.1 25.6 35.0 [78] 
 Indian grass 49.8 43.1 6.7 [66] 
 Orchard grass 52.3 42.9 6.6 [66] 
 Rye grass 6.5 27.9 42.38 [79] 
Woody crop Pine wood pellet 39.5 22.1 37.1 [72] 
 Oak wood 43.2 21.9 35.4 [66] 
 Rubber wood 39.6 28.4 27.6 [80] 
 Eucalyptus 54.0 18.0 21.0 [67] 

The tridimensional constituents represent the percentage (%) dry weight of the lignocellulose biomass 
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Most importantly, the largest chunk of 
lignocellulose generated through crop production 
is accessed from sugarcane (>1.9 billion metric 
tons), maize (1.1 billion metric tons), wheat 
(771.7 million metric tons), and rice (769.6 million 
metric tons) [42,66]. Other crops involving cotton 
(17-20 million metric tons), banana (13-15 million 
metric tons), sunflower (7.5-9.0 million metric 
tons), and coffee (1.6-1.9 million metric tons) 
also contributes massively to the lignocellulosic 
waste generated globally [117]. Fiber wastes 
(bagasse) are generated from sugarcane after 
extraction of the juice. Cultivation of maize 
generates corn stover composed of stalks, 
leaves, husks, tassels, and cobs. Stems, leaves, 
and straws are generated as by-products of 
wheat and rice after pre-and post-harvest 
operations [42]. The United States, China, and 
Brazil remain top producers and end-users of the 
resources [116]. Lignocellulose residues are 
carbon-rich materials and account for 30-50% of 
plant materials’ dry weight base [10]. Besides, 
they also serve as nutritional materials for the 
cultivation of fungi, bacteria, and other 
microorganisms involved in substrate 
decomposition [11]. Although the directives of EU 
regard these materials as waste [116], the 
context of sustainable development project the 
materials as resources worth transformable into 
valuable products like compost. 
 

5. MICROBIAL PROCESSES AND 
RESPONSIVENESS TO FACTORS 
AFFECTING COMPOSTING  

 
Composting is a biochemical process by which 
different and complex microbial communities 
mediate biomass decomposition. During the 
biochemical process, microorganisms utilize 
carbon, nitrogen, oxygen, and water to 
complement the production of Thermo energy 
(heat), carbon dioxide, water vapor, and humus-
liked end-product [48,81]. Microorganisms serve 
as driving forces in regulating organic matter 
decomposition time and ensuring value addition 
of the end-product thereof [81,82]. Biomass 
hydrolysis into stable and mature compost is 
carried out by enzymes synthesized by 
microorganisms [83]. Because of the 
fermentation process, most composting 
processes are implemented by aerobic microbes 
other than the anaerobic counterparts [84]. 
Herein, the activities of anaerobic microbes 
(including Clostridium) are reduced and, in some 
cases, inactivated under oxygen-rich 
environments [81]. Nutrient mineralization of 
compost occurs as a result of microbially-

mediated activities [81]. Native microorganisms 
of compost also exert biocontrol efficiency and 
suppressive influence on soil-borne pathogens 
as a means of ensuring product hygienisation 
[85]. Fungi, mostly Ascomycetes and 
Basidiomycetes dominates the entire composting 
process while bacteria (Actinobacteria and 
Proteobacteria bacteroidets) become dominant 
during the active phase of composting [86]. 
 

Microbial activities and engagements in 
composting are influenced by factors categorized 
as feedstock formulation and management 
processes [87]. For the feedstock formulation, 
microorganisms are generally affected by 
nutrient content and particle size. Generally, the 
higher the nutrient content, the faster the rate of 
decomposition. On the other hand, there is an 
inverse relationship between particle size and the 
rate of decomposition. Other factors, including 
temperature, pH, oxygen supply, and moisture 
content, relate to the decomposition’s 
management processes [87]. A decrease or 
excess in any of the factors significantly affects 
the microbial consortia’s operationalization, 
which affects the composting process in return. 
Apart from the characteristics of the feedstock, 
its composition regarding nutrient content, 
particle size, and management practices, 
microorganisms play an essential role in the 
composting process. A high population of 
decomposing organisms (approximately 10

12
 

cells g
-1

) has been observed to result in higher 
degradation efficiency of the organic substrates 
[88]. Microbial communities and population 
densities vary within a composting stretch. The 
study of [37] disclosed that anaerobic 
thermophiles dominated the central and the 
bottom regions of the composting stretch whilst 
mesophilic bacteria were prevalent in the surface 
regions. 
 

5.1 Carbon and Nitrogen Balance  
 

Carbon and nitrogen balance provide 
microorganisms with preferential nutritional 
balance for growth and functioning. 
Microorganisms utilize carbon as an energy 
source and nitrogen as an element for cell 
growth and capacitation [89]. Microorganisms 
use partly the energy gained for metabolic 
processes, whereas the rest is liberated as heat. 
Nitrogen promotes proteins, nucleic acids, 
enzymes, and co-enzymes formation [48,89]. 
The extent of biodegradation is dependent on the 
carbon to nitrogen (C/N) ratio of the formulated 
materials. Organic substrates are swiftly and 
slowly degraded under low and high C/N ratios, 
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respectively [87]. Overstocking of composting 
pile with substrates tends to hinder 
microorganisms from meeting their nutrient 
requirements. Several postulations on C/N ratios 
have been opined to influence microbes despite 
their dependence on the organic substrate 
[87,90,91]. Research conducted by [90] indicated 
a C/N ratio of 20-50 to be suitable for 
composting. A further assertion by [91] showed a 
C/N ratio between 25-35 as a useful index for 
enhancing compost quality. The toxic effect in 
composting are significantly minimized with initial 
carbon to nitrogen ratio of 25 [92]. Besides, 30 
parts of carbon to a nitrogen unit was 
demonstrated by [86] to be associated with good 
microbial efficiencies. Carbon digestibility by 
microorganisms showed an impressive result 
among piles formulated at a C/N ratio of 10-20 
[89]. The ratio adjustment of carbon and nitrogen 
has been juxtaposed to alter most biological 
strains’ structures except bacteria [93]. Pile 
digestibility is slowly harnessed under limited 
nitrogen content, whereas ammonia (NH3) and 
nitrous oxide (N2O) gases get lost under excess 
nitrogen accumulation. Initial C/N ratio at high 
levels promotes and stabilizes organic matter 
oxidation [47]. With a reduced C/N ratio, the 
assemblage of organic matter is partly oxidized, 
favoring the production of immature compost and 
loss of compost N content [94].  
 

5.2 Moisture Content 
 
Moisture content (MC) promotes oxygen           
uptake and regulates pile temperatures for 
microbial habitation [95]. Microbial adaptability, 
survivability, and operations occur differently 
under various moisture regimes and levels         
[96]. The cross-sectional movement of 
microorganisms that influences biomass 
decomposition is executed via the ultra-thin films 
of water. Composting piles with 40-70% water by 
weight satisfactorily improves biological activities 
[81]. Flooded piles hinder the flow rate of oxygen 
and act as a cessation mechanism for biological 
activities with increased substrate odor. Leaching 
of nutrients is very common among excessively 
wet composting piles. The interstices air spaces 
of overly wet piles are generally blocked, 
displacing the oxygen needed to complement 
biomass digestibility by microorganisms. 
Dormancy and death of biological entities often 
set in when piles are insufficiently moistened. 
Moisture content below critical level deprives 
microorganisms of water and influences 
anaerobic fermentation [96]. The rapid 
development of conventional biochemical 

processes is rarely achieved under very low MC 
[62]. A very low MC promotes pile dehydration 
and hypothermic conditions inhabitable by 
decomposing microbes [97]. 
 

5.3 Temperature 
 
As an exothermic process, composting is staged 
to vary in phases due to microbial 
responsiveness to various temperature regimes. 
Composting is driven through three main 
temperature evolution phases adaptable by 
microorganisms: (1) mesophilic phase, (2) 
thermophilic phase, and (3) curing phase [81,87]. 
Mesophiles are largely observed at the initial 
composting phase, where temperatures are low 
to moderate of 25-40 °C [89]. Mesophilic bacteria 
(Bacillus, Pseudomonas, Azobacter, 
Streptococcus, and Proteus) and mesophilic 
fungal species (Aspergillus, Emericella, and 
Penicillium) have dominant engagement in this 
phase [62]. Mesofauna such as worms, mites, 
and millipedes also adapt highly to mesophilic 
temperatures [88]. The mesophilic bacteria and 
fungi have a profound digestibility influence on 
simple and readily degradable compounds such 
as sugars, amino acids, and lipids [98]. The pH 
(slightly acidic) of the composting pile decreases 
due to the formation of organic acids from the 
compounds. Through accelerated digestibility 
actions of microorganisms, composting piles 
increase in heat development, thereby 
transforming the process into a thermophilic 
phase with 40-65 °C [87]. The principal part of 
biomass digestibility is crucially harnessed in this 
phase, making the process the most active 
phase in composting. The thermophilic phase 
can last within few to several days. 
Microorganisms increase the composting mass’s 
temperature by solubilizing the biomass’s protein 
content, thereby influencing the release of 
ammonium (NH4

+
) and increasing the pH of the 

substrates [89]. Following the carbon materials’ 
digestibility, the tridimensional (cellulose, 
hemicellulose, and lignin) constituents are partly 
humified by thermophiles [99]. The proliferation 
of bacterial species encompassing 
Actinobacteria, and Bacillus, predominantly 
dominates the thermophilic phase [82]. The 
population of nitrifying bacteria declines upon 
exposure to hypothermic temperatures (>70 °C) 
[100]. The research findings of [101] has 
indicated temperatures above 65 °C to halt the 
activities of fungi, actinomycetes, and certain 
bacteria species. Maintaining thermophilic 
activities is best realized between 52-60

o
C [81]. 

Hydrolysis of complex organic constituents such 
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as cellulose, hemicellulose, lignin, fats, and 
proteins are promoted by this phase [87]. 
Compost pathogenicity and weed seeds are 
controlled by the activities of thermophiles [102]. 
However, the reoccurrence of the mesophilic (10-
40°C) phase is often termed the curing stage. 
This phase represents the decomposition 
process’s final stage, where mesophiles colonize 
and transform residual sugars into stable and 
mature compost [103]. The curing phase is the 
period set out to cool the end-product and can 
last for several months. Following the digestibility 
process, the humus-like end-product is 
characterized as incomplete when there is high 
and low amount of fulvic and humic acids, 
respectively. Actinomycetes commonly mediate 
the curing phase.  
 
5.4 Particle Size  
 
Particle size evaluation has an expedient 
influence on microbial bioactivities, gas 
exchange, water-holding capacity, temperature, 
and pH adjustment of the composting mass 
[104]. Composting piles with large particle sizes 
results in slow digestion, whereas those with 
smaller particle sizes speed-up the digestion 
process and reduce the porosity due to 
insufficient aeration [104,98]. Piles with large 
particle sizes tend to have a small surface area 
for reaction, making digestibility more complex to 
the degrading microbes. Large pile sizes do not 
retain sufficient heat as a result of the high 
ventilated system. Anaerobic fermentation also 
arises from composting masses with smaller 
particle sizes. The incidence of anaerobic 
fermentation sets in as a result of the compact 
nature of the piles, which does not sufficiently 
allow air circulation [105]. Coarse particle- 
fractions were exploited in a research to maintain 
high content of nitrogen and phosphorus in 
composting. The exploited-use of the coarse 
particle fractions may be deduced in part that 
biomass with fine particle sizes liberates more N 
and P despite the abundance of the carbon 
fraction [106]. Microorganisms have high 
attraction and digestibility optimization to reduced 
particle size between 25-27 mm [87,104]. 
 

5.5 pH  
 
In practice, pH demonstrates the acidity or 
alkalinity level of the composting materials due to 
the hydrogen ions present. Evidence of microbial 
growth and actions in a composting system 
shows that the microbes’ activities, most 

importantly that of the fungi, is dependent on the 
pH of the decomposing piles. However, the pH 
may vary across raw materials and the time of 
decomposition [107]. The composting period is 
initially characterized by low pH due to organic 
acid synthesis by bacteria [81]. Low pH was 
identified by [89] to stimulate the production of 
volatile fatty acids with low molecular weight. The 
production of fatty acids with low molecular 
weight creates imbalance conditions within the 
composting pile for the microbes [108]. Fungi 
and bacteria have pronounced digestibility at pH 
of 5.5-8.0 and 6.0-7.5, respectively [109]. Zhang 
and Sun [110] cited a pH of 7.5-8.5 as a 
reasonable level in promoting microbial actions. 
Mitigation of ammonia losses was also observed 
at a pH <7.5 [86,98]. Methanogenic activities are 
mostly sustained at pH ranging between 6.5-8.2 
[111]. Nitrifying bacteria harbor compost 
nitrification at low pH, facilitating the volatility of 
ammonium nitrate [81]. A decrease in pH has 
been opined to decrease fungal growth 
adversely, while its increases are noted for the 
breakdown of organic acids and the oxidation of 
phenolic compounds [112]. In general, compost 
evaluation at 7.0 pH is considered efficient for 
agricultural utilization [112]. 
 

5.6 Oxygen Supply 
 
Biological actions on biomass decomposition 
depend on oxygen supplied to microorganisms 
[88]. During decomposition, varied oxygen 
concentrations have differential roles they play 
[110,113]. Oxygen supply rate between 15-20% 
has been observed to enhance microbial actions 
on substrate decomposition [114]. Oxygen 
sufficiency was found by [88] to regulate compost 
temperature and moisture content for microbial 
survivability. Compost C/N ratio and overly 
production of CO2 and NH3 are well managed 
and controlled under proper-aerated conditions 
[87]. The duration of composting and 
ammonification is reduced by oxygen sufficiency 
supplied at the early stages of the decomposition 
process [115]. 

 
In contrast, organic matter decomposition is 
slowly achieved under insufficient oxygen (<0.2 L 
min/-kg/OM) supply [113]. With limited oxygen, 
hydrolytic and acid-forming microbes significantly 
respond to persisting conditions other than 
microbes that are naturally produced for 
substrate hydrolysis. Oxygenated microbes 
exercise faster growth than unoxygenated 
microbes [89].  
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6. CONCLUSION  
 

Globally, lignocellulose biomass represents the 
most abundant (200×109 tons per annual 
production) renewable materials with enormous 
utilization potentials. The composting industry 
mostly has access to the raw material, making 
biomass utilization a potential substitute for fossil 
resources and inorganic fertilizers. Interest in 
transforming lignocellulose biomass into compost 
remains high as the process is associated with 
low production cost, environmental safety, and 
sustainability to agriculture. However, realizing 
the digestibility of the material is traditionally 
driven by microorganisms through enzyme-
mediated activities. Microorganisms such as 
bacteria, fungi, actinomycetes, archaea, and 
yeast host ligninolytic, cellulolytic, and 
hemicellulolytic enzymes which helps in the 
solubilization of lignin, cellulose, and 
hemicellulose polymers. Microbial population 
density estimated at 10

12
 cells g

-1
 influences the 

efficient breakdown of lignocellulose materials. 
Optimization of composting factors that include 
feedstock formulation (nutrients contents, particle 
size, and pH) and management processes 
(Temperature, oxygen supply, and moisture 
content) expeditiously improve biosynthesis. The 
digestibility of cellulose and hemicellulose is 
more straightforward than that of lignin. Unlike 
fungi which are virtually involved in the hydrolysis 
of lignin, hemicellulose, and cellulose 
constituents, bacteria actively digest lignin.           
The less digestible the biomass, the more 
diversified and synergistic enzyme actions that 
are needed. To ensure sustainable and efficient 
lignocellulose digestibility, microbial engineers 
must subject decomposition processes to 
appropriate conditions suitable for inducing 
ligninolytic, cellulolytic, and hemicellulolytic 
enzyme actions. 
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