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Abstract: Robots have been reportedly seen serving food in several restaurants in many parts of
the world. New ventures have been deploying mechanical partners which promote the growth in
service robotics. However, robots are considerably incompetent when it comes to beverage and
soup delivery. The physical challenge behind the clumsy motion of these machines is found to be
its jerky motion control. Jerk control solutions are widely studied in a constrained environment but
not well introduced in dynamic environments. In this paper, we will begin by examining developed
kinematics solutions, open-source packages from Robot Operating System and the constraints of
motion planning. The proposed solution in this paper provides a quick system response with jerk
limits using spline velocity profiles. The solution will introduce the concepts of a state machine
design that enables the robot to behave and move reactively; effectively balancing its desired velocity
and position without spilling a drop of customer satisfaction. Experiments have proven that robots
can move at higher velocity without any crashing, spilling, or docking issues. The smooth velocity
control proposed will improve the capabilities of waiter robot and service operations in restaurants.

Keywords: waiter bots; autonomous mobile robot; robot motion; kinematics; finite state machine;
reactive robots

1. Introduction

1.1. Waiter Robots in Food and Beverage (F&B) Industry

The manufacturing sectors have been integrating robots into their operations and improving
their productivities for many years. On the other hand, robots in the service sector are just picking
up and expected to grow [1] after initial mixed successes: replacing workers [2] and being replaced
themselves [3], in China. Similar initial mixed experience in Singapore: Pin Xian Lou restaurant [4]
introduced its humanoid waiter robots in 2017 but the novelty and appeal to children soon wore out.
Additionally, the robot meandered its way along a guided path and unable to serve food directly to the
tables. New ventures with robots grew in more restaurants in India [5,6], Hungary [7], and Nepal [8]
with robots delivering food to diners; and it inevitably will as robotics designs and algorithms get
better. Yet, the great challenge of waiter robots is to deliver beverages and soups filled to the normal
level (Figure 1).
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Figure 1. Serving liquid. 

Besides drinks and beverages, there are soups and broth to be delivered. Chinese restaurants 
serving hot pots, very popular among Asians, may have robots serving dishes but the hot soups are 
still carried to the table by waiters, or as observed in some restaurants, half-filled drinks served in 
plastic cups. 

In this paper, we will address this issue of waiter robots conveying standard liquid-filled glasses, 
and cups. This is done first by examining the standard motion control routines in ROS for a mobile 
robot, understanding what causes spills and experimenting with velocity profiles used in industrial 
robots. Typically, most robot-controlled motions are either discrete square wave signals or signals 
with ramp transitions [9–11]. Most program strategies only consider the computation time and 
direction of motion but do not consider the design and control of jerk constrained motion profiles. 
This is why waiter robots are not commonly deployed to deliver liquids (i.e., soups and beverages) 
in open crockeries. Human waiters in the food and beverage industry are committed to serving 
drinks, especially in bars and cocktail parties before formal dinner is served. It will be a huge 
improvement in waiter robot capabilities to glide and weave around guests in cocktail parties. Our 
results show that it is possible to replicate human capabilities in our waiter robot. 

1.2. Robot Motion 

The main constraint in most waiter robots delivering liquid-based items to customer tables is the 
uncontrolled jerk [12]—the derivative of acceleration or the 3rd derivative of position with respect to 
time. The initial motion of a liquid body is sensitive to jerks—a portion of the body of liquid will be 
pushed up against the container wall, then the impact and the momentum will move that portion of 
liquid back to its main body, pushing part of it over to the other side. If liquid moves above the brim 
of the container, some of it will be spilled. Similar spillage can occur when the robot waiter stops with 
an uncontrolled jerk. The design of a motion profile with a constraint on the jerk limit can solve the 
spillage problem. For example, the robotic arms used in manufacturing are programmed to move 
smoothly. The motion profile is designed with a limit on the jerk. 

Macfarlane et al. [13] proposed a methodology that uses the quintic concatenations of sinusoidal 
equations to provide a smooth trajectory for the motion of the robotic manipulator between two way-
points. In another paper, Vass et al. [14] suggested a near time-optimal trajectory executor algorithm. 
The paper mentioned that reducing jerk is necessary to avoid vibrations and the wear and tear of 
mechanical components of the robot. The algorithm is improved and redeveloped from the 
minimum-time spline-based reduced state space approach (MSRS). The disadvantage of MSRS is the 
lack of flexible control because of its requirement to obtain a steady velocity at the end of each spline. 
The researchers continued from MSRS approach and had successfully reduced the robot motion 
computation time to 100 ms. 

In 2006, Huang et al. used Genetic Algorithm, GA [15] to design a trajectory to reduce jerk 
motions for space robots. In 2010, Pattacini et al. developed a Cartesian controller which extends the 
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Besides drinks and beverages, there are soups and broth to be delivered. Chinese restaurants
serving hot pots, very popular among Asians, may have robots serving dishes but the hot soups are
still carried to the table by waiters, or as observed in some restaurants, half-filled drinks served in
plastic cups.

In this paper, we will address this issue of waiter robots conveying standard liquid-filled glasses,
and cups. This is done first by examining the standard motion control routines in ROS for a mobile
robot, understanding what causes spills and experimenting with velocity profiles used in industrial
robots. Typically, most robot-controlled motions are either discrete square wave signals or signals with
ramp transitions [9–11]. Most program strategies only consider the computation time and direction
of motion but do not consider the design and control of jerk constrained motion profiles. This is
why waiter robots are not commonly deployed to deliver liquids (i.e., soups and beverages) in open
crockeries. Human waiters in the food and beverage industry are committed to serving drinks,
especially in bars and cocktail parties before formal dinner is served. It will be a huge improvement in
waiter robot capabilities to glide and weave around guests in cocktail parties. Our results show that it
is possible to replicate human capabilities in our waiter robot.

1.2. Robot Motion

The main constraint in most waiter robots delivering liquid-based items to customer tables is the
uncontrolled jerk [12]—the derivative of acceleration or the 3rd derivative of position with respect
to time. The initial motion of a liquid body is sensitive to jerks—a portion of the body of liquid will
be pushed up against the container wall, then the impact and the momentum will move that portion
of liquid back to its main body, pushing part of it over to the other side. If liquid moves above the
brim of the container, some of it will be spilled. Similar spillage can occur when the robot waiter stops
with an uncontrolled jerk. The design of a motion profile with a constraint on the jerk limit can solve
the spillage problem. For example, the robotic arms used in manufacturing are programmed to move
smoothly. The motion profile is designed with a limit on the jerk.

Macfarlane et al. [13] proposed a methodology that uses the quintic concatenations of sinusoidal
equations to provide a smooth trajectory for the motion of the robotic manipulator between two
way-points. In another paper, Vass et al. [14] suggested a near time-optimal trajectory executor
algorithm. The paper mentioned that reducing jerk is necessary to avoid vibrations and the wear
and tear of mechanical components of the robot. The algorithm is improved and redeveloped from
the minimum-time spline-based reduced state space approach (MSRS). The disadvantage of MSRS is
the lack of flexible control because of its requirement to obtain a steady velocity at the end of each
spline. The researchers continued from MSRS approach and had successfully reduced the robot motion
computation time to 100 ms.
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In 2006, Huang et al. used Genetic Algorithm, GA [15] to design a trajectory to reduce jerk
motions for space robots. In 2010, Pattacini et al. developed a Cartesian controller which extends the
multi-referential dynamical system approach [16] to enhance the smoothness, the speed, the repeatability,
and the robustness of the robot motion. The approach combined the use of a joint-space and task-space
controller via the use of Lagrangian multipliers methods to modulate the output of each function.
The cascaded controllers are used to replace the vector-integration-to-endpoint models. HI Lin [17]
argued that the previous methods were time-consuming because of the complicated procedures
involved and proposed a fast and unified method using particle swarm optimization. Zhao et al. [18]
used a third-degree polynomial function to describe trajectories of service manipulator robots and
proposed a quick algorithm that operates with configured motion in state space. The solution is
able to generate a piecewise straight-line trajectory that is bounded in jerk, acceleration, and velocity.
The solution also included removing unnecessary motion to smoothen the path. The computation time
requires 1.1 s which generates a natural-looking motion using the Kuka light-weight robot IV.

These various concepts in handling jerk motion profiles can solve the problem of jerky motion
in robots but have complicated procedures and are computationally intensive. The motion planners
can achieve their tasks well as these robots are fixed manipulators operating in a well-constrained
environment. Waiter robots, on the other hand, do not have the same luxury of a static surrounding
and hence require a quicker processing logic or reactive behaviors. At the same time, a mobile robot
may be required to make sharp turns in the presence of dynamic obstacles, disrupting the planned
smoothen path.

For mobile robotics applications, Park et al. [19] mentioned that to achieve comfort for users on a
robotic wheelchair, the dynamic-window-approach and vector field histogram (DWA and VFH) are
not suitable for such applications. Implying that jerk motions are not well controlled for the needs
of the users. To obtain a smoother and graceful motion, they have developed a reactive behavioral
method using a heterogeneous control and human-like driving strategy. Korayem et al. [20] developed
a computational algorithm for a 3-wheeled mobile manipulator. According to the paper, jerks also
contribute to the slippage of wheels. The paper proposed a hybrid approach adapting a time-optimal
path planning [21] and the potential field method for obstacle avoidance [22].

From the review above, the need to manage the jerk to provide a smooth motion has been
made. However, the methods found in the literature are quite computation intensive even for a static
environment. In this research work, this paper proposed a simpler approach for designing the motion
profile with jerk limits. To cater for different load condition, a state machine algorithm is proposed to
manipulate the kinematic motions of a waiter robot using different appropriate profiles depending
on the load. It uses simple and reactive control methods to enable reactive motion behaviors. It is
developed in the robot operating system environment for a 3-wheeled omni-directional waiter robot
designed for casual dining restaurants presented previously by Wan et al. [23].

2. Analyzing the Root Problem

2.1. Velocity from ROS Navigation Package

The open-sourced platform robot operating system (ROS) have libraries for navigation and
velocity control of a mobile motion. This section will first discuss the velocity control routine from
the ROS navigation package, other routines such as, “yujin velocity smoother,” “joint trajectory
generator,” and lastly the proposed liquid-conveying algorithm, developed using “SMACH”—a ROS
Python package.

The ROS navigation stack uses odometry calculations, sensor inputs and moves base scripts to
generate a twist profile. In ROS, a twist is a sort of class in programming that holds linear and angular
velocity values. The navigation stack generates ways-points and the move base node generates velocity
commands relative to the robot also known as a twist.
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A typical twist generates step velocity profiles, as shown in Figure 2, for robot motion in the x, y,
and yaw directions. These voltages are distributed by a user-developed node to the respective motors.
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The performance of the two types of velocity profiles was tested on an in-house developed 
waiter robot [23]: step-up or step-down velocity from ROS navigation move base and the ramp-up 
or ramp-down velocity profile from VelProSMACH_V1.py. The robot conveyed water in cups along 
a straight line from Point A to Point B, repeated ten times. The difference in spillage for cups (the left 
diagram with droplets along the outside and the inside of the cup and on the tray) due to robot 
motions generated by the two motion profiles are shown in Figure 4. 

Figure 2. Navigation stack’s move base command pattern.

The step voltages depending on the magnitudes, may result in high jerk motions during start and
stop. There are online packages to smoothen the velocity profiles generated from the navigation stack.
The “yujin velocity smoother” [10] and “joint trajectory generator” [11] are examples that smoothen
the velocity profile using pre-set acceleration limits. The smoothened generator produces velocity
commands based on the maximum allowable acceleration value resulting in smaller velocity steps
being generated as speed commands to the wheels. By generating smaller steps and converting step-up
and step-down velocity into a sequence of smaller step-up/step-down velocity profile, a form a velocity
smoothening is produced. Effectively, the profile will reduce the magnitude of motion jerks.

Using a similar approach, a ramp-velocity profile generator is designed—the acceleration or the
gradient of the ramp can be programmed to produce a smoother start and stop motion. This has
been coded using the state machine python script (SMACH [24]) and named VelProSMACH_V1.py.
It generates a velocity profile illustrated in Figure 3. The reason for using SMACH will be made clearer
when a robotic behavior algorithm is designed to switch among the ROS navigation package-generated
step-velocity profile, the ramp-velocity profile, and to be introduced, the S-velocity profile.
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The performance of the two types of velocity profiles was tested on an in-house developed
waiter robot [23]: step-up or step-down velocity from ROS navigation move base and the ramp-up
or ramp-down velocity profile from VelProSMACH_V1.py. The robot conveyed water in cups along
a straight line from Point A to Point B, repeated ten times. The difference in spillage for cups (the
left diagram with droplets along the outside and the inside of the cup and on the tray) due to robot
motions generated by the two motion profiles are shown in Figure 4.
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VelProSMACH_V1 had achieved satisfactory performance for general motion but is not desirable
for restaurant setting because of its inability to track waypoints along the trajectory or for accurate
docking. The robot was observed to bumping into walls and obstacles because of its late response and
oscillatory motion about the docking location before coming to a stop.

This suggests a possibility for improvement in waiter robot tasks. However, there is a trade-off.

2.2. Stability Versus Docking

To minimize minimum or zero spillage, control of the instantaneous change from initial speed
up to the desired speed requires a gentle ramp change in velocity. This, however, will cause the
waiter robot to react slowly toward any change: it may not be able to change its direction quickly,
and may not be able to stop on time. Near the target, the robot decelerates slowly and comes to a
stop, often before reaching the target. The distance error will cause the robot to accelerate again and
sometimes overshoots the desired point. This can be repeated a couple of times resulting in the robot
oscillating about the target point, lengthening the time to reach the target and dock. The docking fails.

The results in Table 1 show the performance using a gentle velocity ramp profile (rate of acceleration
at 0.0001 m/s2) for VelProSMACH_V1.py. All the test run from Table 1 have zero incidences of liquid
spillage but are unable to accurately dock at the final destination.

Table 1. Results of using ramp velocity profile.

S\N
Performance Outcome (Y/N) Moving Time

(Min: Sec)Spill? Docked? Crashed?

1 N N N 2:18.06
2 N N N 3:52.85
3 N N Y 0:12.73
4 N N N Over 5 min
5 N N N 02:58.61
6 N N Y 0:19.02
7 N N Y 0:50.97
8 N N Y 0:17.05
9 N N N 1:33.24
10 N N Y 0:43.26
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If the ramp velocity profile is made steeper, the incidence of liquid spilling increases. However,
tuning the ramp slope steeper makes it more responsive and achieves a higher docking success rate.
Unfortunately, when the ramp profile is configured with a lower change in velocity, the robot will be
able to move without spilling the drinks carried but it is maneuvering as if with high inertia of motion.
Trading off between motion smoothness and docking accuracy with a cap on the jerk limit is difficult,
many times it is a hit and miss situation. This will be useful when the waiter robot delivers food instead
of fluidic items. It will have sufficient reaction time to respond to changes in the path trajectories.
The robot start and end motion will be smoother than those generated by the step velocity profile.

The move base step velocity profile, on the other hand, is used successfully for autonomous
motion in point to point navigation and in docking. It has, however, high starting accelerations and
ending decelerations that can cause drinks to spill from some tall glass (e.g., a champagne glass),
if not secured.

Robots have to be able to move smoothly and quickly for efficient utilization. Neither the step nor
the linear velocity profile is able to resolve the motion issues of conveying drinks as liquid bodies are
sensitive to the jerk instead of acceleration. A changing rate of acceleration will be required for the
robot motion to be both smooth and quick; a low level and constant jerk process should be imposed.

2.3. The S-Velocity Profile

The spline velocity or S-velocity profile commonly used in robot manipulator trajectory changes
the speed more gently, with the maximum acceleration at the instance of transiting from the concave
to the convex part of the velocity profile. In this paper, the spline velocity motion profile has been
investigated with simple computation approach.

Figure 5 shows a ramp-velocity that changes from 0 to 0.1 m/s in 1 s, sampled at 1 ms interval
with an impulsive jerk magnitude of 100 m/s3. In comparison, the speed change of the S-velocity
curve, over the same period, is smoother; more importantly the acceleration increases at a steady rate
leading to a smaller constant jerk magnitude of 0.4 m/s3 and then to −0.4 m/s3. Potentially quicker
system response with lower jerk levels is achievable and will enable the waiter robot to start (and stop)
smoothly without introducing severe jerk to the liquid in the glass or cup.

Technologies 2020, 8, x FOR PEER REVIEW 6 of 14 

 

trajectories. The robot start and end motion will be smoother than those generated by the step velocity 
profile. 

The move base step velocity profile, on the other hand, is used successfully for autonomous 
motion in point to point navigation and in docking. It has, however, high starting accelerations and 
ending decelerations that can cause drinks to spill from some tall glass (e.g., a champagne glass), if 
not secured. 

Robots have to be able to move smoothly and quickly for efficient utilization. Neither the step 
nor the linear velocity profile is able to resolve the motion issues of conveying drinks as liquid bodies 
are sensitive to the jerk instead of acceleration. A changing rate of acceleration will be required for 
the robot motion to be both smooth and quick; a low level and constant jerk process should be 
imposed. 

2.3. The S-Velocity Profile 

The spline velocity or S-velocity profile commonly used in robot manipulator trajectory changes 
the speed more gently, with the maximum acceleration at the instance of transiting from the concave 
to the convex part of the velocity profile. In this paper, the spline velocity motion profile has been 
investigated with simple computation approach. 

Figure 5 shows a ramp-velocity that changes from 0 to 0.1 m/s in 1 s, sampled at 1 ms interval 
with an impulsive jerk magnitude of 100 m/s3. In comparison, the speed change of the S-velocity 
curve, over the same period, is smoother; more importantly the acceleration increases at a steady rate 
leading to a smaller constant jerk magnitude of 0.4 m/s3 and then to −0.4 m/s3. Potentially quicker 
system response with lower jerk levels is achievable and will enable the waiter robot to start (and 
stop) smoothly without introducing severe jerk to the liquid in the glass or cup. 

 
(a) (b) (c) 

Figure 5. Motion–time graph. 

The S-velocity curve can be generated using a set of kinematic equations with at least a cubic, or 
higher fifth-order polynomials, otherwise using a sinusoidal function. Many papers were written on 
optimization and solving the coefficients of such polynomials as discussed earlier. The approach 
taken here is based on experimentation with different types of liquid containers and the S-velocity 
profile is hardcoded in Python using the value increment operations. 

Equations (1) and (2) are the velocity and acceleration generators for the S-curve. The change in 
velocity, for each time step, is given by: 

ݒ = ିଵݒ +    (1)ݒ݀

where ݒ refers to the current velocity command 

Figure 5. Motion–time graph.

The S-velocity curve can be generated using a set of kinematic equations with at least a cubic,
or higher fifth-order polynomials, otherwise using a sinusoidal function. Many papers were written
on optimization and solving the coefficients of such polynomials as discussed earlier. The approach
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taken here is based on experimentation with different types of liquid containers and the S-velocity
profile is hardcoded in Python using the value increment operations.

Equations (1) and (2) are the velocity and acceleration generators for the S-curve. The change in
velocity, for each time step, is given by:

vi = vi−1 + dvi (1)

where vi refers to the current velocity command
vi−1 refers to the previous velocity command
dvi refers to change in velocity command
The change in acceleration, for each time step, is given by:

dvi = dvi−1 +
∣∣∣ j∣∣∣.sgn( j) (2)

dvi−1 refers to change in velocity command
where sgn(j) = 1 for the concave part of the S-Curve
and sgn(j) = −1 for the convex part of the S-Curve
When the robot is to accelerate, sgn(j) equals to 1, (1) and (2) are used to generate the concave part

of the speed profile. After 0.5 s, the robot speed will switch into the convex part of S-speed using (1)
and (2), sgn(j) equals to −1. The variables will be reset once acceleration/deceleration is completed
(reaching the desired velocity). The ramp-velocity and the S-velocity flow charts are shown in Figure 6.
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Figure 6. Flow charts for S-velocity and (linear) ramp-velocity generation.

To compute at a lower rate, a loop counter is applied to model the time discretization using basic
delays and counters. Assume transition time of 0.5 s to peak acceleration and publish command every
1 ms. The transitional time value is determined experimentally through calibration and tuning of
the robot configuration. This is performed based on the reaction time required in general to react to
obstacles in close-proximity (when obstacles are equal or less than 0.2 m away) while travelling at
0.1 m/s. The travelling velocity of the robot is relatively low as it is also expected to navigate through
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tight space in a typical restaurant environment. Hence, the time response of the transient velocity is
benchmarked at 1 s.

3. Designing the Waiter Robot Motion Behaviors—VelProSMACH_V2.py

The utility of a waiter robot increases if it is able to move normally without load, transit to moving
slowly and safely when carrying drinks or food, in the same way, a waiter does and then transiting
back to moving normally once the food or drinks have been delivered [25]. Each of the three velocity
profiles experimented with can be regarded as a type of behavior: step-velocity profile as moving
with no tray (normal robot point-to-point motion), ramp-velocity profile with carrying food tray,
and S-velocity profile with carrying food with drink trays. A complex waiter robot behavior can result
in an unexpected situation from these motion profiles. Different states of motion control can be used in
various scenarios.

A convenient tool for prototyping and developing the waiter robot with suitable motion behaviors
and transiting between these motion states is the ROS SMACH package. It is a task-level architecture for
rapidly creating basic and complex robot behaviors. In ROS, the state machine can be used to generate
sensible twist commands for waiter bots in restaurants. VelProSMACH_V2.py is the implementation
of the state machines for the waiter robot. The state machine diagram is shown in Figure 7.
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3.1. Motion Behavioral Strategies

The state machine is designed to link the “linguistic” outcomes to different states. These outcomes
can be designed as event handlers to transit into discrete states under various circumstances. The “Dock”
state is the interface to ROS navigation node and decisions are made here to nullify the move base
commands and switch into other move commands as a motion strategy hub. It may transit to various
states depending on the payload e.g., of the food or drinks. For one case, the robot would move with
the S-velocity profile while carrying drinks to a table, then subsequently deliver the remaining food
with a ramp velocity profile and then return to the start point with step velocity profile (the default
state which uses the navigation move base command). This Dock state is effective and ideal for the
robot to deal with various tasks appropriately and semantically. The change of motion strategy is likely
to optimize businesses’ operation efficiencies.
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The decision to switch between strategies depends on the food order (the task of the robot).
The robot is expected to use the appropriate motion strategies to maneuver effectively and efficiently
based on the task on hand. This is currently done from the terminal but it can be implemented using a
set of manual push buttons on the robot, for the various type of load, as inputs to the robot controller.
An ordering system developed from a previous prototype, the Beta-G [26] can also be integrated:
when the food is ready, the ordering system should indicate the table number and the type of order
ready to be served; solid food to be using Strategy 2 while liquid and semi-liquid food to be on
Strategy 3. When returning to a waiting position in the restaurant, the robot transits back into Strategy
1. The program flowchart of the dock state for motion strategy switching mechanism is shown in
Figure 8.

A concept of a motion state transition hub may be programmed and enforced. The respective
“Cruise” states enable the robot to switch its motion state by deciding whether to increase or decrease
its speeds. The state can also choose to remain on its current state; to maintain speed in the same
direction. Each motion strategy transits reactively based on the current speed, the remaining distance
to the goal or obstacles. Note that this is only an example of how the SMACH can be used to enable
the use of simple value increment code.
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3.2. Reactive and Non-Reactive States for a Multispeed Design

The cruise state requires and generates low discretization of desired speed (i.e., 0.1, 0.2, and 0.3 m/s)
and current speed system level. The desired speed changes are based on scenario logic. The logic
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compares move base commands, Adaptive Monte Carlo Localization position (AMCL pose) inputs,
and its current velocity state. By determining the targeted velocity and acting on current velocity
values and position, it allows the robot to cruise at the desired velocity. As restaurant areas are usually
spatially tight, the cruise state will allow the robot to manage its motion around obstacles better.
The program flowchart of the cruise state is shown in Figure 9.

The robot’s reactive cruise state depends on whether or not the move base provides a twist
command. With a twist command and the goal position, the robot will increase speed (throttle) toward
a higher speed. Likewise, when the robot’s goal position or if an obstacle is near, the robot reduces
speed (brake). The robot motion is designed in the same way as humans drive their cars. When other
cars or obstacles are near, the vehicle is slowed down and once past these, the vehicle speeds up.
The same logic can be applied when the robot is navigating a bend. The robot speed is feedbacked by
speed encoders on board.

The throttle and brake states in S-velocity are used to generate linear acceleration and linear
deceleration. A constant loop period and a defined change in velocity provide an acceleration profile
with a consistent jerk magnitude. A counter will begin counting the loop cycles. The loop thresholds
are also set to maintain the magnitude of the maximum acceleration, acceleration period, and outcome
velocity. Note that the smooth throttle and smooth brake states will not be interrupted or transit into
other states during the acceleration period; this means that the period determines the time response of
the robot before it can decide to vary its speed. The higher the loop threshold, the longer it takes for
the robots to the response. For this motion behavior, the states are non-reactive. The robot will only be
reactive again after the completion of the S-velocity profile. Unlike the S-velocity profile, there is no
requirement to limit jerk for the robot in step-velocity and ramp-velocity. Hence these motions can
remain reactive.
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When the robot approaches its goal point, the waiter robot transits into a terminal state where it
uses small step-up and step-down velocities to reach the docking point as accurate as possible.

4. Comparing ROS Step-Velocity and S-Velocity

Tests were done with the waiter robot conveying water in cups and champagne glasses running
under ROS navigation node base commands issuing step-velocity commands and the developed
VelProSMACH_V2.py running in the S-velocity mode. The cups and glasses experiments are done
separately. The goal position is approximately 5 m away from the start position. The waiter robot was
set to run 20 times. The cups and glasses are filled with water until the 1st finger joint from the brim.

Results

Figure 10 shows a comparison of docking accuracy. There are no distinct differences between the
two algorithms, although the waiter robot seemed to be docking slightly more accurately toward the
goal position. The move base command tends to overshoot the docking position in the x-direction.

Tables 2 and 3 show the specific data for docking and performance in conveying water in cups for
the two programs; MoveBase control and VelProSMACH_V2 respectively. The mean docking radius
improved from 329.6 mm for the step-velocity to 233.8 mm for the S-velocity, and the docking variance
improved from 234.4 mm to 17.8 mm. In addition, the S-velocity profile did not result in any liquid
spillage, while the step-velocity resulted in spillage in all 20 runs. However, the S-velocity, in general,
took on average one and half time longer to reach its destination. This is to be expected, even for a
human waiter as the need to control the motion can slow one’s pace. Results for water in glasses are
similar in that there is no spillage; the timing and accuracy are about the same, not identical.
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Table 2. Performance result of MoveBase control.

S\N
Performance Outcome (Y/N) Docked Pose Wrt Goal Pose (mm) Moving

Time (s)

Spill? Docked? Crashed? X Y R

1 Y Y N 0.523 −0.068 0.527 24.5
2 Y Y N 0.105 −0.053 0.118 22.7
3 Y Y N 0.318 −0.036 0.320 22.8
4 Y Y N 0.247 0.001 0.247 22.8
5 Y Y N 0.106 −0.087 0.137 22.3
6 Y Y N 0.478 −0.164 0.505 22.7
7 Y Y N 0.078 0.012 0.079 27.0
8 Y Y N 0.294 0.054 0.299 30.7
9 Y Y N 0.331 0.012 0.331 22.7
10 Y Y N 0.438 −0.039 0.440 22.5
11 Y Y N 0.374 0.075 0.382 29.8
12 Y Y N 0.499 −0.105 0.510 20.9
13 Y Y N 0.249 −0.030 0.251 21.8
14 Y Y N 0.312 −0.113 0.332 28.3
15 Y Y N 0.423 0.067 0.428 31.6
16 Y Y N −0.133 0.314 0.340 22.1
17 Y Y N 0.384 0.350 0.519 33.7
18 Y Y N 0.106 −0.104 0.148 21.2
19 Y Y N 0.450 0.316 0.550 22.8
20 Y Y N 0.125 −0.004 0.125 22.2

Table 3. Performance results of VelProSMACH_V2 (Strategy 3) control.

S\N
Performance Outcome Docked Pose Wrt Goal Pose (mm) Moving

Time (s)

Spill? Docked? Crashed? X Y R

1 N Y N 0.127 0.227 0.261 54.5
2 N Y N 0.563 −0.129 0.578 51.4
3 N Y N −0.085 0.080 0.117 37.6
4 N Y N −0.110 0.070 0.130 37.7
5 N Y N 0.512 −0.080 0.518 41.3
6 N Y N −0.253 0.082 0.266 30.2
7 N Y N 0.239 0.087 0.255 35.0
8 N Y N −0.065 0.273 0.280 39.0
9 N Y N −0.150 0.075 0.168 34.8
10 N Y N −0.090 0.130 0.158 29.9
11 N Y N 0.090 0.135 0.162 30.1
12 N Y N −0.130 0.160 0.206 36.6
13 N Y N 0.075 0.162 0.179 32.7
14 N Y N 0.214 −0.106 0.239 42.4
15 N Y N −0.158 0.014 0.159 56.9
16 N Y N −0.353 0.228 0.421 37.0
17 N Y N 0.068 0.063 0.093 30.9
18 N Y N 0.033 −0.083 0.089 32.4
19 N Y N −0.258 0.040 0.261 28.3
20 N Y N −0.030 0.135 0.138 30.1
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There are some limitations to the use of VelProSMACH programs. The S-velocity profile requires
calibration and fine-tuning to obtain the results. This tuning will vary for various mobile robot designs.
Debugging and testing of suitable jerk parameters will be one of the key constraints of this motion
control design.

Another limitation is the inflexibility of disrupting the S-velocity profile from the smooth throttle
or smooth brake state. This results in a longer period for the waiter robot to respond to change its
operational plans. This is limited due to the value increment hard coding implementation of the
velocity to decelerate numerically with a controlled jerk. This is unlike trajectory planning of industrial
robot manipulators where the trajectory is designed in almost a fixed environment.

For safe operation, the ROS motion algorithm in the navigation package has obstacle detection and
avoidance behaviors using the LiDAR and a set of eight Teraflex IR sensors arranged around the base
of the robot for close proximity sensing. It is designed to be lightweight, open concept, and operates at
relatively low speeds. It does not result in a severe impact on collision.

The robot has been successfully tested with both static and dynamic obstacles such as a chair (static)
and humans walking toward the robot (dynamic). The collision detection and obstacle avoidance
algorithms will slow down the robot with controlled deceleration and does a detour. If a detour could
not be done, it will come to a stop when its path is completely blocked.

For additional safety, there is a push-button that when activated removes power from the
servomotors. In addition, a set of mechanical bumpers similar to those installed on Beta-G can
be implemented.

Finally, the computational time has to be considered. The S-velocity profile requires a discretization
time of 1 ms per change in order for the robot to obtain a 1-s reaction (or response) time. To react and
to respond faster, the waiter robot requires a finer quantization of time. In cases where the waiter
robot on-board computer is required to reduce the command publish rate due to heavy computation
requirements by other tasks running concurrently or where the computational power is low by design,
the solution proposed here will not be ideal.

5. Conclusions

Robots are seen in restaurants delivering food to the tables, but robots serving drinks and soups,
though also part of the basic tasks of waiter are not common. The problem is associated with the jerk
in the initial start and stop causing the liquid to spill. With the implementation of the S-velocity profile
with a limit in the jerk, it is possible to minimize liquid spillage and to improve on the productivity
of waiter robots in the Food and Beverage industry. The S-velocity can be designed into a robotic
behavior algorithm, in conjunction with ROS step-velocity and ramp-velocity using state machines
tool SMACH ROS. With this, the productivity of waiter robots in the Food and Beverage Industry can
increase by assisting in the serving of typical beverages, wine and soups.
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