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Abstract

In this paper, we propose and analyse a new iterative method for solving nonlinear equations. The method is
constructed by applying Adomian method to Taylor’s series expansion. Using one-way analysis of variance
(ANOVA), the method is being compared with other existing methods in terms of the number of iterations
and solution to convergence between the individual methods used. Numerical examples are used in the
comparison to justify the efficiency of the new iterative method.

Keywords: Iterative methods; ANOVA; nonlinear equation; order of convergence.

1 Introduction

Finding zeros or roots of one variable nonlinear equations, f (x ) =0 efficiently is a significant discussion

in numerical analysis and has broad span of applications in all areas of science and engineering. Choosing a
single method from the numerous different methods developed by researchers to get analytic solutions of
such equations is strenuous, as a result of which various researchers are continuously coming up with new
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numerical methods for solving nonlinear equations. Some of these methods were developed using Newton-
Raphson method (NR), Taylor’s method and methods [1-3] to mention few. Presently, iterative methods are
being developed by combining two or more existing methods which results in improving the convergence
rate, better accuracy as well as iteration perspective for solving nonlinear equations. Nasr [4] proposed two
iterative methods for solving nonlinear algebraic equations by Using Least Square Method” which was
developed by combining Rafiullah and Jabeens [5] method and the least square method. The two methods
have eighth and sixteenth-order rate of convergence. Napassanan and Montri [6], presented a new higher
order iterative method for solving nonlinear equations. The method is based on both Halley’s method see
Albeanu [7] and the predictor-corrector technique. The convergence analysis shows that the method is of
seventh order. Saqibi and Igbal [8] presented and analysed two new methods which have fourth and fifth
order convergence. The methods were developed by rewriting the nonlinear equations as a coupled system
and applying modified decomposition technique. The efficiency and performance of the methods were
compared with those of some existing methods. Alyauma [9] developed a two- step iterative method for
solving a nonlinear equation, which is derivative free. The method has a convergence of order four and the
method requires three evaluations of functions per iteration.

In this paper, we introduce a new iterative method for solving nonlinear equations without second derivative.
The method has a third order rate of convergence and it is developed by applying Adomian decomposition
method to Taylor’s series expansion around x of higher order. In the method, the assumption that

"
f"(7)

’
/'(7)
derivative in the new scheme. The presence of second derivative in an iterative scheme is usually a

drawback. The new proposed scheme is then compared with other existing iterative schemes. The
convergence of the proposed method is faster in many cases from the tested numerical examples.

=~ m, where m is a real number is used. This is done in order to eliminate the evaluation of second

2 Description of Adomian Decomposition method

Adomian decomposition method is applied to solve problems in mathematics, engineering and other related
fields. This method does not require any assumption or linearization to solve any given problem. The idea is
as follows:

Consider the equation:
Fu=g (t, x) ,

where F is a differential operator involving linear and nonlinear terms. Rewriting the equation in operator
form as

Lu+Ru+Nu=g )

where L is the highest order derivative which is easily invertible, R is the remainder of the linear differential
portion, and N is a nonlinear operator. Solving (1) and since L is invertible we get

u=L"Lu=L"g—L"'Ru—L"'Nu

Since F is taken to be a differential operator and L is linear, L™ would represent integration and with the
given initial or boundary conditions,

The solutions of (1) consist of approximate solutions as an infinite series
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u(t)=3 u, (1

Decomposing the nonlinear term into a series of Adomian polynomials, as

Where' 4, are called the Adomian polynomials depending on 1, -, u

nt

To determine the Adomian polynomials, a grouping parameter, A is introduced. It should be noted that A is
not a “smallness parameter”.

u(t)= iﬂ"un )
oy
And
Nu(A) = i/l”An (3)
oy
Then

A,,:id— N|> 2w, ,n=0,1,2,
nldi" = .

The first few polynomials are given as

Ao = N(x0)>
A =xN'(x,),

1
4, =x,N'(x,) +EX1ZN"(XO)a

A, =x,N'(x,) + x,x, +%x13N"(x0 ),

2.1 Formation of the new method

Consider the nonlinear equation,
f(x)=0 “
If &is a root of (4), and }is the initial guess sufficiently close to &, then (4) can be rewritten using

Taylor’s series, see Burden and Faires [10], so that
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1)+ P =1 7V g0 o

where g (x) represents the truncated part of higher order from the third term.

Rearranging (5) we get the following equation,

£()=F ()£ ()~ x-)- 1) ETL e () =0 ©
And from (5) we obtain
PN =)= 1) e
ey ) 1) (x-7) &)
') ') 2 i)
S () e(x)
)" 2 TGy v
{on the assumption that J;:((;/)) ~ m, where m is a real number}
.‘.x=c+N(x) (8)
_, S
here ¢ =y ()
and
2
xX=y g\ x
where N (x):_m( ) ) f'((ﬂ/)) is a nonlinear function. Q)

o0
Comparing this analogously with the Adomian decomposition solution series we obtain X = an , where
n=0

0

the nonlinear function is given as N (x) = Z A

n
n=0
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S S . f(7)
=>x=) x,=c+ ) A fromwhich x,=c=y——"=.
2% =T B o 3y =27 )
If x = x,, = y for initial guess,
then from (6),
_ ' " (x_y)z
g(x)=1(x)=S(1)=1" (D) x=7)=1"(r)—

N(xo)z—m(x0_7)2 _g(xo) =—m(x°_7/)2 f(x )

2P0 2 70

= A4,,since 4, = N(xo).
from (6) and (9) we have

(x=r) _f(x), f(r), /() (x=7)

N(x)=-— —
(x)=—m>— HOMED) f,(y)(x y)Em— (10)
Ignoring the fifth term of the R.H.S of equation (10) and differentiating, we get
' =-m(x— —f’(x) :—m{ _f(}/) - ]_f'(x) since X, = —M
N'(x) (x=7) f'(}/)+1 y () y f’(7)+1’ X, =y f'()/)
. ' f(}/) f’(xO)
SN =1 -
BTG TG
4= (x) = —f(xo){Hm (7) _f'(xo)}:_f(xo)_mf(xo)f(7)+f(xo)f'(xo)
B Al ¢ (») (] 1) () (7) ’
Since X, = _;E;O)) from Appendix III

The value of Xis approximated by X, =x,+x, +--+x, =x,+ A4, + 4 +--+4, ,

where lim X =x.

m—>0 m

For m=0
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x=X0=x0=c=7—m
:x_f(xn)
n+l n fr(xn)
For m=1
x=X =x,+x =c+A4,= —M—M
=X, =x,+x A, =y f’(}/) f'(ﬂf)
X X f(x") —f(x;+ ) where X X — f(x")
() (%) " f(x,)
For m=2
) S S () ) ()
RTINS EEATATT S0 R0 P " ) )
S0 i) F)) S
f'(r)  1'(7) () ()
v —y xn) 2f(xn+1) (n+l) xn)+f(x:+l)f'(x:+l) an
T (x) () [ (%) S (%)

3 Convergence Analysis

Theorem 3.1; Let @ € I be a simple root of sufficiently differentiable function f :1 — R for an open
interval /. Then the New method (11), has a third order rate of convergence and satisfy the following error

equation.

€1 = (62

Proof

—m)ej +0(ej)

Let & be a simple root of f(x) ie. f(a)=0, f'(a') #0. Assume e, to be the error at the nth iteration

sothat e, = X, — &, By Taylors series expansion

f(xn)zf(oH—en)
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, f”(a) 2 fm(a) 3 fw(a) 4 5
f(x,)=r(a)+f (a)e,+ e+ 3 e+ 2 en+0(en)

:f’(a) e + e + e + e:+0(e,f) ,since f(a) =0,

.-.f(xn):f'(a)[e +ee +cye +egel +0( )} (12)

[1+2cze +3c,e’ +4c,e) +O( )],

J
where ¢, = (a)

it /(@) >
/(a) — "(a)

= 2c¢, = m since

ie.c, = ~mande, =X, —Q (13)

2f'(a) /(@)
f'(xn)zf'(a)[leren +3c,e’ +4c,e’ +O(ej)] (14)
and
I (x)= 1" (a)[1+2men +(6¢, +m*)e2 +(6me, +8¢,) e} +(0)e,‘j] (15)

From equations (12) and (14) we have

% = {en +te,e +ee +eel + O(ej )} {1 +me, +3c,e’ +4c,e + O(e: )}_1

=e,+(c, —m)en2 +(—mc2 —-2¢, +m2)es +0(e:)

%: e, +(c,—m)e; Jr(—mc2 - 2c, +m2)ez +0(e:)
but

X, — JJ:'(())CC};)) =x_ ,=a+e, —[en +(c2 —m)eﬁ +(—mc2 -2c, +m2)es +0(e:)] (16)
and so

X, = 0{+(mc2 +2¢, —mz)ej —(¢c,—m)e; +0(e:)

n+l
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Thus the error for x: 4118
(mc2+2c3—mz)ei—(cz—m)e§+0(e:) (17)
Using equation (12), we can obtain the value of f’ (x:H) by substituting e, in equation (17), and we get:
f(x:+l) = f’(ot){—(c2 —-m)e. 4—(mc2 +2¢, —mz)e,f +e, [—(c2 —-m)e, +(mcz +2¢, —mz)eﬂ2 +O(e:)}

= f(x:+1) :f’(a){—(cz —m)ej +(m02 +2¢, —mz)ei +O(e::)} (18)

Similarly, using equation (14), we can obtain the value of f” (x: " ) , substituting e, in equation (17).

This gives:

f’(x;]):f'(a){l—m[(cz—m)e:+(mcz+203—mz)ei+O(e:):|+3c3|:—(cz—m)enz+(mcz+253—mz)e2+0(e:):|2+...}
:>f'(x;+1) =f'(a:){l—m[(c2 —-m)e; +(mc2 +2¢, —mz)ej]+0(e:)}
f’(x;l) = f'(a){l—[(mcz —mz)ei +(n12c2 +2WLC3 —m3)ei:|+0(€:)} (19)

Using equations (14) and (18) we get

f(x:H) ~ —(c,—m)e; +(mc2 +2¢, —mz)ej +0(e:)

f'(x,) 1+me, +3c,e. +4c,e’ +O(ej)

=(m(m)+2c3 —2m2)ej —(¢c,—m)e; +0(e:) {since 2c, =m see (13)}

(20 m)el e m)e +0(c)

n

~2{(2e,-m) &} (e, ~m)et +0(e?)}
:(403 _2m2)es —(2¢,-2m)e; +0(e:)
=(4c3 —2m2)e3 —(m—-2m)e; +0(ej)

f(x;ﬂ)

-~ 2
/(%)

= (4c3 —2m2)ej +me’ +O(e;‘) (20)
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Using equations (12), (15) and (18) we get

f(xn)f(xZH) {en +c,e +ce +0(e:,1 )}{—(c2 —m)ef +(mc2 +2¢, —mz)ej +0(€: )}

1 (x,) 1+ (6mc, +8c, ) e, +(6c3 + mz)ej +2me, +(0)e]

m f(xn)f(x:-H)
S7 (%)

Again, using equations (18), (19) and (15) we get

=(m2—mcz)ei+(0)ej (1)

f(x:+1)f’(x:+l) _
/(%)
{—(c2 —m)ef +(m02 +2c, —mz)ej +0(ej) {1—[(mc2 —mz)e: Jr(mzc2 +2mc, —m3)ej +(0)e:]}

n

[1+2men 4—(603 +m2)ef +(6mc3 +804)e,31 +(0)e4]

=(m—cz)ef +(mc2 +2c, —2m2)e§ +(O)e4

n

X f(x;ﬂ)f’(x:ﬂ)
(=)

Finally, using equations (16), (20), (21) and (22) in (11) we get

=(m—cz)ej+(mcz+2c3—2m2)ej+(0)e: (22)

_ 2 3 2 2 3 2 2 3 2
X, = 0:+(mc2 +2c,—m )en —(c,—m)e; —(4c3 -2m )en —me; —(m —mcz)en +(m—c,)e;

n

+(mc2 +2¢, —2m2)e3 +(0)e;
= a+(3m02 —2m2)ei +(2¢, +m)ej +0(e;‘)
=>x,,—a= (mc2 —mz)ej +0(e:)

Se, = (mc2 —mz)es +O(e:) (23)

equation (23) proves that the New method (11) has a third order rate of convergence.

To demonstrate the behavior and effectiveness of the new method, a comparison between the new method
and other good and competent methods was conducted using fifty distinct problems.

The contrast is based on the number of iterations that every method takes before the solution is reached. The
methods used in the comparison are:

i The New method
il Noor’s method [11]
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iii. Newton Raphson’s method
iv. Chun’s method [12]

v. Basto et al’s method [13]
vi. Ndayawo and Sani [14]

The complete fifty problems included in the analysis are in Appendix I, while the details of the computations
are in Appendix II.

3.1 Computation and analysis of results

ACO N
J'()

Computation of

"

To use the new iterative method, we need to get the value of m. We approximate m from where x is

’
(%)
the initial point. For instance, to obtain the value of m for the first problem in Appendix I,

ie, f(x)=sin’ x—x*+1,at x=1.3

Sf"(x) _ 2cos’ x—2sin’ x—2

- =1.781616671at x =1.3 where x is in radians.
f'(x) 2sinxcosx—2x

we obtain m =

which is substituted into equation (11) to get

FACA A G A R MACA BRA CA PAC)

X X — -

)G 12 (x,) £2(x,)

Statistical analysis was carried out from the numerical data to ascertain the findings. A one-way ANOVA
test was conducted and the following results were obtained taking into account, 95 percent confidence
interval. As a result, we find a significant difference in the number of iterations between the methods
analysed, since P = 0.00 < 0.05, see Table 1. Also from Table 2, since P =0.998>0.05, for the
solutions, we conclude that there is no significant difference in the average solutions obtained by the
methods used.

Table 1. One-Way ANOVA results for number of iterations to convergence

Sum of Squares  Df Mean Square F Sig.
Between Groups 159.532 5 31.906 17.910 0.000
Within Groups 479.210 269 1.781
Total 638.742 274

Table 2. One-Way ANOVA results for solution values at convergence

Sum of Squares  Df Mean Square F Sig.
Between Groups 2.340 5 0.468 0.056 0.998
Within Groups 2229.456 269 8.288
Total 2231.796 274

The complete results of the number of iterations obtained for all the tested methods across all the 50
problems are in Appendix II. To analyse the difference in the number of iterations, we used the post Hoc
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Test (Duncan Multiple range) and from the results obtained, which are in Table 3, we see that Chun’s
method, Basto et al’s method and the New method have the least number of iterations all in the first
homogeneous subset and Newton Raphson method in the second homogeneous subset. In the third
homogeneous subset we have Ndayawo and Sani’s method and Noor’s method, with higher number of
iterations.

Table 3. Homogeneous subsets (Post Hoc Test) showing number of iterations to convergence in respect
of the methods

Methods N Subset for alpha = 0.05

1 2 3
Chun 49 2.69
Basto 45 2.84
New Method 50 2.94
Newton Raphson 46 3.72
Ndayawo & Sani 45 4.29
Noor 40 4.75
Sig. 0.411 1.000 0.100

As can be seen from Table 4 below, the descriptive statistics, shows the mean, standard deviation and
standard error of the number of iterations to convergence in respect of each of the methods.

Basto et al’s method has the least standard deviation of 0.796 and standard error of 0.119, but five of the
tested problems diverge, which is followed by Newton-Raphson’s method with a standard deviation of 1.167
and standard error of 0.172, and four of tested problems did not converge. Next with a standard deviation of
1.185 and a standard error of 0.168 is the New method and none of the tested problems diverge. Then
Chun’s method with a standard deviation of 1.294 and standard error of 0.185 and one of the tested problems
diverges.

Table 4. Descriptive statistics for each method in respect of number of iterations to convergence

No Mean Standard Standard 95% Confidence Min Max
Deviation Error Interval for Mean
Lower Upper
Bound Bound

Noor 40 4.75 1.645 0.260 4.22 5.28 2 9
Newton 46 3.72 1.167 0.172 3.37 4.06 1 7
Raphson

Chun 49 2.69 1.294 0.185 2.32 3.07 1 8
Ndayawo & 45 4.29 1.753 0.261 3.76 4.82 2 11
Sani

Basto 45 2.84 0.796 0.119 2.61 3.08 2 5
New Method 50 2.94 1.185 0.168 2.60 3.28 1

Total 275 349 1.527 0.092 3.31 3.68 1 11

4 Conclusion

In this paper, we present a new iterative method for solving nonlinear equations. The new method is
compared with four other existing good methods for the number of iterations to convergence. There are fifty
problems used in the comparison which are given in Appendix I, while the complete results of the number of
iterations in respect of each method are in Appendix II. From the analysis of variance results obtained, it
shows that there is a significant difference between the number of iterations to convergence obtained from
the methods used. The New method converges to all the fifty solutions, Chun’s method converges to forty-
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nine out of the fifty solutions while there is divergence in four of the solutions in the case Newton Raphson.
For the Basto et al’s method, five of the solutions of the test problems diverge. Lastly, for Noor’s method,
solutions of ten out of the fifty tested problems diverge.

As for the number of iterations, Chun’s method has the smallest mean of 2.69 followed by Basto’s method
and New method with 2.84 and 2.94 respectively. In the case of the standard deviation, Basto’s method has
the best standard deviation of 0.796 followed by Newton Raphson’s method and New method with standard

deviations of 1.167 and 1.307 respectively. Thus the New method is comparatively good in all the phases
being considered.
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Appendix 1. Fifty problems used in the comparison

Fifty different Tested Problems

Lsin®x—x*+1=0

2.xt—e" =3x+2=0

3.cosx—x=0

4.(x-1) ~1=0

5. -10=0

2
=2
6.xe* —sin” x+3cosx—x=0

2 .
7.xe" —sin® x+3cosx+5=0

8.e

9.

x+7x-30 _1 — 0

e +2x+0.1=0

10. 2x° = x> =7x+6=0

11

12.

13.

14.

X =9x+1=0
x> =3x-1.06=0
X —6x+4=0

2x—-3sinx—-5=0

15. x> =3x+1=0

16. 3x—Inx—-16=0

17. cosx—2x+3=0

18. x+Inx—-2=0

19. x> =x—=0.1=0

20. x* =12x+7=0

21

.x+sinx+0.5=0
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2. x-2-e" =0

23. x* +4x* +8x+8=0
24. 2x—Inx—-7=0

25. x> —1.25x+0.25=0
26. x> +5.15x+2.37=0

27. x* =11x+8=0

28. Inx—x+3=0

29. " —x—-3=0

30. 2x% —12x+11=0
3.x* =5x"+x+3=0
32. X’ +4x-9=0

33, x7 =3x%4+3x° —13x* +43x° =57x* +33x-7=0

34.sinx—§=0 35. x> +x—-1000=0 36.\/;—1—3=0 37. lnx+x/;—5=O
X

38.e¢'sinx—2x-5=0

39. ¢ —cosx=0

X
40. coszx—gzo

41. (1+cosx)(ex —2) =0

42. ¢ +sinx—1=0

43. xe " -0.1=0

44. x> +sinx+x=0
45.sin(2cosx)—1-x +e =0

46.x° =10 + x> —x+3=0
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47. x" = x*+11lx=7=0

48. x> —cosx+2=0 49. \/x —cosx=050. Inx—x>+2sinx =0

Problems 1-8 are from Noor [11], problems 9-34 are from Ndayawo and Sani [14], problems 35-38 are from
Chun and Neta [15], problems 39-42 are from Kumar et al [16] and problems 42-50 are from Soleymani
[17].
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APPENDIX II. Comparison between number of iterations

Initial Noor Nr Chun Basto Ndayawo & Sani New Method
/" (x) point X, (SOLUTION)
o W)
1 1.781616671 1.3 1.404491649 4 4 3 2 3 3
2 0.8434823573 2 0.257530285 9 5 4 5 6 4
3 -0.06469185661 1.7 0.739085133 5 4 4 3 6 3
4 0.8 3.5 2 6 6 4 3 5 3
5 1.333333333 1.5 2.15443469 5 5 5 3 4 5
6 -4.874055511 -2 -0.915306601 5 4 6 DIV DIV 5
7 -4.864176091 -2 -1.207647827 5 DIV 3 DIV 4 4
8 14.14285714 3.5 3 6 DIV 8 DIV 11 6
9 0.9500416252 -0.05 -0.31584581 4 4 2 3 3 3
10 - 1.942835793 0.86 1 5 4 2 3 4 6
11 -0.0736303089 0.11 0.111264158 2 2 1 2 2 1
12 0.7977207977 -0.35 -0.370252219 3 3 2 4 2 1
13 -0.8639030366 0.67 0.732050808 3 4 DIV 2 3 2
14 0.4077312657 2.5 2.883236873 DIV 3 3 3 4 3
15 -0.7406576142 0.33 0.347296355 3 3 2 2 3 2
16 0.01266303659 5.3 5.926476625 DIV 2 2 2 4 2
17 0.02359377230 1.5 1.523592933 5 3 1 2 3 2
18 -0.1666666667 2 1.557145599 7 3 2 3 5 2
19 0.6185567010 -0.1 -0.101031258 2 2 2 2 2 2
20 --0.3598004626 0.58 0.59368584 3 4 2 3 3 2
21 0.2553419212 -0.5 -0.251318625 7 3 2 3 4 2
22 -0..1192029220 2 2.120028239 5 3 3 2 3 2
23 0.6666666667 -1 -2 5 1 1 4 7 1
24 0.04761904762 3.5 4.219906484 DIV 3 3 2 4 3
25 -2.352941176 0.2 0.25 DIV 3 2 3 4 2
26 0.4210526316 -0.2 -0.510871855 4 4 2 2 4 4
27 -0.6771332110 0.73 0.757149516 3 3 4 2 4 5
28 0.1666666667 3 4.505241496 DIV 5 3 3 7 3
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Initial Noor Nr Chun Basto Ndayawo & Sani New Method
/(%) point X, (SOLUTION)
s " ()
29 -0.05239569650 -3 -2.947530903 6 2 1 2 3 2
30 -0.4807692308 0.92 1.129171307 5 4 2 3 5 2
31 - 1.272727273 -3 -2.198691243 7 6 3 4 6 4
32 0.7035830619 2.25 1.464595701 4 5 3 3 4 3
33 -4.639816912 0.21 0.593685833 DIV 7 5 3 8 5
34 0..9925236770 2 1.895494267 3 3 2 2 3 2
35 0.9992193599 4 3.977899394 3 3 2 2 2 2
36 - 1.500000000 1 9.633595562 DIV 5 3 D DIV 4
37 -0.2559830602 3 8.309432693 DIV 5 3 5 DIV 3
38 -0.1883330467 -1 -2.52324523 9 3 2 3 6 3
39 0.3794947184 1.5 1.29269572 4 4 2 3 5 3
40 1.037575341 0.5 1.085982678 4 4 2 3 4 3
41 -0.04148371676 0.9 0.693147181 7 3 2 3 4 2
42 0.8420313256 2.3 2.076831274 4 4 2 2 3 3
43 - 1.909090909 -0.1 0.111832559 5 4 3 3 5 3
44 0.6670275325 0.3 0.00E+00 DIV 5 3 D D 4
45 -1.548924794 -0.82 0.8135737292 3 3 2 2 4 2
46 1.984922746 0.81 0.6586048471 6 DIV 3 3 4 3
47 0.3761100470 0.9 0.6450239555 5 3 2 4 5 3
48 - 2.244201985 -1.1 -1.172577964 4 4 2 3 4 3
49 0.07049049813 1.3 0.6417143709 DIV 4 2 3 6 2
50 2.254786488 1.4 1.297997743 4 DIV 2 4 D 3

Newton Raphson’s method: NR

DIV: Diverging
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APPENDIX III
If x = x,, = y for initial guess

Then from equation (9), we have

N(xo) =-m (xo _7/)2 - g(xo) =-m (xo _7)2 - f(xo) at initial guess

2 f'(7) 2 f'(7)

(% —x0)2 /(%)
:>N(x0)=—m > _f'(}/)

f(x)
'
/'(7)
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