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Abstract

A number that can’t be expressed as the ratio of two integers is called an irrational number.
Euler and Lambert were the first mathematicians to prove the irrationality and transcendence
of e. Since then there have been many other proofs of irrationality and transcendence of e and
generalizations of that proof to rational powers of e. In this article we review various proofs of
irrationality and transcendence of rational powers of e founded by mathematicians over the time.
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1 Background

The most well known proof of Irrationality of e was proven by Joseph Fourier using proof by
contradiction [1]. Before that Euler already wrote the first proof of Irrationality of e using the
simple continued fraction expansion of e back in 1737 [2]-[4].

e = 2 +
1

1 + 1

2+ 1

1+ 1
1+ 1

4+ 1
...

(1.1)
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This is an infinite simple continued fraction, which is always irrational. A more simpler proof of
this continued fraction was given by Cohn [5]. The proof by contradiction given by Fourier works
like this:

Let us assume that e is a rational number and can be expressed as p
q
, where p, q are integers. Now

e can be expressed as:

e =

∞∑
n=0

1

n!
=

q∑
n=0

1

n!
+

∞∑
n=q+1

1

n!

Multiplying both sides by q!,we get

p(q − 1)! =

q∑
n=0

q!

n!
+

∞∑
n=q+1

q!

n!

Both the LHS and first term of RHS are integer, but the second term is

∞∑
n=q+1

q!

n!
<

∞∑
n=1

1

(q + 1)n
=

1

(q + 1)

1

(1− 1
(q+1)

)
=

1

q
< 1 (1.2)

which is not an integer. Hence we arrive at a contradiction. MacDivitt [6] gave a proof similar to
the above proof, it uses the fact that

(b+ 1)x = 1 +
1

b+ 2
+

1

(b+ 2)(b+ 3)
+ .... < 1 +

1

(b+ 1)
+

1

(b+ 1)(b+ 2)
+ ... = 1 + x (1.3)

which proves that bx < 1, but that is not possible since both b and x are integers.

Penesi [7], Apostol [8] proved this by proving e−1 instead of proving e irrational. Note that the
expansion of e−1 is

e−1 =

∞∑
n=0

(−1)n

n!

Let us define the truncated part of the expansion as tn =
∑n

k=0
(−1)k

k!
Therefore we can write

e−1 =

n∑
k=0

(−1)k

k!
+

∞∑
k=n+1

(−1)k

k!

Let us assume e−1 = m
n
. Multiplying both sides of the previous equation by n!, we get the LHS as

an integer, and the first term of the RHS as an integer. Therefore we must have

n!

∞∑
k=n+1

(−1)k

k!

as an integer.But this also satisfies

0 ≤

∣∣∣∣∣n!
∞∑

n+1

(−1)k

k!

∣∣∣∣∣ ≤ n!

(n+ 1)!
≤ 1. (1.4)

We therefore arrive at a contradiction and hence e−1 is irrational.Higher powers of e were subsequently
also proven to be irrational. The irrationality of e2 was proven in [9] , of e3 in [10], and of e4 in
[11].
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2 Proof using Niven’s Polynomials

A more generalized result where the power is a rational number was proven by Niven in 1985. It is
first proved by Ivan Niven [12] that ex/y is an irrational number using Niven’s Polynomials of the

form xn(1−x)n

n!
, which can be also be used to prove that π is an irrational number. A similar proof

was also given by Aigner [13], Beatty [14] and Eugeni [15].

Let us define f : [0, 1] −→ R , f(x) =
xn(1− x)n

n!
then we have f(x) = f(1−x) and 0 ≤ f(x) <

1

n!
.

We also note that these functions satisfy

f (j)(0) , f (j)(1) ∈ Z , j ≥ 0

Let us assume that ep =
a

b
, where p is an integer. Let us define another function F as

F = p2nf − p2n−1f ′ + p2n−2f ′′ − · · ·+ f (2n) (2.1)

This function satisfies
F ′ + pF = p2n+1f

Multiplying both sides by bepx and then integrating we get

b
[
epxF (x)

]1
0
= b

∫ 1

0

p2n+1epxf(x)dx −→ 0+

as n −→ ∞. Now note that the LHS is b[epF (1)−F (0)] = aF (1)−bF (0) which must belong to Z+.
But that is not possible, therefore we arrive at a contradiction.Now as ep is an integer, any root of

that number (ep)
1
q will also be an irrational number. Another beautiful proof using polynomials of

similar form was stated by Joe Mercer [16]. Let us take the two integrals:

In =
1

n!

∫ ∞

0

[x(x− p)]ne−xdx, Jn =
1

n!

∫ ∞

0

[x(x+ p)]ne−xdx (2.2)

As the polynomials inside the integral (2.2) [x(x− p)]n,[x(x+ p)]n have integer coefficients and the
least power of x is n, we must have both In and Jn as integer as

∫∞
0

xke−xdx = k!. Let us assume

that ep = f
g
. Let us multiply ep by gIn.We then have

gepIn =
gep

n!

∫ ∞

0

[x(x− p)]ne−xdx+
g

n!

∫ ∞

0

[x(x− p)]ne−(x−p)dx

=
gep

n!

∫ ∞

0

[x(x− p)]ne−xdx+
g

n!

∫ ∞

0

[u(u+ p)]ne−udu

=
gep

n!

∫ ∞

0

[x(x− p)]ne−xdx+ gJn

Now note that since x|x− p| ≤ p2

4
in [0, p] and 0 < e−x ≤ 1, we have

|ge
p

n!

∫ ∞

0

[x(x− p)]ne−xdx| ≤ mepp2n

4nn!
(2.3)

Now since factorial grow faster than exponential, we can choose an n such that n! > mep( p
2

4
)n.Also

note that
∫∞
0

[x(x−p)]ne−xdx will be never be 0 since [x(x−p)]ne−x never changes in sign in [0, p].
Thus we have due to (2.3)

gepIn = ϵn + gJn

Here 0 < |ϵn| < 1 if n! > mep( p
2

4
)n. We therefore arrive at a contradiction since RHS of the above

mentioned equation can’t be an integer. We hence proved that there is no integral multiple of ep

which can be an integer.

104



Ghosh; ARJOM, 17(2): 102-110, 2021; Article no.ARJOM.67127

3 Proof using Continued Fractions

The proof stated in the section is discussed by Ghosh [17, 18].We start with the Continued Fraction
Expansion of the hyperbolic tanh function discovered by Gauss [19, 20]

tanh z =
z

1 + z2

3+ z2

5+ z2
...

.

We also know that the hyperbolic tanh function is related to the exponential function with the
following formula

tanh z =
ez − e−z

ez + e−z
.

Putting x
y
in place of z in the previous equation we get

e
x
y − e

− x
y

e
x
y + e

− x
y

=
(x
y
)

1 +
( x
y
)2

3+
( x
y

)2

5+
( x
y

)2

...

.

This continued fraction can be simplified into

e
x
y − e

− x
y

e
x
y + e

− x
y

=
x

y + x2

3y+ x2

5y+ x2
...

.

This equation can be further be simplified as

1 +
2

e
2x
y − 1

= y +
x2

3y + x2

5y+ x2

...

e
2x
y − 1

2
=

1

( y
x
− 1) + x

3y+ x2

5y+ x2
...

.

Some algebraic manipulation, yields a continued fraction expansion of ex/y

ex/y = 1 +
2x

2y − x+ x2

6y+ x2

10y+ x2

14y+ x2

18y+

. . .

,

which is an infinite continued fraction. Legendre found necessary and sufficient conditions for the
convergence of the continued fraction in following theorem. The conditions were first published by
Chrystal [21].

Theorem 3.1. The necessary and sufficient condition that the continued fraction

b1

a1 +
b2

a2+
b3

a3+...

is irrational is that the values ai, bi are all positive integers, and there is an integer n such that
|ai| > |bi| for all i greater than n.
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In the continued fraction of ex/y − 1, we have derived ai, bi are equals to 2(2i− 1), x2 except when

i = 1. Therefore we have |ai| > |bi| for all i >
x2

2
+1

2
. Hence we have proved that ex/y − 1 is

irrational which in turn means ex/y is irrational, where x, y are integers.

4 Transcendence of Rational Powers of e

A transcendental number is a number that cannot be expressed as the root of a non-zero polynomial
with all its coefficients being rational. Note that an irrational number does not necessary have to
be a transcendental number. Square-root of any non-square integer is a irrational number but not
a transcendental number. A number that is not transcendental is called an algebraic number.

It was first Hermite [22, 23] who proved that e is transcendental. This results were further extended
by Lindemann who proved that eα is transcendental, given α is a non-zero transcendental number
[24, 25]. Using this he also proved that π is transcendental, since eiπ = −1, which is a real
number. Weierstrass generalized this proof [26] to give the well known LindemannWeierstrass
theorem. Hilbert [27], Gordan [28] simplified this proof. A similar theorem establishing that ab

is a transcendental number given that a is an algebraic number satisfying a ̸= 0, 1 and b is an
algebraic number which is irrational but not transcendental was proved by Gelfond [29] known as
GelfondSchneider theorem. This two theorem were further extended by Baker [30]. All of these
theorems is generalized further by Schanuel’s conjecture [31]. Bernard [32] proved the transcendence
of e using multivariate and symmetric Polynomials.

In this article we shall only discuss about the transcedence of of rational powers of e. To prove that
ev is transcendental, where v is a rational number, let is assume that ev is algebraic and satisfies

c0 + c1e
v + c2e

2v + ...+ cne
nv = 0 (4.1)

where all coefficients ct(0 ≤ t ≤ n) are integers with c0, cn being non-zero. We now employ a
function which is an extension of Niven’s Polynomials:

fk(x) = v2k+2xk[(x− 1)...(x− n)]k+1

Note that the least power of x in fk(x) is k, but the least power of x in fk(x + a), where a is
0 < a ≤ n is k+ 1. Multiplying both sides of (4.1) by

∫∞
0

fke
−vxdx, we get the following equation:

n∑
t=0

cte
tv(

∫ ∞

0

fke
−vxdx) = 0

The LHS can be divided into two parts P,Q such that P +Q = 0

P =

n∑
t=0

cte
tv(

∫ ∞

t

fke
−vxdx) (4.2)

Q =

n∑
t=1

cte
tv(

∫ t

0

fke
−vxdx) (4.3)

We now derive two lemmas to prove the transcendence of e.

Lemma 4.1. P
k!

is a positive integer

Note that every term in P will contain sum of integer multiples of integrals of the form∫ ∞

0

xje−vxdx =
j!

vj+1
(4.4)
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which is the value of gamma function at integer points.Note that the integrand cte
tv
∫∞
t

fke
−vxdx

for every t satisfying 0 < t ≤ n is a sum of terms whose lowest and highest power of x is k+1, 2k+1
respectively, multiplied with e−vx integrated from 0 to ∞ after substituting x for x+ a since

cte
tv

∫ ∞

t

fke
−vxdx = cte

tv

∫ ∞

0

fk(x+ t)e−v(x+t)dx = ct

∫ ∞

0

fk(x+ t)e−vxdx

Therefore P can be written as

P = c0e
0(

∫ ∞

0

fke
−vxdx) +

n∑
t=1

ct

2k+1∑
j=k+1

Aj−k,tv
2k−j+1(vj+1

∫ ∞

0

xje−vxdx) (4.5)

Substituting (4.4) in (4.5), we get

P = c0e
0(

∫ ∞

0

fke
−vxdx) +

n∑
t=1

ct

2k+1∑
j=k+1

Aj−k,tv
2k−j+1j!

Here Aj−k,t refers to the integer coefficient of xj in fk(x+t)

v2k+2 . All the terms in the second part of
RHS of (4.5) are divisible by (k + 1)!. Therefore after division by k!, it must be also divisible by
(k + 1). The first part of RHS of (4.5) can be expressed as

c0e
0(

∫ ∞

0

fke
−xdx) =

∫ ∞

0

v2k+2([(−1)n(n!)]k+1)e−vxxk + ....)dx

The higher order terms in RHS shall be divisible by (k + 1). Therefore we get

1

k!
c0(

∫ ∞

0

fke
−vxdx) ≡ c0[(−1)n(n!)]k+1)vk+1 ̸≡ 0(modk + 1) (4.6)

We see that P
k!

is not divisible by k+ 1, if it is a prime greater than n, |c0|. But since P is divisible
by k!, P

k!
cannot be zero.

Lemma 4.2. There exists some k such that |Q
k!
| < 1

Let us start with two continuous functions g(x), f(x)

g(x) = v2x(x− 1)...(x− n) (4.7)

f(x) = v2(x− 1)...(x− n)e−vx (4.8)

Since both of them are continuous functions, they are bounded in the interval [0, n]. Let the upper
bounds be b1, b2 > 0 respectively. Therefore fke

−vx = g(x)kf(x) is also bounded by bk1b2 in the
interval [0, n]. Each of the integrals are themselves bounded since

|
∫ n

t

fke
−vxdx| ≤

∫ n

t

|fke−vx|dx ≤
∫ n

t

bk1b2dx = (n− t)bk1b2

Therefore the sum Q is itself bounded as

|Q| < nbk1b2(c0 + c1e
v + c2e

2v + ...+ cne
nv) = bk1w (4.9)

Here w = nb2(c0 + c1e
v + c2e

2v + ...+ cne
nv) is independent of k. Therefore we get

|Q
k!
| < w

bk1
k!

→ 0 as k → ∞

Theorem 4.3. ev is a transcendental number.
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We note that
1

k!

n∑
t=0

cte
tv(

∫ ∞

0

fke
−vxdx) =

1

k!
(P +Q) = 0

But P
k!

is a positive integer whereas Q
k!

is a very small real number close to zero. The sum of P
k!

and
Q
k!

can never be zero. Therefore our original assumption is wrong. Hence ev does not satisfies

c0 + c1e
v + c2e

2v + ...+ cne
nv = 0

where all coefficients ct(0 ≤ t ≤ n) are integers with c0, cn being non-zero.Therefore ev is transedental
number. Since any nth root of ev is also transcendental number, we must have ep/q a transcendental
number for any rational number p/q.

5 Conclusion

In this article we reviewed various proofs of irrationality and transcendence of rational powers of e
founded by mathematicians over the time.

Competing Interests

Author has declared that no competing interests exist.

References

[1] de Stainville, Janot. Mlanges d’analyse algbrique et de gomtrie [A mixture of algebraic analysis
and geometry]. Veuve Courcier. 1815;340341.

[2] Euler, Leonhard. ”De fractionibus continuis dissertatio” [A dissertation on continued fractions]
(PDF). Commentarii Academiae Scientiarum Petropolitanae. 1744;9: 98137.

[3] Euler, Leonhard. An essay on continued fractions. Mathematical Systems Theory.
1985;18:295398.
DOI:10.1007/bf01699475.hdl:1811/32133.

[4] Sandifer C. Edward. Chapter 32: Who proved e is irrational? How Euler did it. Mathematical
Association of America. 2007;185190.
ISBN 978-0-88385-563-8. LCCN 2007927658.

[5] Cohn Henry. A short proof of the simple continued fraction expansion of e. American
Mathematical Monthly. Mathematical Association of America. 2006;113(1):5762.
arXiv:math/0601660
DOI:10.2307/27641837. JSTOR 27641837.

[6] MacDivitt ARG, Yanagisawa Yukio. An elementary proof that e is irrational. The
Mathematical Gazette. London Mathematical Association. 1987;71(457):217.
DOI:10.2307/3616765, JSTOR 3616765

[7] Penesi LL. Elementary proof that e is irrational. American Mathematical Monthly.
Mathematical Association of America. 1953;60(7):474.
DOI:10.2307/2308411. JSTOR 2308411

[8] Apostol T. Mathematical analysis (2nd ed., Addison-Wesley series in mathematics). Reading,
Mass.: Addison-Wesley; 1974.

[9] Liouville Joseph. Sur l’irrationalit du nombre e = 2, 718. Journal de Mathmatiques Pures et
Appliques. 1 (in French). 1840;5:192.

108



Ghosh; ARJOM, 17(2): 102-110, 2021; Article no.ARJOM.67127

[10] Hurwitz Adolf. ber die Kettenbruchentwicklung der Zahl e. Mathematische Werke (in German).
2. Basel: Birkhuser. 1933;129133.

[11] Liouville Joseph. Addition la note sur l’irrationnalit du nombre e. Journal de Mathmatiques
Pures et Appliques. 1 (in French). 1840;5: 193194.

[12] Niven Ivan. Irrational numbers. Mathematical Association of America. 1st ed., JSTOR.1985;11.
Available:www.jstor.org/stable/10.4169/j.ctt5hh8zn

[13] Aigner Martin, Ziegler Gnter M. Proofs from the book (4th ed.), Berlin. New York: Springer-
Verlag. 1998;2736.
DOI:10.1007/978-3-642-00856-6
ISBN 978-3-642-00855-9

[14] Thomas Beatty, Timothy W. Jones. A simple proof that ep/q is irrational. Mathematics
Magazine. 2014;87(1):50-51.
DOI: 10.4169/math.mag.87.1.50

[15] Franco Eugeni,Gianluca Ippoliti. A proof of the irrationality of π and the rational powers of
e, Journal of Interdisciplinary Mathematics, 2006;9(1):17-20.
DOI: 10.1080/09720502.2006.10700424

[16] Joe Mercer. Proof that a nonzero rational power of e is irrational. Preprint; 2004.
Available:http://ceemrr.com/Calculus2/Proof that e to a rational is irrational.pdf

[17] Ghosh S. Another proof of ex/y being irrational.
arXiv:2104.06263 [math.HO]

[18] Ghosh S. Another proof of ex/y being irrational. The Mathematical Gazette. The Mathematical
Association; Nov 2022. (to appear)

[19] Wall HS. Analytic theory of continued fractions. The New York: Chelsea. Particularly ‘The
Continued Fraction of Gauss’. 1948;335-361.

[20] Borwein J, Bailey D, Girgensohn R. Experimentation in mathematics: Computational paths
to discovery. Wellesley MA, Peters AK. Particularly ‘Gauss’s Continued Fraction’ in 1.8.3 i.
2004;31-34.

[21] Chrystal G, Algebra: An elementary text-book for the higher classes of secondary schools and
for colleges. 1889;II:495.

[22] Hermite C. Sur la fonction exponentielle. Comptes rendus hebdomadaires des sances de
l’Acadmie. 1873;77:18-24, 74-79; 226-233, 285-293.

[23] Hermite C. Sur la fonction exponentielle. Paris: Gauthier-Villars; 1874.

[24] Lindemann F. ber die ludolph’sche zahl. Sitzungsberichte der kniglich preussischen akademie
der wissenschaften zu Berlin. 1882;2:679682.

[25] Lindemann F. ber die zahl π. Mathematische annalen. 1882;20:213225.
DOI:10.1007/bf01446522
S2CID 120469397, Archived from the original on 2017-10-06, Retrieved 2018-12-24

[26] Weierstrass K. Zu Lindemann’s abhandlung. ber die ludolph’sche zahl. Sitzungsberichte der
Kniglich Preussischen Akademie der Wissen-schaften zu Berlin. 1885;5:10671085.

[27] Hilbert D. Ueber die transcendenz der zahlen e und π. Mathematische annalen. 1893;43:216219.
DOI:10.1007/bf01443645
S2CID 179177945, Archived from the original on 2017-10-06, Retrieved 2018-12-24

[28] Gordan P. Transcendenz von e und π. Mathematische Annalen. 1893;43:222224.
DOI:10.1007/bf01443647
S2CID 123203471

109



Ghosh; ARJOM, 17(2): 102-110, 2021; Article no.ARJOM.67127

[29] Aleksandr Gelfond. Sur le septime problme de hilbert. Bulletin de l’Acadmie des Sciences de
l’URSS. Classe des sciences mathmatiques et na. 1934;VII(4):623634.

[30] Baker Alan. Transcendental number theory. Cambridge Mathematical Library (2nd ed.).
Cambridge University Press;1990.
ISBN 978-0-521-39791-9, MR 0422171

[31] Lang Serge. Introduction to transcendental numbers. AddisonWesley. 1966;3031.

[32] Bernard S, Bertot Y, Rideau L, Strub PY. Formal proofs of transcendence for e and π as an
application of multivariate and symmetric polynomials; 2015.
arXiv:1512.02791 [cs.LO]

——————————————————————————————————————————————–
c⃝ 2021 Ghosh; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-
tion and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://www.sdiarticle4.com/review-history/67127

110

http://creativecommons.org/licenses/by/4.0

	Background
	Proof using Niven's Polynomials
	Proof using Continued Fractions
	Transcendence of Rational Powers of e
	Conclusion

