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ABSTRACT 
 

The induction of enzymes is a defensive mechanism for some xenobiotics, but it may alter the 
drug's safety and efficacy by altering the activity of metabolic enzymes. One of the major families of 
enzymes involved in phase I metabolism is Cytochrome P450 (CYP) enzymes which may get 
induced by certain drugs. Concomitant administration of drugs due to chronic disease or 
polypharmacy, inducers among them may cause toxicity or reduce the plasma concentration at a 
sub-therapeutic level. This is one of the dangerous types of drug-drug interactions, but predictable & 
preventable. The CYPs get induced by three nuclear receptors, including the aryl hydrocarbon 
receptor (AhR); constitutive androstane receptor (CAR); the pregnane X receptor (PXR). Without 
identification during drug development, enzyme induction phenomenon of a new drug molecule may 
get noticed only during pharmacovigilance. Though, this CYP induction may not be a barrier for drug 
development, it may cause possible DDI and treatment failure. According to FDA guidelines, 
pharmaceutical industries adopted In-vitro, Ex-vivo and In-vivo techniques based on different 
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developmental stages. The results are also interpreted based on regulatory bodies guidelines. For 
In-vitro assay best accepted method is using primary hepatocytes either fresh or cryopreserved, for 
Ex-vivo liver slices of different species and in-vivo, clinical investigations are the extreme option. 
This paper reviews current industry approaches of CYP induction assays to evaluate potentiality for 
a new drug molecule as an inducer. 
 

 

Keywords: Cytochrome P450; CYPs; DDI; induction; FDA; EMA; PK. 
 

1. INTRODUCTION 
 

Drug-drug interaction (DDI) is an undesirable but 
preventable adverse event of drugs occur due to 
interaction of two or more drugs with each other. 
It may increase or decrease the expected known 
effects of one drug in systemic circulation by the 
action of another co-administered drug [1-3]. DDI 
can alter the pharmacokinetic (PK) profile by 
interfering with either absorption, distribution, 
metabolism, or elimination [4]. PK-DDI can be 
one of two possibilities: inhibition or induction of 
enzyme or transporters causing either elevated 
blood availability of a drug or diminished blood 
availability. In contrast, pharmacodynamic (PD) 
interaction is associated with altered receptor 
activity by additive, potentiation, synergistic or 
antagonistic action [5,6]. The ultimate result of 
DDI is altered therapeutic efficacy which may be 
characterized by treatment failure or developing 
toxicity [7]. It is considered the most common 
cause of adverse drug events (ADR) of a drug 
and mainly attributed by poly-therapy, which 
means prescribing at least 5 or more drugs 
together [5,8]. Multiple factors like age of the 
patients, co-morbid disease state, impact of 
disease on drug biotransformation, 
pharmacological nature of drugs, continuation of 
multiple prescriptions and poor knowledge on 
potential DDI can contribute along with 
polypharmacy in the occurrence of DDI [7,9]. 
Comparing both PK and PD interventions of DDI, 
PK found more frequent & predictable whether 
PD required case by case evaluations [10]. 
Significant pharmacokinetic DDI can be occurred 
via altered hepatic metabolism (cytochrome P450/ 
glucuronidation) or drug transportation (P-
glycoprotein) [11]. 
 

Cytochrome P450 (CYPs) are the major family of 
enzymes involved in enzymatic hepatic 
biotransformation of 70-80% clinical drugs in the 
liver by oxidation [12,13]. Frequently involving 
and abundant isoforms of this family are 3A4, 
2C9, 2C8, 2C19,2D6, 2E1, and 1A2 [10,14]. 
During phase 1 metabolism, this CYP enzymes 
initiates the most dangerous type DDI by getting 
induced or inhibited by concomitant administered 
drug [15]. Those drugs either referred as 

inducers or inhibitors based on their action over 
drug metabolizing CYPs [16]. Thus, CYP 
induction is the increased gene expression of 
CYP enzymes through elevated protein synthesis 
and stabilization on exposure to certain drugs 
[17].  
 

CYP induction may be resulted in i) reduced 
therapeutic activity of victim drug when parent 
compound is the active metabolite or ii) toxicity 
by increasing the plasma concentration of 
reactive metabolite/intermediates from inactive 
parent molecule as a consequence of inducive 
metabolism [18,19]. CYP enzymes can be 
induced via receptor mediated mechanisms that 
involve activation of different ligand activated 
nuclear receptors hence function as transcription 
factors followed by increased transcription of 
targeted genes. These intracellular nuclear 
receptors are aryl hydrocarbon receptor (AhR); 
constitutive androstane receptor (CAR); the 
pregnane X receptor (PXR) and subsequently 
targeting increased protein synthesis resulted in 
upregulated CYPs expression. Another way is 
enzyme stabilization by stabilizing mRNA of 
targeted gene [20-23]. The general mechanism 
for receptor-mediated induction is, without the 
presence of drug (ligand), these receptors are 
inactivated and associated with co-repressors. 
Upon binding of inducers on the ligand binding 
domain, receptors get activated by 
conformational changes on releasing co-
repressors and bind with respective co-factors. 
Selective dimerization component is available 
and get attached with respective receptor-
cofactor complex. Together the complex locates 
themselves on specific DNA promoter region 
through DNA binding domain of receptors hence 
initiate transcription and translation of required 
gene for upregulated expression of CYPs 
[22,24].  
 

AhR is an intracellular polycyclic receptor, and 
the dimerization partner is Ah receptor nuclear 
translocator (Arnt). Therefore, the expression of 
CYPs mostly CYP1A1 and CYP1A2 elevated on 
complex binding as mentioned above in the 
enhancer regions [20,22,25]. CAR, another 
nuclear receptor, found to induce the metabolism 
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by CYP2B family on being mediated by 
phenobarbital. Specifically, two promoter 
components, phenobarbital-responsive enhancer 
module (PBREM) and the xenobiotic-responsive 
enhancer module (XREM), get engaged with 
CAR binding site and cause upregulation of 
mostly CYP2B6 along with CYP3A4, CYP2Cs 
and CYP2A6. These upregulated enzymes are 
responsible for biotransformation of 70% drugs. 
This CARs have unique DNA binding and ligand 
binding domain, which is recognizable by specific 
modulator of targeted gene as PBREM specific 
for upregulation of CYP2B6 and CYP2B1                 
[26-28].  
 
PXR, a ligand activated orphan receptor of 
nuclear receptor superfamily were first activated 
by the pregnanes 21-carbon steroids and now by 
many marketed clinical drugs (rifampicin) [29]. 
After activation by PXR agonists, like the 
mechanism of other nuclear receptors, PXR 
response element (PXRE) gets attached with 
promoter region of CYP3A4 gene, namely distal 
xenobiotic responsive element modulator and 9-
cis retinoic acid receptor α (RXRα) in the 
proximal modulator. Resulted in overexpression 
of CYP3A4, the enzyme responsible for 50% 
drugs [30,31]. Other than CYP3A4, PXR can 
target the CYP2A, CYP2B, CYP2C genes [23]. 
PXR can be repressed through phosphorylation 
by kinases and CYPs are downregulated [32].  
 
Evaluation for potentiality of a new molecule or 
clinical drug (substrate for above mentioned 
receptors) for CYP induction is very important to 
predict possible drug-drug interactions.  
 
However, without prior detection, DDI can only 
be identified after marketization and during 
pharmacovigilance, which can be risky 
sometimes [33,34]. Therefore, during pre-clinical 
development many pharmaceutical companies 
employed different approaches to assess CYP 
induction potential for predicting, decreasing, or 
possibly eradicating dangerous DDI with new 
drug candidate. In this study, different FDA-
approved CYP induction assay methods will be 
reviewed along with their possible advantageous 
or disadvantageous outcomes. 
 

2. DIFFERENT APPROACHES OF CYP 
INDUCTION ASSAY 

 
Probability of CYPs induction in the liver (as 
CYPs are abundant in hepatocytes), can be 
studied by in-vivo, in-vitro and ex-vivo techniques 
[21]. Among these, different pharmaceutical 

company, or different sites of same one, may 
have their own choice of method for screening 
based on the phase of development [35]. During 
evaluation, a new molecular entity can be 
identified either as the substrate of CYP or can 
itself be an inducer and may potentiate DDI if it 
contributes to >25% in metabolism/clearance [1]. 
 

2.1 In vitro Cytochrome P450 Induction 
Assays 

 
During in-vitro methods, gene expression of CYP 
enzymes are assessed on exposure to drugs by 
using hepatocytes with an expectation of in-vivo 
scenario reflection but in lesser complexity than 
direct animal study system. Hepatocytes 
preferably collected from human but other 
species as rats, dogs, monkeys, and pigs are 
also choice by some scientists for in vitro assays 
[35,36]. Various models are prepared according 
to USFDA guidance, using primary hepatocytes 
(including fresh and cryopreserved); stable 
transfected & transiently transfected 
immortalized hepatocytes; stem-cell derived 
hepatocytes; hepatic cell line, and reporter gene 
contrasts [37-40]. Pharmaceutical industries 
interpreted their results based on USFDA 
guidelines. Accordingly, for considering a new 
molecule positive in in-vitro induction assay, it 
needs to exploit the CYP enzymes >40% 
compared to positive control and clinical DDI & 
in-vivo studies are suggested afterwards. In 
some cases, development process can be 
discontinued due to large induction potential of 
that drug candidate [19].  
 
A preliminary, high throughput screening model 
can be used to assess increased nuclear 
receptor activation, which is subsequently 
responsible for increasing CYP enzyme 
synthesis. This evaluation can also be performed 
by integrating hepatoma cells (cell-based 
reporter assay) with CYP3A4 enhancer region & 
a luciferase reporter gene or CYP3A4-luciferase 
structure with human PXR. Current regulatory 
guidelines suggested that the industry perform 
in-vitro induction assay for CYP3A4 preclinically 
as it is the most responsive PXR mediate 
enzyme. If the result is negative, induction 
potential for CYP2C can be excluded as both are 
mediated by PXR [23,41,42]. Another 
sophisticated technique used in pharmaceutical 
industries is utilizing hepatic cell lines or 
immortalized cell lines which preserved 
hepatocyte morphology with consistent results in 
reproducible manner. The most approved 
alternate of primary hepatocytes is HepaRG cell 
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lines. Immortalized cell lines can be prepared by 
transforming hepatocytes with plasmid encoding 
immortalizing genes and currently Fa2N-4 (non-
tumerogenic) is most employed by 
pharmaceutical industries [24,43-45]. While using 
immortalized cell line, acceptable endpoint is 
measuring the mRNA as marker for induction 
[46]. Hepatoma cell lines including HepG2, 
HepaRG, and BC2 are broadly utilized by 
pharmaceutical industries [47].  
 
The use of primary hepatocytes is most accepted 
by industry & regulatory bodies accordingly 
considered as the high standard as the 
hepatocytes retain their in-vivo CYP metabolism 
qualities in a certain level even after isolation 
[48,49]. A useful approach for retaining this 
phenotype behavior for long time is preparing 3D 
structures preferably over 2D monolayers [49]. 
CYP mRNA, protein and microsomal activity can 
be measured using models prepared from 
primary cultures of human hepatocytes. 
Sandwiched human primary hepatocytes (at 
least from three individual donor) are also usable 
due to inter-individual differences of metabolic 
systems [1,50].  
 
Some difficulties of using primary or 
cryopreserved human hepatocytes, including 
less availability, loss of enzyme activity after 
cryopreservation, and the ability to target only 
single receptor-mediated process at a point and 
batch to batch variations, leads to the use of 
immortalized cells and hepatic cell line. 
Advantages of immortalized & hepatic cell lines 
over primary and transfected cell systems are (a) 
capable to interpret multiple nuclear hormone 
receptor-mediated pathways; (b) easy access to 
unlimited sources;(c) continuous supply by 
propagation and (4) stable response to inducers 
[17,24,39,49]. In addition, according to current 
guideline, the endpoint evaluation of in vitro 
assay is changing mRNA levels instead of 
previous enzyme activity measurement [51]. 
 

2.2 Ex vivo Cytochrome P450 Induction 
Assays 

 

Ex vivo assays are investigations or 
measurements performed in or on tissue from a 
species in an environment different from its 
natural condition with minimal changes to the 
environmental factors [52]. In vitro studies use 
primary cultures of hepatocytes from human 
and/or other species, however, the species with 
the most similar induction profiles to humans can 
be found using ex vivo cytochrome P450 (CYP) 

enzyme induction assays in monkey, dog, rat, 
and mouse liver microsomes [53]. These assays 
can also explain unexpected outcomes in animal 
pharmacokinetic/pharmacodynamic (PK/PD), 
absorption, metabolism, distribution, excretion, 
and toxicology studies [53]. 
 
D. D. Surry and his colleagues developed a 
method called Rat Hepatocyte Induction 
Potential (RHIP) test for CYP3A, 1A1, 1A2, and 
4A1 which are sensitive and selective, and show 
a strong qualitative correlation with ex-vivo CYP 
induction data [54]. It assesses the CYP-
inductive capacity of xenobiotics in rat 
hepatocytes cultured on Cytostar-T™ scintillating 
96-well plates, in which hepatocytes are fixed 
and then hybridized in situ with a set of four 
specific [

35
S]-dATP-labelled oligonucleotide 

probes antisense to discrete regions of CYP 
mRNA [54]. 
 
Drug-induced changes in the expression of the 
cytochrome P450 genes are a significant 
problem in the preclinical development of 
pharmaceuticals because they impact safety 
studies by reducing the systemic exposure of a 
compound undergoing toxicological evaluation. 
For this purpose, the induction potential of 
candidate drugs will be studied using catalytic 
end points as part of the drug development 
process [55-57]. The chance to investigate this 
problem is provided by TaqMan technology, 
which has the advantages of a better dynamic 
range and precise enzyme identification where 
relative differences in mRNA expression are 
measured based on PCR cycling threshold 
values [55,58,59]. Because of the assay 
reliability, cheap cost, and availability of 
commercially accessible assays, TaqMan® 
technology is frequently employed in clinical and 
research settings for genotype analysis [60]. 
Though it was developed to test a drug's 
potential to alter the expression of the P450 gene 
in rat ex vivo livers [55,60,61], it can be modified 
to detect mRNA changes in various tissues [62], 
species [63], in vitro systems, and gene targets 
[60]. 
 
nCounter platform is another new technology for 
quantifying CYP induction ex-vivo developed by 
NanoString Technologies, provide a cost-
effective multiplex analysis of more than eight 
hundred targets [64]. The NanoString technology 
offers an alternative method for measuring CYP 
induction and cross-validating the Taqman 
findings and provides directly assesses gene 
expression from liver slice homogenates without 
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the need for prior RNA extraction and c-DNA 
synthesis, or amplification [65]. To evaluate the 
NanoString approach, seventeen commercial 
medicines were incubated overnight with rat liver 
slices, and the induction of CYP1A1 and 2B1/2 
was measured [65].  
 

2.3 In vivo Cytochrome P450 Induction 
Assays 

 

After quite success in in-vitro and ex-vivo 
approaches, there is always a gap and demand 
of direct evaluation of CYP induction in clinical 
settings for an absolute view [23]. Thus, in-vivo 
assays are considered the most accurate and 
largely applicable method with better 
approximation of CYP induction. In this method, 
always it is not feasible to measure the increased 
amount of enzyme and activity directly (mostly in 
human), so an indirect approach is considering 
the AUC (area under plasma concentration-time 
curve) of a drug, before and after administration 
of the new drug molecule or the drug that shows 
potentiality as an inducer. Mice, rats, monkeys, 
and dogs are commonly usable animals before 
human trials for in-vivo study, though the 
enzymatic systems and receptor specifies vary 
substantially from humans [66]. The conservation 
of different CYPs varies from animal to animal, 
even to strains for example, CYP1A2 is induced 
by omeprazole only in humans, not mice or rats. 
For this non-predictive phenomenon, animals 
can be modified in different ways including 
genetically modified to create humanized mice 
and transplantation of immunodeficient mice in 
human hepatocytes. This will eradicate the 
unwanted effect of mice hepatic protein on 
metabolism [23,67-69]. Due to numerous 
evidence of CYPs induction variations among 
animal species, it is suggested that animal 
models can be used to retrieve preliminary 
pharmacokinetic data, but human models are 
final of choice. For study in human, volunteers or 
patients can be chosen and enzyme induction 
can be characterized by using specific CYP 
probe standards. Standard probes should 
maintain some criteria as it should be selective 
for specific enzymes, must not be inhibitory for 
some other enzymes and pharmacokinetic profile 
should be in favor including avoid rapid 
metabolism and shorter half-life. Another 
suggestion for endpoint measurement for in-vivo 
is to measure the actual pharmacological 
(pharmacokinetic) values as EC50 (effective 
concentration) and Emax [19,24,70]. Even in 
humans, interindividual variations due to 

polymorphism of CYPs and the effect of 
suggested inducer probes may vary [71].  
 

According to FDA guidelines, a) before human 
in-vivo/clinical investigations, results of in-vitro 
and early clinical investigations data should be 
considered. In addition, as already stated, for 
considering a drug for in-vivo studies it need to 
induce certain enzyme in >40% of the positive 
control on primary hepatocytes; b) certain 
enzymes can be excluded from the in-vivo study 
based on FDA guidelines on negative in-vitro 
findings [1]. 
 

3. CONCLUSIONS 
 

Choice of method for CYP induction assay 
depends on some integrated factors. In the 
preliminary phase of development, to identify a 
new drug molecule as an inducer of certain drugs 
which may initiate DDI, the industrial approach is 
to start from in-vitro techniques. This in vitro can 
be high throughput screening by using different 
animal cell cultures, but the FDA suggests using 
fresh, cryopreserved, or immunized human cells. 
The endpoint measurement is here to quantify 
increased enzyme activity by elevated mRNA 
expression. Dose-dependent changes on mRNA 
expressions are observed (one out of three cell 
batches need to induce at least one isoform) and 
a 2-fold to 4-fold increase is considered positive 
potential for DDI. Another reliable in-vitro 
measurement is reporter gene assay which 
measure nuclear receptor activation. Primarily, 
CYP3A4, CYP2B6, CYP1A2 are assessed for 
induction probability and selection of positive 
control are also significant. CYP2C should not be 
tested during preliminary in vitro, after getting 
positive data investigations for other enzyme 
isoforms can be done. Another technique is ex-
vivo analysis where it is possible to get similar 
induction profile as human with less 
pharmacokinetic complexity. The endpoint 
measurement measures the level of mRNA using 
real-time reverse transcriptase-polymerase chain 
reaction, emphasizing more accuracy. Finally, in-
vivo methods are available to get the actual 
scenario with animal study. Nevertheless, 
animals' enzyme systems mostly the ligand 
binding domain for nuclear receptor cannot 
mimic completely the human neither in vitro nor 
in vivo, so clinical investigations are the ultimate 
option to avoid misleading comparisons. In 
clinical settings, plasma AUC levels are 
compared before and after co-administered drug 
with inducer. 
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