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Abstract

This paper is concerned with modification of the Adomian Decomposition Method for solving
linear and non-linear Volterra and Volterra-Fredholm Integro-Differential equations. The
Modified form of ADM was carried out by replacing the Adomian polynomials constructed in
the conventional Adomian Decomposition Method with the constructed canonical polynomials.
The modified Adomian Decomposition Method was applied to solve some existing example.
The results obtained using the newly modified ADM proved superior when compared with the
conventional ADM.

Keywords: Integro-differential equation; approximate solution; differential equation; linear differential
equation.

1 Introduction

An integro-differential equation is a mathematical expression which contains derivative of a required
function and its integral transforms, such equations are typical of those processes where a quantity
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of interest that is a required function at each point is unambiguously determined by its value near
the points described by differential equation but also depends on the function distributed all over
the domain.

Integro-differential equations are important euations that have applications in the field of engineering,
mechanics, physics, astronomy, potential theory and electrostatics among other areas. These
equations are dificult to solve analytically, hence numerical approach are often applied. Many
numerical methods have been developed in recent years for the solution of integro-differential
equations, such methods include multistep method (Kajani and Gholampoor [1]), spectral collocation
method (Doha, Abdelkwy and Amin [2]). Many authors have worked extensively on integro-
differential equations (see Guslu and Sezer [3], Cao and Wang [4], Bhrawy et. al [5]).

Ine and Evans [6] applied the Adomian Decomposition Method (ADM) to solve singular ordinary
differntial equations. Kumar and Singh [7], employed the new modified decomposition method.
Behiry [8], applied the differential transformation method to high-order nonlinear Volterra-Fredholm
integro-differential equations with separable kernels. Behzadi [9], solved a two-dimensional nonlinear
Volterra-Fredholm integro differential equation by using the Modified Adomian Decomposition
method, Variation iteration, Homotopy analysis method and Modified homotopy perturbation
method.

1.1 General problem considered

In this paper, the basic ideas of the research work done by Adomian and Wazwaz were modified
and applied to high-order non-linear Volterra-Fredholm integro-differential equation of the form:

m x T b S
> Py (z) = flz) + M / > Ai@, ) Fi(y(t))dt + A / > Bi(x, )Gi(y(t)dt  (1.1)
k=0 @ =0 @ =0

subject to the initial conditions
y°(0) = ae, e=0,1,2,--- k-1 (1.2)

where Py(z);(k = 0,1,---,m), Ai(z,t); (i = 0,1,---,7),Bj(z,t);(j = 0,1,---,5) and f(z) are
given functions, y*)(z) indicates the k — th derivative of y(z), F;(y(z)),G;(y(z)) are non-linear
functions, A1, A2, ae; (e =0,1,--- ,k — 1) are real finite constants.

2 Adomain Decomposition Method

The Adomian decomposition method is a well-known systematic method for practical solution of
linear or nonlinear and deterministic or stochastic operator equations, including ordinary differential
equations, partial differential equations, integral equations, integro-differential equations, to mention
but few. The Adomian decomposition method is a powerful techniques, which provides efficient
algorithms for analytic approximate solutions and numerical simulations for real-world applications
in the applied sciences and engineering. It permits us to solve both nonlinear initial value problems
(IVPs) and boundary value problems (BVPs) without unphysical restrictive assumptions such as
required by linearization, perturbation, guessing the initial term or a set of basis functions, and
so forth. Furthermore the Adomian decomposition method does not require the use of Green’s
functions, which would complicate such analytic calculations since Green’s functions are not easily
determined in most cases. The accuracy of the analytic approximate solution obtained can be
verified by direct substitution.

This method originated from the book of Adomain. The idea of the method is to write the
differential equation in the form
Mz, y(z)] = g(z) (2.1)

112



Ljaiya et al.; ARJOM, 17(2): 111-124, 2021; Article no. ARJOM.62066

Where g is a given function, y is unknown solution and M is a suitable operator. M is then
decomposed accordingly as
M=Li+Ls+N (2.2)

Where L; and L2 are linear operators chosen such that the inverse of L; can be easily found, while
N denotes the nonlinear part. The method is based on the assumption that the exact solution y
can be decomposed into a convergent series

Y= Un (2.3)

We also decompose the nonlinearity /N in the form
Ny(@) =3 Au(a) (2.4)

with the so called Adomain polynomial

An(z) = % {(Kn (:U,ZAjyj)] (2.5)
J=0 A=0

A, then depends on yo, y1--* Yn
Setting
Yo = Lflg (2.6)

We proceed by the recurrence relation
yn:Ll_l(LQyn—l_An—l)a n=12-. (2.7)

which defines the remaining terms of the series (2.7). Most authors dealing with this method assume
that the series expansion of the equation (2.7) converges but do not look for conditions under which
this assumption is satisfied.

2.1 Modified adomian decomposition method

In this section, we constructed canonical polynomials from equation (1.4) as follows: Let m = 2,

we have )

d d
Ly: (P2@ +p1% + po)y = () (2.8)
where L is a differential operator.
Let _
LQ;(z) ==’ (2.9)
then ’ ) ‘ ,
La? = j(j — V)paz? 2 + jpra? ™ + poa? (2.10)
implies .
L(LQ;(x)) = La’ (2.11)
Hence, _ _ )
L(LQ;(x)) = p2j(j — 1)’ + prja’ " + poa?, (2.12)
L(LQ;(x)) = p2j(j — 1)LQj-2(2) + p1jLQj-1(x) + poLQ;(x) (2.13)
Note that LL™! = I then equation (2.13) becomes
LQj(x) = p2j(j — 1)Qj—2(2) + p1jQj-1(2) + poQ; () (2.14)
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Thus, _
2 =paj(j — 1)Qj—2(x) + p1JQj-1(x) + poQ;(x) (2.15)
and 1 .
Qj(x) = pio(xj —p2j(j — 1)Qj—2(x) — p1jQj-1(x)); 5 >0 (2.16)
For j = 0, we obtained from (2.16)
1
Qo(z) = P
Forj =1: Qi(z) = i(ar - p1Qo())
Po
Forj=2: Q)= pio((x? 2p1Qu (@)
Forj—=3:  Qs(x)= pio(xs — 601 () — 3p10s(2)) (2.17)
Forj =4: Qo) = ——(o" ~ 12Qa(a) ~ 491 Qs(a)
Forj—5:  Qs(x)= pio(xs — 20Qs(x) — 5p1Qa ()
Forj—6:  Qolz) = pio(xﬁ — 30Qu(x) — 6p1Qs5(x))

3 Demonstration of Adomian Decomposition Method
on General Class of Problem Considered

> Pe) = f@) + [ "3 Auda O F ()t
k=0 a =0

. (3.1)
+ e / 3 Bi(@. )G, (y(0)dt
Note .
S Pay® (@) = Po@)y()+Pi @)y (2) + Po(@)y” (@) + - + P (@)y™ (@)
k=0
+ P (z)y™ (z)
Z Poy™ (2) + P (2)y™ (z) = f(z) + M\ /IZAi(x,t)Fi(y(t))dt
k=0 - ¢ =0 (3.2)
e / > By (@ G, ()t
Pa(@)y™ () = — 3 Pay® (@) + £(2) + / ST Aile, )R (y(0)de
k=0 ¢ =0
‘ (3.3)
b S
e / S B (. )G, (y(0)dt
N T k= 'y 'S
V(@) = gy |2 PP @ 1@ 40 [ ARG+ e 3By 0G o)
m k=0 @ =0 @ j=0
(3.4)
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In an operator form
y"(x) =L"y
v @) = LTy

1 ™! 1 z T
P(@) ZPkL y+f(a:)+>\1/a ZAi(x,t)Fi(y(t))dt

/ ZBxx,t)Gj(y(t))dt

Operating with the inverse i.e. L™™ on both sides of equation (3.5), we have

L™y =

m—1

Lmemy — _Lfm

+ L7 f(x)+ L7 [/\1 /z > A, t)Fi(y(t))dt}
k=0 a =0

+L™ [,\2/ ZB (z,t)G; (y(t))dt

(3.6)
m—1 x T
_ _r-m m— 1 m . "
I Pm( ZOP L F L)+ L [)\ / ;Al(x,t)ﬂ(y(t))dt}
- (3.7)
+L™ [AQ/ ZB (z,t)G; (y(t))dt
The Adomian decomposition method introduces the following expressions;
y(@) =D yn(@) (3.8)
n=0
The method defined the non-linear function as
Fi(y(x)) = _(Ci)n (3.9)
n=0
Gi(y(x) = > (Dj)n (3.10)
n=0
L™y =>"E, (3.11)
n=0

Where (Ci)n, (Dj)n and E, are the approximate Adomian’s polynomials.
Substituting (3.8), (3.9), (3.10), (3.11) into (3.7), we have

m—1

Z yn(z) =L~

ZE +L " f(a)+ LT [ /ZAi(x>t)§:(Ci)”dt
+L [)\2/ ZBj(x,t)i(Dj)ndt]

(3.12)
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The remaining components of y(z) is completely determined such that each term is computed by
using the previous term as

Yrtr(w) = =L

+ L f)+ LT [)\1/ ZA @, 1) (Cy)wdt

k=0
Ag/ZBmt kdt} E>1

Note, the n — term approximation is given as

+L™

n—1
Gn =D Uk (3.13)
n=0

A new recursive scheme is formulated as follows

Yo = Qo

m—1

, b s
mex + L7 f(x) [ / ZAi(xvt)(Ci)dt“!‘)Q/ ZBj(%t)(Dj)dt]
Yerr(z) = L7 {Al /xiAi(x,t)(Ci)kdt—l—/\g/ ZB 2, 8)( kdt] k> 1

3.1 Demonstration of modified adomian decomposition method on
general class of problem considered

ZPky(k>(x) = f(z)+ M\ /m ZAi(:c,t)Fi(y(t))dt
k=0 @ i

(3.14)
wxa ZB 7,0)G (y(0)dt
Note
> py® (@)y(@)+Pi(@)y (@) + Po(@)y" (@) + -+ Paa @™ (@)
+ P (2)y™ ()
Piy™ (2) + Pu(2)y™ (2) = f(@) + 2 / Y Ade RO
k=0 - ¢ =0 (3.15)
£ [ By 06 w0
P S RwE) + 1@+ [ A R
. ¢ =0 (3.16)
/ ZB]-(m ¢ )t
- SPYECITERY D WICHEVOTASY | s O
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In an operator form

y"(x) = L™y
yk(x) Lm 1
= s > ALT Ty S+ / Z;A@ HF (y()dt

b s (3.18)
X [0 By 0G0
a j—o
Operating with the inverse i.e. L™™ on both sides of equation (3.18), we have

m—1

Lmemy — _Lfm

+ L7 f(x)+ L7 [/\1 /z > A, t)Fi(y(t))dt}
k=0 a =0

+L™ [,\2/ ZB (z,t)G; (y(t))dt

(3.19)
m—1 xz T
y=—-L" + L7 f(x)+ L7 /\1/ ZAi(x, t)Fi(y(t))dt:|
r=0 B (3.20)
+ L™ ,\2/ ZB (z,0)G ))dt]
The Adomian decomposition method introduces the following expressions;
y(@) =D yn(@) (3:21)
n=0
The method defined the non-linear function as
Fi(y(x)) = > (Ci)n (3.22)
n=0
Gi(y(x) = > (Dj)n (3.23)
n=0
L™y =>"E, (3.24)
n=0

Where (Ci)n, (Dj)n and E, are the Canonical polynomials generated in equation(2.17).
Substituting (3.21), (3.22), (3.23), (3.24) into (3.20), we have

m—1

Z yn(m) =-L"

ZE +L " f(a)+ LT [ /ZAi(x>t)§:(Ci)”dt
+L [)\2/ ZBj(x,t)i(Dj)ndt]

(3.25)
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The remaining components of y(z) is completely determined such that each term is computed by
using the previous term as

Yrtr(z) = —L7" +L

/\1/ ZA (z,8)(Cy)gdt
/Zth kdt] k>1

Note, the n — term approximation is given as

Pm( Z P.Ey

+L™

n—1
= (3.26)
n=0
A new recursive scheme is formulated as follows
Yo = Qo
b S
Zal 2" + L7 f(2) / ZA (z, )( dt+)\2/ > Bj(w,t)(D;)dt
a [—

a ;—Q a

4 Numerical Experiments

4.1 Demonstration of modified adomian decomposition method on
an example

Example 1
y'(z) + 2zy(z) :f(x)—&-/oz(x—i—t)yg(t)dt—i—/o (z — t)y(t)dt (4.1)

where
f(z) = (%Zer%) T4 (2 41)e" + (% fe)erg

with condition y(0) = 1. Here comparing equations (4.5) with equations (3.1) and (3.2),we obtain
a=0,b=1, pi(z) =1, p2(z) = 2z and the exact solution is y(z) = €®

Solution

In an operator form

Y (x) = —2zy(z) + flz) + /Ow(x—kt)y?’(t)dt—&-/o (z —t)y(t)dt

Note

L'y(x) = —2zy(z) + f(z) + /Om(:p + )y (t)dt + /Ol(m — t)y(t)dt

L y(@) = —20 ay(e) + L f(w) + L /Oz(m Oyt + L /0 (2 — )y (t)dt
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/0 "y (@) = —2L  ay(@) + L7 () + L7 / “@+ Oyt ()t + 17 / (x — y(t)dt
y(z)lg = —2L_1:cy(x) + L_lf(x) + 7! /Oz(x + t)yg(t)dt + 7! /0 (z — t)y(t)dt

y(@) — 9(0) = 2L 'ay(2) + L~ fz) + L /Oz(m Oy ()t + L /0 (@ — )y (t)dt
but y(0) =1

(@) = 1— 20 ay(a) + L f(z) + L /Oz(x Oy ()t + L /0 (= — Oy(t)dt

n=0
which now becomes

> yn(z) =1-2L" mZyn Y+ L7 f(x)+ 1/ (z+t) ZC )dt+ L~ /(xft)Zyn(:r)dt
n=0 0 n=0

where C),(t) are the canonical polynomials generated in equation (3.19) above
but

yo(t) =y(0) =1
Ykt = —2L 'wy(x) + L7 flx) + L7 UO (z +t)Cr(t)dt +/0 (z — t)yk(as)dt]
when £ =0
y1 =—2L" "zyo(z)+ L™ f(z)+ L~ [/o (x 4+ t)Co(t)dt +/O (x — t)yo(m)dt}
when k> 1 )
Yet1 = L~ {/o (z 4+ t)Cr(t)dt +/O (x — t)yk(m)dt}
Recall that L'(-) = ['(-)

Yo =1

_ -2 1 z © 4
y1 = —2L 'zyo(x) + L' {<?x+§> 4 (2w +1)e" + (g —e> x+ g}

+L7! V;(x +t)Co(t)dt + /Ol(x - t)yo(:v)dt}

Co(t) =1
Ci(t) =t —1
Co(t) =t* —2t+2

x x _ 4
yI:—Z/O xdac—i—/o {(?az—i—%) 4 (2r41)e" + <§—e)x+%] dx
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Y1 = éxQ—l—g— 56314—%6324—2605:1’
e 1o 7 13
e Qx e—|—18x+2x

when k =1

yo=L7" {/Ox(x+t)(tf 1)dt+/01(:v —t)yl(t)dt}

5m 3 2723 e\
TN —1/22° +1/2 (648 7/6e— 81)36

41363z  4xe®  15ze

9720 243 8
x 1
ys =L" [/ (x4 t)(t* — 2t+2)dt+/ (xft)yz(t)dt]
0 0
__m Bl Be L (B4 e @
T240 12 144 1296 12 162

3 3
124607 19e 19e ) e 1/2 ( 41363  2e 15e> 22

1 _Z° _ 22909 2% L 1Y%
+1/3 (38880 12 + 972 19440 243 + 16

The approximate solution is given by

y(x) = yo(x) + y1(2) + y2(2) + y3(2) (4.2)

17 30 32 . . > 451432z 5 b5at

y(z) = 9 +1/62% —2/9¢* "0 4+1/9¢*" 42"z — e —1/22%e + 9720 + oY
2723 e\ o 4dze® 15z 2 5z 3047 Te €\ 4
1/2(648 _7/6e_§> 23 s 240 i TV (06 T2 T e2)®

124607 19  19€®\ 41363 26° | 15e) o
+1/3(38880 2t 972)55 +1/2< 19440_@+W)w

Demonstration of Modified Adomian Decomposition Method on
Example 2

Let us consider the Votterra integro-differential equation
/(@) +ay(e) = @) + [ eyt (43)
0

where

f(z) = —cosz + z cos(z) — z° (_71;5 + w)

with condition y(0) = 1, %’(0) = 0 and the exact solution is y(x) = cos z. Here comparing equations
(4.7) with equations (3.1) and (3.2),we obtaina =0, b =1, po(z) =z, p1(z) =0, p2(z) = 1

Solution

In an operator form, equation (4.7) becomes
Ly(a) = —ay(a) + fla) + [ atery(tyae
0

where L? = " (z)
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Applying L2, it becomes

L7°Ly(z) = —L *[wy(x)] + L™ f(z) + L2 UOZ xgewy(t)dt}

y(x) = y(0) — ¥/ (O + L2f () + L2 [ / ’ xQewy(wdt} L ay(@)]

using the conditions y(0) = 1, %' (0) = 0, we have

(@) =1+ L2 f(2) + L { /0 ’ xzezy(t)dt} L 2ay(a)]

Substituting the decomposition series y(x) = Z yn(z) for y(x) yields
n=0

/Oz z2e® (Z yn(w)> dt:| - LiQ[my(m)]

D yn(z) =1+ L7 f(z) + L7
n=0

yo(w) =1

= L2 {f(x) + /Ow xQezco(t)dt} — L72[:Eyo(x)]

—7/4 —3/2x + cos (z) 4 2 sin (x) — x cos (z) + 1/24 2" + 3/4€” cos (x) + 3/4¢” sin (z) +
1/4¢€" cos (z) 2° — €” cos (z) & — 1/4€” sin (z) 2° 4+ 2°e” — 1/6 2°
3
+cos (z)z® —1/8z* — % +1800 z%e” 4+ 2% — 6z sin (z) — 4320 "z — 12 2°¢” +90 z'e” —

15€® cos (x)

2889
1

480 2°e” — x cos () +

+1/8¢” cos (x) 2° 4 1/8¢” sin (x) 2° — 5/4 " sin (x) 2° +
201 7 6

5/2€” sin (z) x — 5/2¢€” cos (z) x — % + 1308 - {t@ +5040€” — 10 cos (x) + 2 sin (z) 57268z +

45e” cos (x)  45€”sin (z)

5. . 963 z* v
52x cos (x) + 287 x°e” + 1 — 10 cos (z) — 80 sin (z) — 6~ 277200€" —
20135 2.® _ 17e"sin (z) z? _ 17e" cos(z) z? T x5 _ z’ n 3le”sin(z)x  9e” cos (z) x3 B

2% 10 4 4 720 336 2 8
11
v v MO8 g 6er 4 91996067z — 6 sin (z) — 2790 2'e” + 18420 26" —

12960 ~ 90720 4
81360 2°e” 4 cos () 2 4 12 sin (z) 2 — 1/16 e” cos (z) 2" +1/16 e” sin () z* — cos (x) 2° +5/6 2" "

The approximate solution is given by

y(@) = yo(@) + y1(2) + y2(x) + y3(z) (4.4)

y(x) = (231955/4) x &+ 52 x x X cos(x) + 299 x z° x exp(z) + (33/4) x exp(x) x cos(z) — (21/2) x
exp(z) x sin(x) + cos(x) — 80 x sin(x) — (2881/48) x x* — 282240 x exp(z) — (5033/6) x x° + (3/2) x
exp(x) x cos(z) x & — (13/4) x exp(z) x sin(x) x ©° — 4 x exp(z) X cos(zx) x z* — (1/240) x 2° —
(1/252) x =" — (1/8) x exp(x) x sin(z) x & + 13 x exp(x) x sin(z) x x + exp(x) X cos(z) x z° —
(1/12960) x z° + (1/90720) x 20— (39/2) x 2 x exp(x) + 224280 x exp(x) x x — 2880 x z* x exp(x) +
18900 x z* x exp(z) — 83160 x z° x exp(x) + 12 x sin(z) x «° — (1/16) x exp(x) x cos(x) x =" +
(1/16) x exp(x) x sin(x) x z* — cos(x) x z° + (5/6) x " x exp(x) + 1128927 /4
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5 Table of Results

Table 1. Approximate solutions of ADM and M ADM methods

T

Exact Solution

ADM SOLUTION

MADM SOLUTION

0

1

1

1

0.1

1.105170918

1.106584571

1.105099699

0.2

1.221402758

1.232265285

1.226644901

0.3

1.349858808

1.38138354

1.370958679

0.4

1.491824698

1.555642294

1.544556869

0.5

1.648721271

1.752621335

1.752602717

0.6

1.822118800

1.996767498

1.963593484

0.7

2.013752707

2.271661348

2.170330117

0.8

2.225540928

2.559078232

2.340455296

0.9

2.459603111

2.420727359

2.818867744

1.0

2.718281828

2.3273762

2.974691362

Table 2. Absolute error of example 1

x | Absolute Error for MADM | Absolute Error for ADM

0 0 0

0.1 1.4137 x 1073 7.1219 x 10~°

0.2 1.0863 x 102 5.2421 x 1073

0.3 3.1525 x 1072 2.1100 x 10~2

0.4 6.3818 x 1072 5.2732 x 1072

0.5 1.0390 x 10~ T 1.0388 x 10~ T

0.6 1.7465 x 1071 1.1415 x 1071

0.7 2.5791 x 1071 1.5658 x 10~T

0.8 3.3354 x 1071 1.1150 x 107!

0.9 3.8876 x 1071 3.5926 x 1071

1.0 3.9091 x 10~ T 2.5641 x 1071

Table 3. Solution OF example 2

z | Exact solution | ADM SOLUTION [ MADM SOLUTION
0 1 1 1
0.1 | 0.9999984769 0.9949635001 0.995035117
0.2 | 0.9999939077 0.980428129 0.9811427381
0.3 | 0.9999862922 0.9611371238 0.958049452
0.4 | 0.9999756307 0.9486963588 0.933130990
0.5 | 0.9999619231 0.9702455385 0.916434756
0.6 | 0.9999451694 0.927343582 1.078590085
0.7 | 0.9999253697 1.368195179 0.997532716
0.8 | 0.9999025240 1.997170465 1.175560711
0.9 | 0.9998766325 3.222169017 1.532907813
1.0 | 0.9998476952 2.170869744 5.445197827
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Table 4. Absolute error for example 2

z | ADM ABSOLUTE ERROR | MADM ABSOLUTE ERROR
0 0 0

0.1 5.03498 x 10~3 4.9634 x 10~3
0.2 1.9566 x 10~2 1.8851 x 102
0.3 3.8849 x 102 4.1937 x 1072
0.4 5.1279 x 102 6.6845 x 102
0.5 2.9716 x 10~2 8.3527 x 102
0.6 7.2602 x 1072 7.8645 x 1073
0.7 2.3927 x 1073 3.6827 x 1071
0.8 9.9727 x 1071 1.7566 x 10T
0.9 2.2223 x 107 5.3303 x 1071
1.0 1.1710 x 10! 4.4454 x 10T

Conclusion

In this paper, Adomian decomposition method and Modified Adomian decomposition method was
used to solve linear and non-linear Volterra-Fredholm integro-differential equations. From the tables
of results, we observed that Modified Adomian decomposition method is more efficient, reliable and
less computational in terms of cost.
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