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Abstract

In this paper a mathematical model describing a between host cervical cancer infection incorporating diagnosis
was formulated and analysed. The qualitative analysis of model showed that the infection dynamics can best
be described by the threshold value R0B , in which for the value of R0B < 1 the infection free equilibrium
is globally asymptotically stable. This implies that we do not expect the disease outbreak for life. Thus, the
disease will die out of the population. The endemic states are shown to exist provided that the reproduction
number is greater than unity R0B > 1 . By use of Routh-Hurwitz criterion and suitable Lyapunov functions,
the endemic states are shown to be locally and globally asymptotically stable respectively. This implies that
disease transmission levels can be kept quite low or manageable with minimal deaths at the peak times of
the re-occurrences. The numerical results show that the disease related mortality is eradicated if diagnosis is
done at an early stage hence late diagnosis increases the risk of cervical cancer infection among the infected
individuals.
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1 Introduction

Cervical cancer has attracted more attention due to its social economic ramifications and its complex behavior.
Even with the introduction of routine screening programs and vaccination, the cervical cancer prevalence remains
high especially in Sub-saharan Africa. However, in the early stages if diagnosed it can be cured and prevented.
Cervical cancer is mainly due to the infections of Human papilloma Virus (HPV) though the risk due to the
various HPV types has been given little attention. Over one hundred dissimilar strains of HPV being identified
and classified with HPV types 16, 18, 31 and 45 been classified as “high-risk”. Approximately 85 percentage
cancer of the cervix are reported to be as a result of these four strains alone [1]. There is no treatment for HPV
but in most cases it disappears naturally. However, with persistent infections the high risk strains may become
chronic and shed HPV virions.

Females whose immune system is normal may take 15 to 20 years to develop to cervical cancer. However,
those with weak immune systems such as those with HIV/AIDs may take only 5 to 10 years to develop the
disease. There is a high likelihood of people living with Human Immunodeficiency Virus (HIV) to be infected
with HPV and which progresses to cancer [1]. Other factors that speed up the danger of developing to cervical
cancer beside them having High-risk Human papilloma Virus include Immune system suppression, HIV infection,
tobacco smoking, overweight, history of a family with cancer of the cervix, Past or current Chlamydia infection,
prolonged use of oral contraceptives and Poverty.

The stage of diagnosis is also a factor. When detected early, and attended to effectively, cervical cancer is a
form of cancer that can be successfully managed. However, appropriate treatment and palliative care can handle
late stage diagnosed cancers. Public health problem like cervical cancer can be eliminated if a comprehensive
approach to prevention, screening and treatment is done [2, 3, 4].

Mathematical models have been used to describe Human Papilloma virus infection that lead to cervical cancer
and their intervention strategies by many researchers. A mathematical model to explore the transmission
dynamics of human papilloma virus (HPV) was formulated by [5]. In their model, infected individuals can
recover with a limited immunity that results in a lower probability of being infected again.

Cancer research is vital as the prognosis of cancer enables clinical applications for patients. A new approach
that applies an ensemble approach to machine learning models for the automatic diagnosis of cervical cancer was
demonstrated by [6]. Ansley et al [7] examined a monogamy as a risk factor for non vaccination and explored
how risk perception may influence this association. Results showed that women in monogamous relationships
had a lower average sexually transmitted disease (STD) risk perception compared to women who were single
and dating (p < 0.0001) .

The World Health Assembly adopted the global strategy to accelerate the elimination of cervical cancer as
a public health problem. The definition of elimination of cervical cancer has been set up as a country by
reaching the threshold of less than 4 cases of cervical cancer per 100 000 women per year. To reach this
threshold by the end of 21st century, WHO has set up the 90-70-90 targets to be reached by 2030 and to be
maintained. WHO has developed guidance and tools on how to prevent and control cervical cancer through
vaccination, screening, treatment and management of invasive cancer. WHO works with countries and partners
to develop and implement comprehensive programmes in line with the global strategy. The Global strategy
towards eliminating cervical cancer as a public health problem, adopted by the World Health Assembly in 2020,
recommends a comprehensive approach to cervical cancer prevention and control [4].

Between host models are epidemiological models of cervical cancer infections. These models classify individuals
in the population as either infected or susceptible. Infected individuals may transmit Human Papilloma Virus
which causes cervical cancer to susceptible hosts(susceptible infectious epidemic model) mainly through sexual
contact. Research has established that transmission dynamics of cervical cancer in the population(between host)
is dependent on the individuals’ immune viral dynamics [8].
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2 The Model

A model in which the total human population at any time t denoted by N is formulated. The model is
subdivided into classes, S(t) the class of individuals susceptible to cervical cancer infection. Recruitment into
susceptible class is done at a rate Λ . The class Ih(t) consists of individuals who are infected with higher risk
Human papilloma virus, this infection occurs at the rate λ . Most HPV infected Individuals recover from the
infection at a rate α and slide back to the S(t) class, ρ is the rate of progression to the cervical cancer C(t)
class due to persistence of the HPV infection. Mortality occurs among cervical cancer patients at the rate ν
while natural death is assumed to occur in all classes at the rate µ .

The force of infection is given by

λ =
κτIh
N

(1)

Where κ is the transmission rate of Human Papilloma Virus while τ is the effective contact rate with HPV
infected individuals. This part of study sought to investigate the effect of diagnosis on the between host
transmission dynamics of cervical cancer infection. Let π denote the diagnostic term where 0 ≤ π . The
modified force of infection for cervical cancer is:

λ =
κτπIh
N

(2)

From the above definitions, the resulting diagram for the model is given below.

Fig. 1. Between - Host Model flow diagram

The dynamics described can be represented mathematically as:

Ṡ(t) = Λ + αIh(t)− (λ+ µ)S(t)

İh(t) = λS(t)− {α+ ρ+ µ}Ih(t)

Ċ(t) = ρIh(t)− (ν + µ)C(t) (3)

3 Model Analysis

The basic reproduction number R0B is defined as the average number of secondary infections produced by one
infectious individual over the course of their infectious period in a purely uninfected susceptible population. The
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basic reproduction number, R0B , for model (1) was computed using the next generation matrix method as
used in [9, 10].

R0B =
πκτ

µ+ α+ ρ
(4)

4 Disease-free Equilibrium Point (DFE)

The disease-free equilibrium point, denoted by EoB is a steady-state solution for which there is no disease or
infection in the population [11] . To obtain the disease-free equilibrium point we set the normalized model
system (1) equal to zero. Since there are no infections in the human populations, we set Ih(t) = C(t) = 0 .
This implies that E0B = {S(t), Ih(t), C(t)} = ( Λ

µ
, 0, 0)

4.1 Local stability of disease-free Equilibrium point

The model in Equation (1) has disease free equilibrium (DFE) given by

E0B = (S0, Ih0, C0) = (
Λ

µ
, 0, 0) (5)

Theorem 4.1. If R0B < 1 , then E0B = ( Λ
µ
, 0, 0) is an equilibrium state in Ω and is Locally asymptotically

stable otherwise unstable

Proof. The Jacobian matrix of Equation (1) is given by

J1 =

−(µ+ τπκIh
N

) α− τπκS
N

0
τπκIh
N

τπκS
N
− (α+ ρ+ µ) 0

0 ρ −(µ+ ν)

 (6)

To evaluate the stability of the Jacobi matrix at DFE, we compute the eigenvalues of of Equation (6)

J1 =

−µ− λ α− τπκ 0
0 (α+ ρ+ µ)(R0B − 1)− λ 0
0 ρ −(µ+ ν)− λ

 = 0 (7)

We analyse the reduced matrix

J1 = (−µ− λ)

(
(α+ ρ+ µ)(R0B − 1)− λ 0

ρ −(µ+ ν)− λ

)
= 0 (8)

This simplifies to

(−µ− λ− λ)((α+ ρ+ µ)(R0B − 1)− λ)(−µ− ν − λ) = 0 (9)

Using Routh-Hurwitz criterion [12], the eigenvalues obtained are;
λ1 = −µ

λ2 = (α+ ρ+ µ)(R0B − 1) and
λ3 = −(µ+ ν)

which have negative real parts provided that R0B < 1 and the determinant upon calculation using mathematica
is given by

(−µ− ν)µ(R0B − 1)(α+ ρ+ µ)

which is positive provided that R0B < 1 . Therefore, by Routh-Hurwitz criterion [12], the disease-free equilibrium
E0B = (S(t), Ih(t), C(t)) = ( Λ

µ
, 0, 0, ) is locally asymptotically stable. Given a small initial infective population

each infected individual in the entire period of infectivity will produce less than one infected individual on
average if R0B < 1 . This shows that the disease will die out of the population when R0B < 1 .
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4.2 Global stability of disease-free Equilibrium point

For global stability of the DFE, the technique by Castillo [13] is used. There are two conditions that if met
guarantee the global asymptotic stability of the disease free state. Equation (1) may be written in the form

dX

dt
= H(X,Z),

dZ

dt
= G(X,Z), G(X, 0) = 0 (10)

where X = {S(t)} with X ∈ R1 denoting the number of uninfected compartments and Z ∈ R2 where
Z = (Ih(t), C(t)) denotes the number of infected individuals. E0B = ( Λ

µ
, 0, 0) denotes the disease free

equilibrium point of this system where

X∗ = Λ
µ

Conditions below must be met to guarantee a local asymptotic stability:

dX
dt

= H(X, 0), X∗ is globally asymptotically stable (GAS)

G(X,Z) = PZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0for(X,Z) ∈ Ω (11)

Where P = DzG(X∗, 0) is an M-matrix (the off-diagonal elements of P are non-negative) and Ω is the region
where the model makes medical sense.

Theorem 4.2. If system (10) satisfies conditions (11) , then the fixed point E0B = (X∗, 0, 0) is a globally
asymptotically stable equilibrium provided that R0B < 1 and the assumptions in (11) are satisfied.

Proof. Consider
H(X,O) = Λ− µS and G(X,Z) = PZ − Ĝ(X,Z)

Where P =

(
−(α+ ρ+ µ) 0

ρ −(µ+ ν)

)
And

G(X,Z) =

(
Ĝ1(X,Z)

Ĝ2(X,Z)

)
=

(
−πκτIt(h)

0

)
Considering the Jacobian matrix, and replacing S(t) = Λ

µ
, Ih(t) = 0 C(t) = 0 , we obtain Ĝ1(X,Z) = 0 and

so the conditions in (11) are met so E0B is globally asymptotically stable when R0B < 1 . Epidemiologically,
any perturbation of the model by the introduction of infectives shows that the model solutions will converge to
the DFE whenever R0B < 1 . Thus, the epidemic will die out of the population.

5 Existence of Endemic Equilibrium

At the Endemic equilibrium point, we have persistence of infection thus at least one of the infected classes is
greater than zero. The positive endemic equilibrium of model (1) is denoted by

EeB(S∗(t), I∗h(t), C∗(t)). (12)

Theorem 5.1. Human Papilloma virus and cervical cancer infections exist and persist in the population where
I∗h > 0 and C∗ > 0 whenever R0B > 1
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Proof. Using mathematica software, the endemic states were given as

I∗h(t) =
Λ

(µ+ ρ)R0B
(R0B − 1)

C∗(t) =
Λρ

R0B(µ+ ν)(µ+ ρ)
(R0B − 1) (13)

From Equation (13) , I∗h(t) > 0 and C∗(t) > 0 when R0B > 1 . This shows that if R0B > 1 , then each HPV
infected individual in the entire infection period having contact with susceptible individual will produce more
than one infected individuals and this leads to the disease invading the susceptible population.

5.1 Local stability of endemic equilibrium point

Theorem 5.2. If R0B > 1 , then the endemic equilibrium EeB(S∗(t), I∗h(t), C∗(t)) , is locally asymptotically
stable

Proof. The Jacobian of Equation (1) at endemic state is given by

Je =

−µ−
τπκI∗h
N

α− τπκS∗

N
0

τπκI∗h
N

τπκS∗

N
− (α+ ρ+ µ) 0

0 ρ −(µ+ ν)

 (14)

On substituting (S∗(t), I∗h(t), C∗(t)) , Equation (14) becomes

Je =

−µ−
τπκΛ(R0B−1)
R0B(µ+ρ)N

α− (α+ ρ+ µ) 0
τπκΛ(R0B−1)
R0B(µ+ρ)N

0 0

0 ρ −(µ+ ν)

 (15)

Using Routh-Hurwitz criterion [12], the characteristic equation of (15) has one of the eigenvalues given by
λ1 = −µ− ν < 0 . The remaining eigenvalues can be determined by expressing (15) as a 2 by 2 block matrix
M defined by

Je =

(
−µ− τπκΛ(R0B−1)

R0B(µ+ρ)N
α− (α+ ρ+ µ)

τπκΛ(R0B−1)
R0B(µ+ρ)N

0

)
(16)

If R0B > 1 , then the trace of matrix Je is negative and the determinant will given by

τπκΛ(R0B − 1)

R0B(µ+ ρ)N
(α+ ρ+ µ)− ατπκΛ(R0B − 1)

R0B(µ+ ρ)N
(17)

From equation (17) , if R0B > 1 and τπκΛ(R0B−1)
R0B(µ+ρ)N

(α + ρ + µ) > ατπκΛ(R0B−1)
R0B(µ+ρ)N

, then the DetM > 0 . This

implies that the Routh-Hurwitz criterion holds and thus the endemic Equilibrium (EeB) of model (1) is locally
asymptotically stable otherwise unstable.

5.2 Global stability of endemic equilibrium point

The global stability of the equilibrium is obtained by means of Lyapunov’s direct method and LaSalle’s invariance
principle De Leon [14].

Theorem 5.3. The endemic equilibrium EeB of model (1) is globally asymptotically stable in Ω whenever
R0B > 1 .
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Proof. Consider the non-linear Lyapunov function

V : (S(t), Ih(t), C(t)) ∈ Ω ⊂ R3
+ : S(t), Ih(t), C(t) > 0

defined as

V = S − S∗ lnS + Ih − I∗h ln Ih + C − C∗ lnC (18)

where V is in the interior of the region Ω . EeB is the global minimum of V on Ω and V : {S(t), Ih(t), C(t)} =
0 . Differentiating V with respect to time gives

dV

dt
= V̇ = Ṡ(1− S∗

S
) + İh(1− I∗h

Ih
) + Ċ(1− C∗

C
) (19)

Replacing Ṡ, İh, Ċ from equation (1) in equation (19) we obtain

V̇ = [Λ + αIh(t)− (κτπIh
N

+ µ)S](1− S∗

S
) + [κτπIh

N
S − {α+ ρ+ µ}Ih(t)](1− I∗h

Ih
)+

[ρIh(t)− (ν + µ)C(t)](1− C∗

C
)

At boundary N ≤ Λ
µ

, we let N = Λ
µ

V̇ = [Λ+αIh(t)−(µκτπIh
Λ

+µ)S](1− S∗

S
)+[µκτπIh

Λ
S−{α+ρ+µ}Ih(t)](1− I∗h

Ih
)+[ρIh(t)−(ν+µ)C(t)](1− C∗

C
)

At steady state the following results from model (1) were obtained

Λ = (
µκτπIh

Λ
+ µ)S(t)− αIh(t)

µκτπIh
Λ

S(t) = {α+ ρ+ µ}Ih(t)

ρIh(t) = (ν + µ)C(t) (20)

Thus we have

V̇ = [(µκτπIh
Λ

S(t) +µS(t)−αIh(t) +αIh(t)− (µκτπIh
Λ

S(t) +µS](1− S∗

S
) + [µκτπIh

Λ
S−{α+ ρ+µ}Ih(t)](1−

I∗h
Ih

) + [ρIh(t)− (ν + µ)C(t)](1− C∗

C
)

= {µκτπI
∗
hS

∗

Λ
+ µS∗ − αI∗h}(2− S

S∗ − S∗

S
) +

µκτπI∗hS
∗

Λ
(1− S

S∗
I∗h
Ih

) + ρI∗h(1− Ih
I∗
h

C∗

C
)

At S = S∗ , Ih = I∗h , C = C∗ and from the property that the geometric mean is less than or equal to the
arithmetic mean, the inequality V̇ ≤ 0 holds iff (S(t), Ih(t), C(t)) takes the equilibrium values S∗(t), I∗h(t), C∗(t) .
Thus, by LaSalle’s invariance principle [14], the endemic equilibrium EeB is globally asymptotically stable.

Epidemiologically, any perturbation of the model by the introduction of infectives shows that the model solutions
will converge to the EeB whenever RoB > 1 . This implies that the disease transmission levels can be kept
quite low or manageable with minimal deaths at the peak times of the re-occurrence

If DFE and EE are locally and globally asymptotically stable, then all the epidemiological situation different
from the given stable equilibria t→ 0 evolve to the equilibrium points. This is significant to epidemiologists, as
the conditions required for stability of the model when RoB < 1 , will provide a basis for the necessary indicators
to be controlled in the reduction of the transmission of Human papilloma virus.
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6 Sensitivity Analysis

Sensitivity analysis of R0B with respect to the model parameters is carried out in order to determine the effect
of diagnosis in the control and management of cervical cancer infection [15]. To perform sensitivity analysis, the
normalised forward sensitivity index also known as elasticity [16] was used. The normalised forward sensitivity
index of the reproduction number R0B in Equation (4) with respect to diagnostic parameter π is given by;

ΓR0B
π =

∂R0B

∂π
× π

R0B
= 1 (21)

This implies that, the late the diagnosis the higher the rate of infection thus, late diagnosis increases the risk of
cervical cancer infection among the infected individuals.

7 Numerical Simulation

Numerical simulations were carried out to graphically illustrate the between host dynamics of cervical cancer.
To do this, some parameter values were used as indicated in Table (1) .

Table 1. Parameter values used in simulation of model (1)

Parameter description Value Source

S(t) Susceptible individuals 3000 Estimate
Ih(t) HPV infected individuals 500 Estimate
C(t) Cervical cancer infected individuals 100 Estimate

Λ Recruitment rate 149 per year [17]
κ transmission rate of 0.31 per year [2, 3]
τ Contact rate with HPV infective 0.80 per year [3, 18]
µ Natural mortality rate 0.05393 per year [3]
ν Cervical cancer related death rate 0.61325 per year [17]
α Recovery rate of HPV infection 0.70 per year [3]
ρ Rate of progression to Cervical cancer 0.1271 per year [3, 18, 19]
π diagnostic term 0 ≤ π Estimate

Based on the initial conditions and parameter values in table (1) , where diagnosis is considered after π = 0.1
of a year, one year, 10 years and 30 years, the following graphs were obtained;
The Susceptible class rises sharply before reducing and remaining constant while the infected and cervical
cancer classes reduces sharply to zero. The reason why the susceptible are rising is because much of Human
Papilloma Virus (HPV) clears on its own and thus individuals recover and slide back to Susceptible class, those
who progress to cervical cancer are diagnosed at 0.1 years, treated, recover and slide back to the susceptible class.

The Susceptible class rises before reducing and remaining constant, infected class reduces to zero while the
cervical cancer class reduces slowly to zero. The reason why the susceptible are rising is because much of
Human Papilloma Virus (HPV) clears on its own and thus individuals slide back to Susceptible class, those who
progress to cervical cancer are diagnosed at 1 year, treated, recover and slide back to the susceptible class. This
explains why the cervical cancer class is reducing slowly.

At early diagnosis of cervical cancer as shown by Fig. (2) and Fig. (3) , the growth of Susceptibles is bounded
and converges to S(t) ≤ Λ

µ
as the infected classes decrease to zero. This decline can be attributed to the

recovery of the infected individuals thus, sliding back to the susceptible class. As discussed earlier in chapter
one, much HPV clears on its own and the small percentage which progresses to cervical cancer will be diagnosed
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Fig. 2. Graph trajectory of S(t), Ih(t) and
C(t) at early diagnosis of cervical cancer for

π = 0.1 with R0B = 0.02682854 .

Fig. 3. Graph trajectory of S(t), Ih(t) and
C(t) at early diagnosis of cervical cancer for

π = 1 with R0B = 0.2814887 .

and treated. Early diagnosis of cervical cancer plays a major role in accelerating the decline of the infected
classes as opposed to late diagnosis and this increases the susceptible individuals since recovery of the infection
is experienced. This shows that the population grows normally with only natural mortality influencing the
population growth.

It can be noted that, for some values of diagnosis (π) , e.g 35 days ( 0.1 years) and one year, the corresponding
values of R0B are R0B = 0.02682854 and R0B = 0.2814887 and thus R0B < 1 . This clearly shows that the
Disease Free Equilibrium (DFE) is locally and globally asymptotically stable which is in agreement with the
mathematical analysis at the Disease Free Equilibrium E0B .

Fig. 4. Graph trajectory of S(t), Ih(t) and
C(t) at late diagnosis of cervical cancer for

π = 10 with R0B = 2.814887 .

Fig. 5. Graph trajectory of S(t), Ih(t) and
C(t) at late diagnosis of cervical cancer for

π = 30 with R0B = 8.44466 .

The Susceptible class reduces even to a point where the infected individuals are more. Infected class rises before
reducing and remaining constant while the cervical cancer class rises before reducing and remaining constant.
The virus exist and persist in the population and this explains why the susceptible individuals are reducing as
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infected individuals are increasing. Many individuals are progressing to cervical cancer and this explains why
the cervical cancer class is rising.

The Susceptible class reduces even to a point where the cervical cancer class is higher, Infected class rises sharply
before reducing and remaining constant while the cervical cancer class rises before reducing and remaining
constant. The virus exist and persist at the population and this explains why the susceptible individuals are
reducing as infected individuals are increasing. Many individuals are progressing to cervical cancer and dying
due to the cervical cancer infection and this explains why the cervical cancer class is rising.

Late diagnosis of cervical cancer is more difficult to eliminate from the host population and is the main causes of
the disease related deaths worldwide. This is one of the main concerns in developing countries. Late diagnosis
as shown in Fig. (4) and Fig. (5) , results in reduction in the number of S(t) individuals to almost half
before remaining constant. On the other hand, the infected classes begin with an increase to a point where
Ih(t) is higher than the susceptible individuals and then decrease before remaining constant. The reduction in
susceptible S(t) individuals is an indication that more individuals are channeling to Ih(t) class. The decline in
Ih(t) class can be attributed to the progression of the infected individuals into the cervical cancer C(t) class.
The increase in the number of individuals with cervical cancer is as a result of the development of new strains
that are difficult to eradicate and this confirms that late diagnosis results in high number of cervical cancer
individuals leading to high disease related mortality rate.

It can be observed, that late diagnosis (i.e π = 10 years, and π = 30 years) corresponds to R0B = 2.814887 and
R0B = 8.44466 and thus R0B > 1 . This means that the Endemic Equilibrium (EE) is globally asymptotically
stable implying disease persistence in the population. This is in agreement with the mathematical analysis at
the Endemic Equilibrium EeB .

8 Conclusion

Analysis of the results showed that the disease free equilibrium point for Equation (1) is locally and globally
asymptotically stable when R0B < 1 . This implies that we do not expect the disease outbreak for life.
Thus, the disease will die out of the population. The endemic states are shown to exist provided that the
reproduction number is greater than unity. By use of Routh-Hurwitz criterion and suitable Lyapunov functions,
the endemic states are shown to be locally and globally asymptotically stable respectively. This implies that
disease transmission levels can be kept quite low or manageable with minimal deaths at the peak times of the
re-occurrences.

From the numerical simulation, the disease related mortality is eradicated if diagnosis is done at an early
stage hence late diagnosis increases the risk of cervical cancer infection among the infected individuals. Early
diagnosis of cervical cancer is considered one of the most promising interventions against cervical cancer infected
individuals as experiments from various groups have reported its significant effectiveness.

Despite the advocacy for screening and vaccination, new incident HPV infections continues to be a problem.
Thus, the importance of combined prevention strategies to the transmission of high risk HPV which is the main
Cause of cervical cancer. Additionally, early diagnosis is perceived to yield better results in the reduction of
cervical cancer mortality rate.
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