
Asian Research Journal of Mathematics

17(2): 125-144, 2021; Article no.ARJOM.67678

ISSN: 2456-477X

A Bioeconomic Analysis of a Renewable Resource in
the Presence of Illegal, Unreported and Unregulated

Fishing

Mahmud Ibrahim1∗

1Department of Mathematics, University of Cape Coast, Cape Coast, Ghana.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2021/v17i230279
Editor(s):

(1) Prof. Megan M. Khoshyaran, Economics Traffic Clinic - ETC, France.
Reviewers:

(1) Asti Meiza, Indonesia.
(2) James Edward Curtis Jr, JECJEF University, USA.

(3) Rohul Amin, University of Peshawar, Pakistan.
Complete Peer review History: http://www.sdiarticle4.com/review-history/67678

Received: 01 March 2021

Accepted: 03 May 2021

Original Research Article Published: 07 May 2021

Abstract

The issue of illegal, unreported and unregulated (IUU) fishing is of prime concern to fisheries
in developing countries where the regulatory regimes are often weak. This study proposes
a Gordon-Schaefer bioeconomic model with non-constant catchability and nonlinear cost to
study the impact of IUU fishing on the stock size of a marine fishery in Ghana. The static
equilibrium reference points of the model are established and discussed. Bifurcation analysis
on the modified Schaefer model shows the existence of a transcritical bifurcation point were
the model is structurally unstable. Pontryagin’s maximum principle is employed to investigate
the necessary conditions of the model, and also established are the sufficiency conditions that
guarantee the existence and uniqueness of the optimality system. The characterization of the
optimal control gives rise to both the boundary and interior solutions, with the former indicating
that the resource should be harvested if and only if the marginal revenue of harvest exceeds the
marginal revenue of stock. Numerical simulations with empirical data on the Ghana sardinella
are carried out to validate the theoretical results. It is shown that IUU fishing leads to excessive
exploitation of the resource biomass to levels below 50% of the carrying capacity. This has the
tendency of making the fishery unsustainable, with its concomitant loss of revenue to fishers.
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1 Introduction

The marine fishing industry plays a vital socioeconomic role in Ghana and comprises three sectors,
namely artisanal, semi-industrial and industrial. Among these sectors, the artisanal sector is the
most prominent in terms of the number of fishers and the quantum of catches. The artisanal
fishery sector is open access with minimal or nonexistent regulatory framework. This open access
nature of the fishery breeds unhealthy competition among the fishermen, with the mentality of
each fisherman being, “If I don’t catch the fish, someone else will or might!” [1]. It is therefore
not surprising that faced with dwindling fish stocks, individual fishermen would resort to extreme
measures to outperform the competition. These measures include the use of under-sized mesh gears,
use of light (or attractants) in fishing, use of explosives like dynamites, and use of chemicals.

To buttress this fact, Koranteng [2] says it is common practice for fishermen operating in an over-
exploited and poorly managed fishery to use smaller-sized meshes as a means to increase their
catch. Pauly et al. [3] and Pauly [4] describe such a scenario as Malthusian overfishing, which
is a situation where “poor fishers, faced with declining catches and lacking any other alternative,
initiate wholesale resource destruction in their effort to maintain their incomes”. Pauly et al. give
the symptoms of Malthusian overfishing as: (i) use of gears and mesh sizes that are not sanctioned
by government, (ii) use of gears not sanctioned within the fisher-folk communities, (iii) use of gears
that destroy the resource base, and (iv) use of ‘gears’ such as dynamite or sodium cyanide that
compromise the marine habitat as well as endangering the fisher-folks themselves [2, 5].

The few Government regulations on the artisanal fishery sector include adherence to a minimum
mesh size of 25 millimeters, approximately one inch, in stretched diagonal length. This regulation
has been wantonly disregarded by the fishermen, rendering it ineffective. The main argument
advanced by the fishermen is that the minimum size of 25 millimeters in stretched diagonal length
cannot catch some of the targeted species like anchovies. Thus, they continue to use unapproved
mesh sizes to disastrous consequences for the artisanal fishery sector [6].

The assumption of constant catchability coefficient in the standard Gordon-Schaefer bioeconomic
model [7, 8] is at variance with technological aspects of the evolution of fishing power. Improvement
in the design of fishing gear, such as the use of synthetic fibers coupled with technologies for fish
detection, leads to increased precision in the application of fishing power, which is rarely explicitly
considered when standardizing fishing effort [9, 10, 11]. Furthermore, while the effects of climatic
conditions induced by global warming on the decline of the sardinella fishery could not be discounted,
excessive exploitation by fishermen through the use of fishing gear with unapproved mesh sizes and
also the use of attractants exacerbates the problem. To investigate this claim, sensitivity analysis
is performed on the catchability parameter in the proposed model.

There is a dearth of literature on modeling the effects of illegal, unreported and unregulated (IUU)
fishing on marine ecosystems of developing countries. Petrossian [12] contends that IUU fishing
negatively impacts the ecosystem and poses a threat to the livelihoods of those who depend on it
for their sustenance. Fishers indulging in IUU fishing is the main contributor to overexploitation
of marine species, and also hinders the recovery of the biomass and ecosystems [13]. Therefore, a
bioeconomic model with a quadratic cost function of fishing effort is developed to assess the possible
impact of the use of these IUU fishing practices on specifically the catchability of the sardinella. This
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quadratic cost function is a modification of the linear cost function usually employed in resource
modeling. See, for example, studies conducted by Kar and Misra [14] and Dubey et al. [15]. Also
novel to this present work is the discussion of the relationship between the shadow price and the
net revenue per unit harvest as it relates to the optimal fishing effort. Formulation of the optimal
control model comprising the biomass dynamics as well as the full bioeconomic model is outlined
in Section 2. In Section 3, the dynamical properties of the model are explored through bifurcation
analysis. In addition to characterizing the optimal control, the existence and uniqueness of the
optimality system are portrayed in Section 4. Simulations employing empirical data on the Ghana
sardinella fishery are presented in Section 5 while the summary and conclusions are discussed in
Section 6.

2 Formulation of Model

The formulation of model takes into account the biological considerations as well as the economic
objectives of fisheries management. Firstly, the biological dynamics are modelled taking cognizance
of the impact of IUU fishing practices on the catchability of the fishery. Secondly, the complete
bioeconomic model is formulated incorporating a quadratic cost function of the fishing effort, as
opposed to the usual linear cost function.

2.1 The biomass dynamics

The catchability coefficient can be thought of conceptually as the probability of any single fish
being caught. Catchability is also called fishing power, or sometimes gear efficiency [16]. Sensitivity
analysis on the catchability coefficient of the model is performed to simulate the effects of IUU
fishing on the fish stock.

The constant catchability coefficient q in the Schaefer model is replaced by q(1 + θ), where θ
(0 ≤ θ ≤ 1) is a proportion of the catchability and measures the effect of IUU fishing – under-sized
mesh gears, light fishing, explosives and chemicals – on the level of biomass. Thus, the values of θ
range from 0 (no IUU fishing) to 1 (extreme IUU fishing).

Therefore, the biological dynamics of the proposed model, also referred to as the modified Schaefer
model, can be formulated as

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− q(1 + θ)E(t)x(t) , x(0) = x0, (2.1)

where x(t) is the biomass of the fish population (or stock size) at time t, x0 is the initial stock
size and r is the intrinsic growth rate of fish stock. In addition, E(t) is the time-dependent rate of
fishing effort while K represents the carrying capacity for the ecosystem [17, 18].

Note that the harvest or yield is given by

hθ(t) = q(1 + θ)E(t)x(t). (2.2)

There are two equilibrium points associated with Equation (2.1); namely, 0 and a positive equilibrium
point

xeqm = K

(
1− q(1 + θ)E

r

)
, (2.3)

provided that E <
r

q(1 + θ)
.
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When E ≥ r

q(1 + θ)
, xeqm ≤ 0 and the population goes into extinction. Therefore, E =

r

q(1 + θ)
is

a transcritical bifurcation point for the modified model. Thus the bifurcation point decreases with
increasing values of θ. It is worth noting that the bifurcation point of the standard Schaefer model

(where θ = 0) is E =
r

q
.

The maximum sustainable yield (MSY) corresponds to the level of harvesting that maximizes the
sustainable yield. That is, in theory, the maximum harvest which can be maintained indefinitely.

Substituting Equation (2.3) into Equation (2.2) gives the sustainable yield

hθ
S = q(1 + θ)EK

(
1− q(1 + θ)E

r

)
. (2.4)

The effort that maximizes the sustainable yield hθ
S is found as

Eθ
MSY =

r

2q(1 + θ)
. (2.5)

The value of MSY, denoted hθ
MSY , is found by plugging Equation (2.5) into Equation (2.4). Hence,

hθ
MSY =

rK

4
(2.6)

and the biomass level at the MSY is

xθ
MSY =

K

2
.

It must be noted that when θ = 0, Eθ
MSY reduces to the canonical Schaefer model reference point

EMSY . Of course, hθ
MSY and xθ

MSY are exactly the corresponding reference points hMSY and
xMSY , respectively. For further details, see Ibrahim [19].

Consequently,

Eθ
MSY =

r

2q(1 + θ)
=

1

1 + θ
EMSY . (2.7)

Thus, as noted in Equation (2.2), the yield will now become

hθ = q(1 + θ)Ex

= qEx(1 + θ)

= h(1 + θ).

This implies that, to ensure sustainability of the resource (attaining equilibrium) at the MSY level
when the catchability is increased by θ, the accompanying effort level Eθ

MSY should be reduced to

a value that is
1

1 + θ
of the EMSY . Otherwise, the harvests hθ would be a value hθ greater than

the harvests without any increase in catchability, h. Furthermore, xθ would be less than xMSY .
For more information on a modified catchability, see Mackinson et al. [20].

2.2 The bioeconomic model

Incorporating economic parameters into the afore-mentioned biological model gives the static Gordon-
Schaefer bioeconomic model. The net revenue is the difference of total sustainable revenue TRS

and total cost TC, where TC is taken to be a quadratic function of E. That is,

TC = c1E +
c2
2
E2,
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where c1 and c2 are the cost components relating to the effort. As stated by Hanson and Ryan [21],

the additional quadratic cost term
c2
2
E2 may be seen as a perturbation on the usual linear cost,

c1E. It may also be viewed as a technique to avoid complexities inherent in the characterization of
singular controls. The assumption is that both c1 and c2 are strictly positive, thereby making the
costs to be monotonically increasing and growing rapidly than the corresponding linear costs (see
Figure 1). Clark and Munro [22] as well as Sancho and Mitchel [23] asserted that quadratic costs
are more in tune with reality than linear costs. Furthermore, the employment of a quadratic costs
leads to the derivation of an explicit optimal control [24]. This is in contrast to linear costs, which
give rise to bang-bang or singular controls [19].

Operating under an open-access regime where there is little or no regulation of the resource, effort
E tends to a level where the sustainable economic rent (or net revenue) πS is zero. This gives rise
to what is known as open access yield (OAY). It must be noted that the OAY is also known as
bionomic equilibrium (BE). The sustainable net revenue is given by

πS = phθ
S − c1E − c2

2
E2

= pq(1 + θ)EK

(
1− q(1 + θ)E

r

)
− c1E − c2

2
E2, (2.8)

where p is the price per unit harvest.

Setting Equation (2.8) to zero gives

Eθ
OAY =

2r [pq(1 + θ)K − c1]

2pq2(1 + θ)2K + rc2
, (2.9)

where pq(1 + θ)K > c1. Note that Eθ
OAY reduces to the standard Gordon-Schaefer reference point

EOAY when θ = 0 and c2 = 0.

The biomass level xθ
OAY associated with Eθ

OAY is given by

xθ
OAY = K

(
1− q(1 + θ)Eθ

OAY

r

)
. (2.10)

The corresponding harvest level is

hθ
OAY = q(1 + θ)Eθ

OAY xθ
OAY . (2.11)

The level of harvesting that maximizes the sustainable net revenue is known as the maximum
economic yield (MEY). The effort level that maximizes the net revenue is found from Equation (2.8)
as

Eθ
MEY =

r [pq(1 + θ)K − c1]

2pq2(1 + θ)2K + rc2
. (2.12)

Also, Eθ
MEY reduces to the Gordon-Schaefer reference point EMEY when θ = 0 and c2 = 0, as well

as being 50% of Eθ
OAY .

The associated biomass level is

xθ
MEY = K

(
1− q(1 + θ)Eθ

MEY

r

)
, (2.13)

and the corresponding harvest level is

hθ
MEY = q(1 + θ)EMEY xMEY . (2.14)
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Therefore, the optimal control problem is to maximize the present value (or discounted value) of
the net revenue, and can be expressed as:

max
E

J(E) =

∫ ∞

0

e−δt
(
pq(1 + θ)x− c1 −

c2
2
E
)
E dt

subject to
dx

dt
= rx

(
1− x

K

)
− q(1 + θ)Ex (2.15)

x(0) = x0

0 ≤ E ≤ Emax.

For this study, the biological parameter values employed are r = 1.42/year, q = 1.8×10−6/trip/year
andK = 1×106 tonnes. The economic values are given by p = $600/tonne and c1 = $195/trip/year [25].
In addition, the discount rate δ is assumed to be 0.15/year. Note that the currency is denominated
in United States dollars.

The linear and quadratic costs are depicted in Fig. 1. The perturbation in the linear costs is such
that when the effort is at the MSY level, the quadratic costs are 25% greater than the linear costs.
Therefore, c2 is computed as

c2 = 2

(
0.25c1
EMSY

)
= $2.47× 10−4/trip2/year .
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Fig. 1. Linear and quadratic costs

3 Bifurcation Analysis

When the parameter of a dynamical system is varied, it usually leads to a change in the number
of equilibrium points or the stability properties of the system. This phenomenon is known as a
bifurcation. The solution trajectories for the various scenarios depicting the effects of the variation
in catchability on the fish stock are presented.
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Fig. 2. Some solution trajectories when E = 394, 444 and θ = 0

The case where E = EMSY = 394, 444 trips with no variation in catchability, θ = 0, is shown in
Fig. 2. The system is structurally stable because there are two hyperbolic equilibrium points: 0
and xeqm = xMSY = 500, 000 tonnes. For biomass levels x0 > xMSY and 0 < x0 < xMSY , the
population asymptotically approaches xMSY . Therefore, the zero stock size is unstable while xMSY

is stable. Furthermore, an effort rate of EMSY leads to a stock size that is exactly half the carrying
capacity.
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Fig. 3. Some solution trajectories when E = 394, 444 and θ = 0.5

Solution trajectories depicting a variation in catchability, θ = 0.5, are presented in Fig. 3. There
are two hyperbolic equilibrium points: 0, which is unstable and xθ = 250, 000 tonnes, which is
stable. For x0 > xθ and 0 < x0 < xθ, the population asymptotically approaches xθ. This implies
that an increase in catchability of 50% is equivalent to fishing at an effort rate Eθ that is one and
a half times the effort rate at EMSY . This induces a long-term decline in fish stocks to a level
that is 50% of xMSY . Note that, even though the effort rate E = Eθ = 394, 444 trips is greater
than Eθ

MSY = 262, 963 trips, this model is structurally stable as the effort rate is still less than
both the bifurcation points of the modified and standard models, 525, 926 trips and 788, 889 trips,
respectively.
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Fig. 4. Some solution trajectories when E = 394, 444 and θ = 1

Fig. 4. portrays an extreme scenario where the catchability is doubled (θ = 1). This implies that
an increase in catchability of 100% is equivalent to fishing at an effort rate that is twice the effort
rate at EMSY (see Equation (2.7)). Fishing at two times of EMSY corresponds to the bifurcation
point of the standard model. Thus, for any x0 > 0 the population approaches the nonhyperbolic
equilibrium population, 0. Therefore at the bifurcation point (2 × EMSY ), the single equilibrium
biomass level 0 is semi-stable (making the system structurally unstable). Hence, for any initial
biomass level, the long-term population of fish stock is towards extinction. It is instructive to note
that when θ = 1, Eθ = 394, 444 trips exactly equal the bifurcation point of the modified model.
However, to ensure sustainability of the resource (xMSY = xθ

MSY = 500, 000 tonnes) in the modified
model, Eθ

MSY must be set 197, 222 trips (assuming zero costs and zero discounting).

4 Analysis of Optimal Control Problem

The sufficiency conditions are investigated and discussed in this section. In particular, the existence
of an optimal control is determined. Also, the characterization of the optimal control and the
existence and uniqueness of the optimality system are investigated.

4.1 Existence of optimal control

The stated goal is to maximize the present-value of the net revenue. Therefore, an optimal control
E∗ is sought that maximizes the objective functional over the Lebesgue measurable control set

U = {E | 0 ≤ E(t) ≤ Emax, t ∈ [0,∞)}.

In the course of solving an optimal control problem, there is the need to investigate and verify
necessary and sufficient conditions that ensure optimality of the problem. A sufficiency condition
for the existence of an optimal control to Problem (2.15) is given in Theorem 4.1 [26, 27].

Theorem 4.1. Given the control problem (2.15), there exists an optimal control E∗ that maximizes
the objective functional J(E) over the control set U if the following conditions are satisfied:

(i) The class of all initial conditions with a control E in the admissible control set together
with the state system is nonempty.
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(ii) The control set U is closed and convex.

(iii) The right hand side of the state system is bounded above by a linear function involving the
state and control variables.

(iv) The integrand of the objective functional is concave on U .

(v) There exist constants w1, w2 > 0 and η > 1 such that the integrand f(t, x, E) of the
objective functional satisfies

f(t, x, E) ≤ w1 − w2|E|η.

Proof. To prove the theorem, the given conditions are established as follows:

Regarding the first condition, the Picard-Lindelof existence theorem [28] guarantees the existence
and uniqueness of a solution to a state equation with bounded coefficients.

By definition, the control set U is closed and convex. This verifies condition 2. For verification of
condition 3, the comparison theory of differential equations is applied to determine the boundedness
of the solution to the state equation. Since

x′ = rx
(
1− x

K

)
− q(1 + θ)Ex ≤ rx

(
1− x

K

)
for 0 ≤ t < ∞ and x0 > 0, then

x′ ≤ rx
(
1− x

K

)
= rx− rx2

K
.

For x′ ≥ 0,

0 ≤ rx− rx2

K
,

and

0 ≤ rx2

K
≤ rx.

Thus,
0 ≤ x(t) ≤ K.

Additionally, the right hand side of the state equation can be expressed as

S(t, x, E) = rx
(
1− x

K

)
− q(1 + θ)Ex ≤ rx ≤ rK.

Hence the bound on the right hand side can be written as

S(t, x, E) ≤ rK.

To prove that the integrand of the objective functional is concave on U , let f(t, x, E) = e−δtL(t, x, E) =

e−δtpq(1 + θ)xE − c1E − c2
2
E2. Then f(t, x, E) ≤ L(t, x, E), since e−δt > 0 for t ≥ 0.

Using the convex property of E, for 0 ≤ m ≤ 1 and E1, E2 ∈ U , it implies that

mE2
1 + (1−m)E2

2 ≥ [mE1 + (1−m)E2]
2.

Therefore, the objective is to show that, for 0 ≤ m ≤ 1,

mf(t, x, E1) + (1−m)f(t, x, E2) ≤ f(t, x,mE1 + (1−m)E2),

or
mL(t, x, E1) + (1−m)L(t, x, E2) ≤ L(t, x,mE1 + (1−m)E.
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This proof starts by observing that the difference ofmL(t, x, E1)+(1−m)L(t, x, E2) and L(t, x,mE1+
(1−m)E2) is given by

mL(t, x, E1) + (1−m)L(t, x, E2)− L(t, x,mE1 + (1−m)E2)

= mpq(1 + θ)xE1 −mc1E1 −m
c2
2
E2

1 + (1−m)pq(1 + θ)xE2 − (1−m)c1E2 − (1−m)
c2
2
E2

2

− pq(1 + θ)x[mE1 + (1−m)E2] + c1[mE1 + (1−m)E2] +
c2
2
[mE1 + (1−m)E2]

2.

Simplifying the right-hand-side gives

−c2
2
{mE2

1 + (1−m)E2
2 − [mE1 + (1−m)E2]

2} ≤ 0,

since from the convexity of E,

mE2
1 + (1−m)E2

2 − [mE1 + (1−m)E2]
2 ≥ 0.

Hence
mL(t, x, E1) + (1−m)L(t, x, E2) ≤ L(t, x,mE1 + (1−m)E2).

This verifies condition 4.

The final verification is condition 5. Since x and E are bounded, there exists a B > 0 such that
x ≤ B and E ≤ B on [0,∞), where B = max(K,Emax). Therefore,

pq(1 + θ)xE − c1E − c2
2
E2 ≤ pq(1 + θ)B2 − c2

2
E2

≤ w1 − w2E
2,

where
w1 = pq(1 + θ)B2, w2 =

c2
2

and η = 2 .

To show that the objective functional is convergent as t → ∞, let w1 − w2E
2 = G. Then∫ ∞

0

e−δt
(
pq(1 + θ)x− c1 −

c2
2
E
)
E dt ≤

∫ ∞

0

e−δtGdt =
G

δ
.

4.2 Characterization of optimal control

In this section, the optimal control is characterized – obtaining an explicit formulation for the
optimal control level – as well as determining the optimality system. Having established the
existence of an optimal control to Problem (2.15), the necessary conditions for the control are
derived using Pontryagin’s maximum principle [29].

Theorem 4.2. Given an optimal control E∗ and a solution to the corresponding state equation,
there exists an adjoint variable λ satisfying

λ′ =

(
δ − r +

2rx

K

)
λ− (p− λ)q(1 + θ)E, (4.1)

and the transversality condition
lim
t→∞

λ(t) = 0 .

Furthermore, E∗ can be represented as

E∗ = min

(
Emax,

(
(p− λ)q(1 + θ)x− c1

c2

)+
)
,
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where the notation [27, 30] is given by

n+ =

{
n if n > 0,
0 if n ≤ 0 .

Proof. The current value Hamiltonian for the optimal control problem (2.15) is

H =
(
pq(1 + θ)x− c1 −

c2
2
E
)
E + λ

[
rx
(
1− x

K

)
− q(1 + θ)Ex

]
. (4.2)

Therefore, Equation (4.1) is obtained from the following adjoint equation:

λ′ = δλ− ∂H

∂x
.

The optimality condition is given by

∂H

∂E
= pq(1 + θ)x− c1 − c2E − λq(1 + θ)x = 0.

Thus,

E∗ =
(p− λ)q(1 + θ)x− c1

c2
. (4.3)

The characterization of the optimal control is
E∗ = 0 if ∂H

∂E
< 0,

0 ≤ E∗ ≤ Emax if ∂H
∂E

= 0,
E∗ = Emax if ∂H

∂E
> 0.

Employing standard arguments regarding the bounds on the control, the following ensures:

E∗ = 0 if
∂H

∂E
< 0.

This implies
pq(1 + θ)x− c1 − c2E − λq(1 + θ)x < 0,

and so
(p− λ)q(1 + θ)x− c1

c2
< E∗ = 0.

Thus,
(p− λ)q(1 + θ)x− c1

c2
< 0.

Similarly,

E∗ = Emax if
∂H

∂E
> 0.

This shows that
pq(1 + θ)x− c1 − c2E − λq(1 + θ)x > 0,

implying
(p− λ)q(1 + θ)x− c1

c2
> E∗ = Emax.

Thus,
(p− λ)q(1 + θ)x− c1

c2
> Emax.

Therefore,

E∗ =


0 if

(p− λ)q(1 + θ)x− c1
c2

< 0,

(p− λ)q(1 + θ)x− c1
c2

if 0 ≤ (p− λ)q(1 + θ)x− c1
c2

≤ Emax,

Emax if
(p− λ)q(1 + θ)x− c1

c2
> Emax.
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Hence, the optimal fishing effort can be written as

E∗ =


0 if λ > p− c1

q(1 + θ)x
,

(p− λ)q(1 + θ)x− c1
c2

if p− (c1 + c2Emax)

q(1 + θ)x
≤ λ ≤ p− c1

q(1 + θ)x
,

Emax if λ < p− (c1 + c2Emax)

q(1 + θ)x
.

Therefore, the optimal control consists of both the boundary solution (where constraints are binding)
and the interior solution. The former implies that the resource should be harvested provided that
the net revenue per unit harvest (or marginal revenue of harvest) due to the application of maximum
effort exceeds the current value shadow price of the resource (or marginal revenue of stock) [31].

In compact form,

E∗ = min

(
Emax,

(
(p− λ)q(1 + θ)x− c1

c2

)+
)
.

The optimality system consists of the characterized optimal control, state and adjoint equations
together with the initial and transversality conditions [32].

Therefore,

x′ = rx
(
1− x

K

)
− q(1 + θ)min

(
Emax,

(
(p− λ)q(1 + θ)x− c1

c2

)+
)
x,

λ′ =

(
δ − r +

2rx

K

)
λ− (p− λ)q(1 + θ)min

(
Emax,

(
(p− λ)q(1 + θ)x− c1

c2

)+
)
,

with x(0) = x0 and lim
t→∞

λ(t) = 0 .

The uniqueness of the optimal control is investigated, since Theorem 4.1 establishes the existence
of the control. Given the a priori boundedness of the state and adjoint equations together with the
state equation being continuously differentiable, the mean value theorem ensures that the Lipschitz
condition is satisfied by the state equation with respect to the state variable. This guarantees
the uniqueness of the optimality system for small time intervals as result of the opposite time
orientations of the state and adjoint equations. Furthermore, the uniqueness of the solutions of the
optimality system guarantees uniqueness of the optimal control [32, 33, 34].

5 Simulations

Simulations are carried out using the Forward-Backward Sweep method outlined in Lenhart and
Workman [32]. As the name of the method indicates, the state equation is solved forward in time
while the adjoint equation is solved backward in time in order to achieve convergence.

In the standard Gordon-Schaefer model (where θ = 0 and c2 = 0) the optimum sustainable yield
(OSY) is found to be 351, 328 trips per annum [19]. Therefore to ensure sustainability of the
resource, the annual effort rate of the quadratic model should be less than 351, 328 trips (since the
higher fishing costs in the quadratic model have the tendency to reduce effort rate). To ensure the
sustainability of the quadratic model, the sustainable yield (SY) must be pegged at 315, 000 trips
per annum.
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The model is subjected to numerical simulations with the maximum fishing effort initially set at
the SY level, ESY and the results illustrated graphically. Also considered is the case of Eθ

MEY

with no variation in catchability. That is, let Eθ
MEY with θ = 0 and c2 ̸= 0 be represented by

E0
MEY = 296, 380 trips (see Equation (2.12)). Firstly, simulations are carried out with a fixed initial

biomass level (and no variation in catchability) while varying the rate of fishing effort. Secondly,
the model is simulated for a fixed rate of fishing effort while varying the catchability coefficient to
take into account the illegal and unapproved fishing methods practiced by the fishermen.

In the simulations, a time horizon of 20 years was employed in scenarios where the fishery was
found to be sustainable; that is, achieved equilibrium. The transversality condition ensures that
the shadow price at the terminal time T is zero, since any resource not depleted at the end of the
planning horizon must have zero value [35].

5.1 Long-run dynamics of model

The long-run scenario, as shown in Fig. 5, depicts fishing at a maximum effort rate of 315, 000 trips
(SY effort rate) and an initial biomass level of 550, 000 tonnes. From an initial value of $346.35,
the shadow price steadily decreases and after a few years sharply declines to zero. However, the
net revenue of $346.35 is almost constant for the entire horizon. The fact that the shadow price
is lower than the net revenue for the majority of the horizon indicates that the marginal revenue
of harvest exceeds the marginal revenue of stock. It is therefore in the fishermen’s best interest to
apply the maximum available effort in harvesting.
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Fig. 5. Shadow price and net revenue for x0 = 550, 000, θ = 0 and Emax = 315, 000

In Fig. 6, it is observed that when the maximum effort rate Emax is set at the MEY and SY
levels, the optimal effort rates settle down at their respective equilibrium levels. Starting at about
245, 827 trips, the effort rate for E0

MEY increases rapidly and stabilizes at a final value of around
296, 310 trips. Meanwhile, the effort rate for ESY starts much lower at 227, 634 trips and converges
to 314, 923 trips. Similarly, the biomass levels for MEY and SY increase and converge to the
equilibrium values of 624, 491 tonnes and 600, 899 tonnes respectively. The total net revenues
corresponding to the effort levels at MEY and SY are computed as $806, 620, 000 and $809, 690, 000,
respectively.
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Fig. 6. Effort strategies and biomass levels for x0 = 550, 000, θ = 0 and Emax = 296, 380
versus Emax = 315, 000

Fig. 7 shows that the initial shadow price, $220.92, is significantly lower than the net revenue,
$455.06. Furthermore, at the final horizon, the net revenue is $440.90 while the shadow price tends
to zero. This shows that it is optimal to exert the maximum effort for the entire horizon, as the
revenue far exceeds the shadow price.
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Fig. 7. Shadow price and net revenue for x0 = 750, 000, θ = 0.25 and Emax = 200, 000

In Fig. 8, the optimal effort rates follow the same path of around 200, 000 trips regardless of the
catctability level of the fishery. However, the fish biomass levels decrease for both catchability
levels θ = 0 and θ = 0.25 to their respective equilibrium values 746, 603 tonnes and 683, 253 tonnes.
This shows that an increase in catchability while maintaining the same fishing effort has an adverse
effect on the resource biomass. The total net revenues for θ = 0 and θ = 0.25 are $743, 540, 000
and $905, 340, 000, respectively. In other words, a 25% increment in the catchability results in a
revenue increase of about 22% and a decrease in final biomass level of 8%.
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Fig. 8. Effort strategies and biomass levels for x0 = 750, 000, Emax = 200, 000 and θ = 0
versus θ = 0.25

Fig. 9. shows that the optimal effort rates follow the same trajectory of around 200, 000 trips
for both catchability levels throughout the horizon. On the other hand, the fish biomass levels
decrease for the catchability levels θ = 0.5 and θ = 0.75 to the equilibrium values 619, 904 tonnes
and 556, 555 tonnes, respectively. The total net revenues corresponding to θ = 0.5 and θ = 0.75
are respectively $1, 031, 000, 000 and $1, 121, 500, 000. Thus, a 50% increment in the catchability
results in a revenue increase of 9%, and a decrease in final biomass level of 10%.
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Fig. 9. Effort strategies and biomass levels for x0 = 750, 000, Emax = 200, 000 and θ = 0.5
versus θ = 0.75

139



Ibrahim; ARJOM, 17(2): 125-144, 2021; Article no.ARJOM.67678

Fig. 10. shows that the initial shadow price, $346.14, is significantly lower than the net revenue,
$509.41 making it worthwhile to harvest at the maximum effort rate. After some years, the
shadow price and the net revenue attain the same value of $469.25. Subsequently, the shadow
price plummets to zero while the net revenue ends at $462.60. Thus, the optimal control alternates
between the interior and boundary controls. This shows that it is not optimal to exert the maximum
effort at the middle portion of the horizon.
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Fig. 10. Shadow price and net revenue for x0 = 750, 000, Emax = 200, 000, θ = 1 and
T = 9

In Fig. 11, the optimal effort rates follow the same trajectory of almost 200, 000 trips for both
catchability levels throughout the nine-year horizon, except for a brief period where it is almost
convex and attaining a minimum value of 190, 748 trips for θ = 1. The biomass decreases for the
catchability levels θ = 0.75 and θ = 1 to 556, 672 tonnes and 494, 515 tonnes, respectively. It is
noteworthy that when θ = 1, the iterates failed to converge beyond a time horizon of nine years.
The total net revenues for θ = 0.75 and θ = 1 are $889, 200, 000 and $941, 440, 000, respectively.
Therefore, a 33% increment in the catchability results in a revenue increase of 6%, and a decrease
in final biomass level of 11% (with no equilibrium or sustainable level achieved for θ = 1).
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Fig. 11. Effort strategies and biomass levels for x0 = 750, 000, Emax = 200, 000 and
θ = 0.75 versus θ = 1
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5.2 Sensitivity analysis on discount rate

The plots in Fig. 12. portray the net revenue against the modification on the catchability coefficient
θ for a time horizon of twenty years. The figure depicts a scenario where the discount rate δ varies
from 0 to 15% per year. When δ is 15% per year, the net revenue curve is concave, starting from a
value of $743, 540, 000 at θ = 0 and increasing to a maximum value of $1, 106, 200, 000 at θ = 0.7.

Similarly, when the discount rate δ is 0 per year, the net revenue curve is concave, starting from
$2, 346, 300, 000 and increasing to a maximum of $3, 371, 700, 000 at θ = 0.7. The curve for δ = 0
is always above the curve for δ = 0.15 for the given values of θ. In addition, the maximum revenue
when δ = 0 is 67% greater than when δ = 0.15.
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Fig. 12. Plot of net revenue against θ for T = 20 and δ = 0 versus δ = 0.15

6 Concluding Remarks

This work has investigated the fishing effort strategies for the sardinella fishery under the modified
Gordon-Schaefer model in order to determine the optimal strategy. Dynamics of the fish biomass
were modeled using a modified Schaefer equation, and bifurcation analysis performed on this model
with a variation in the catchability coefficient. Furthermore, the objective functional of the canonical
Gordon-Schaefer model was subjected to a modification. Instead of the linear costs in the model,
a more realistic cost option – quadratic costs – was considered. The reference points under this
modified model, namely the MSY, MEY and OAY, were determined. It was realized that when the
proportion of variation in catchability is zero and the coefficient of the quadratic cost term is also
zero, the reference points for the modified model reduce to the standard Gordon-Schaefer model
reference points. The existence of an optimal control was proven as well as the control characterized
using Pontryagin’s maximum principle. Uniqueness of the optimality system is guaranteed due to
the Lipschitz property of the model.

Numerical simulations were carried out on the modified model, with the quadratic costs seen as
perturbations on the usual linear costs. Sensitivity analysis was performed on the catchability
coefficient to simulate the effects of IUU fishing (especially the use of under-sized mesh gears) on
fish stocks. This study has shed light on the contribution of IUU fishing to the near-collapse of
the sardinella fishery in Ghana. The simulation results show that in the long run, IUU fishing has
a disastrous effect on fish biomass with minimal increase in total net revenue. At higher levels of
increased catchability as a result of the illegal practices, the consequences on the fish stock size
are near catastrophic levels. That is, the fish stocks are driven to less than half of the carrying
capacity of the ecosystem in finite time without any huge benefits in terms of additional revenue to
the fishermen. Therefore, to ensure the long-term sustainability of the resource, fishery managers
should strictly enforce all the regulations pertaining to the use of under-sized mesh gears and other
IUU fishing practices.
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